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A crystal structure that cannot be superposed on its mirror image by any combination of rotations and
translations is classified as chiral. Such crystal structures have gained importance in recent years since they are
prone to host unconventional magnetic orders and to exhibit topological magnetic textures. These properties
result from the Dzyaloshinskii-Moriya antisymmetric exchange interaction which is authorized when space
inversion is broken. While recent reports have shown the muon spin rotation and relaxation technique to provide
unique information about structural and dynamical properties which are specific to chiral magnets in their
ordered phase, the question here is whether this technique is sensitive to paramagnetic chiral correlations that are
observed in neutron scattering experiments above the critical temperature. In the relevant long-wavelength limit,
it is shown that they do not contribute to the relaxation rate, which in turn only probes nonchiral correlations.
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I. INTRODUCTION

Chirality (or handedness) is ubiquitous in nature. It occurs
at the microscopic level and its effect was recognized in
molecules by Pasteur at a time as early as the mid 19th century
[1,2]. A century later the break of symmetry between right and
left was revealed at an even lower scale in the parity violation
in weak interactions [3]. The muon spin rotation or relaxation
(μSR) technique relies on it [4]. In magnetism, chirality has
been reported, e.g., for magnetic structures [5], for solitons
[6], and geometrically frustrated compounds [7]. A great deal
of attention has been devoted to systems crystallizing in the
so-called noncentrosymmetric B20 structure and containing
a 3d transition element and silicon or germanium [8]. The
chiral link between structure and magnetism for these metals
has been investigated [5,9–11]. More recently the noncen-
trosymmetric nature of a structure has been recognized to give
birth not only to helical magnetic structures [12], but also to
skyrmion lattices [13] and isolated skyrmions [14]. Moreover,
these phenomena are not only found among metals and alloys
[12,15,16], but also in semiconductors [17] and multiferroics
[18,19], and devices based on magnetic chirality have been
discussed [20].

The relativistic Dzyaloshinskii-Moriya (DM) antisymmet-
ric exchange interaction, which results from noncentrosym-
metric crystal structures [21,22], is the culprit of chiral
magnetic structures, excitations, and correlations. They have
specific signatures in neutron scattering observables which
have been well documented; see, e.g., Refs. [5,23–27]. Con-
cerning another microscopic probe of magnetism, i.e., the
μSR technique, recent works have evidenced that it is sensi-
tive to unique characteristics associated with chiral magnetic
structures [28–30] and excitations [31]. Here, we address
the question of whether this technique is or is not sensitive
to paramagnetic chiral correlations. Based on the distinctive
character of these correlations predicted by theory and ob-
served in neutron scattering measurements [23–25], and the

nature of the coupling between the muon and the system, we
find that they do not influence the zero-field μSR response
when these correlations are dominated by modes around the
Brillouin zone center.

Muons are spin-1/2 elementary particles. In the zero-field
μSR experiments of interest here, muons fully polarized along
the direction Z are implanted into the specimen under study
where they probe the dynamical microscopic magnetic fields
arising from the magnetic moments of the system. The mea-
sured quantity is the evolution with time t of the projection
of their average polarization along the Z axis: This is the
so-called polarization function PZ (t ). In paramagnets, PZ (t )
typically decays according to an exponential function. The
reader is referred to Ref. [32] for further details about the μSR
technique. We note that chiral magnets have been the object
of many μSR studies both in their ordered and paramagnetic
phases; see Refs. [33–37] for a few examples.

The organization of this Rapid Communication is as fol-
lows. Section II introduces the minimal expression for the
chiral magnetic free energy of a compound based on the
DM interaction. In the next section (Sec. III) we deal with
the μSR zero-field polarization function in the paramagnetic
state in general terms. The possible influence of chirality on
this function is investigated in Sec. IV. A summary and a
discussion are given in Sec. V. The text is supplemented with
an Appendix providing mathematical formulas.

II. CHIRAL MAGNETIC FREE ENERGY

We consider a magnetic system in which the magnetic
moment at the atomic sites varies so slowly that it can be con-
sidered as a continuous quantity. We introduce the magnetic
free-energy density averaged over the crystal volume V ,

E = 1

V

∫
V

F (r)d3r, (1)
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where F (r) is the local energy density. Following Bak and
Jensen [38], the minimal chiral free energy is given by the
sum of three terms,

F (r) = A

2

(
S2

x + S2
y + S2

z

) + DS · (∇ × S)

+B1

2
[(∇Sx )2 + (∇Sy)2 + (∇Sz )2]. (2)

We denote the spin density at position vector r as S(r).
The spin components are expressed in the reference frame
(x, y, z) of the crystal. In order of appearance on the right-hand
side of Eq. (2), we have the Landau term, the antisymmet-
ric Dzyaloshinskii-Moriya (DM) exchange interaction, and
the symmetric Heisenberg exchange interaction. This sim-
plified model neglects other interactions which are possibly
present, e.g., a weak exchange anisotropy or the crystal field
energy. Their presence would not change our result. The
Ginzburg-Landau framework we use is justified since only
long-wavelength modes matter in a compound with a DM
interaction.

Introducing the Fourier series

S(r) =
∑

q

Sq exp(iq · r), (3)

where

Sq = 1

V

∫
V

S(r) exp(−iq · r)d3r, (4)

Eq. (1) writes

E =
∑

q

[
(A + B1q2)

|Sq|2
2

+ iDq · (Sq × S−q)

]
. (5)

For convenience we will consider q as a continuous variable
from now on. Although conventional, Eq. (5) is not suitable
for our purpose. Since the DM interaction is antisymmetric, it
is propitious to consider the operator

Pαβ

T2
(q) =

∑
γ

εαγβ qγ

q
, (6)

where εαγβ is the Levi-Civita symbol. Nicely enough, Pαβ

T2
(q)

depends only on the orientation of q and not its modulus. Re-
calling that q · [S(q) × S(−q)] = −S(q) · [q × S(−q)] and
with the help of Eq. (A1), we derive

E = V
∫

ST (q)

[
A + B1q2

2
I − iDqPT2 (q)

]
S(−q)

d3q
(2π )3

.

(7)

Here, I is the identity operator and ST (q) is the transpose of
column vector S(q).

III. PARAMAGNETIC ZERO-FIELD
POLARIZATION FUNCTION

In this section we describe the zero-field μSR polarization
function in the paramagnetic state in general terms. We first
establish the expressions of the spin correlation functions
needed for the computation of PZ (t ) which follows.

A. Spin correlation function

The derivation of an expression for the μSR spin-lattice
relaxation rate (see Sec. III B) requires the spin correla-
tion tensor. In general terms, a component of this tensor is
defined as

�αβ (q, ω) = 〈Sα (q, ω)Sβ (−q)〉, (8)

where α and β denote Cartesian axes for the crystal reference
frame [39]. We shall only need the tensor at angular frequency
ω = 0 since the paramagnetic state in zero field is considered.
From the symmetry property of the free energy expressed in
reciprocal space [Eq. (7)] the following decomposition of the
correlation function holds,

Λ(q, ω = 0) = �I(q, ω = 0)I + �T2 (q, ω = 0)PT2 (q). (9)

As shown in Ref. [40], this is justified since we are interested
by the small q limit. The first term on the right-hand side of
Eq. (9) is the isotropic part of the correlation which depends
solely on the modulus of q. The second term is the chiral con-
tribution. Its dependence on the orientation of q is described
by the operator PT2 (q).

B. Muon spin-lattice relaxation function

In the paramagnetic phase of a magnetic system, the zero-
field relaxation function is an exponential function

PZ (t ) = exp(−λZt ), (10)

characterized by the relaxation rate λZ expressed as [32,41]

λZ = D
2

∫ ∑
γ ,γ ′

[GXγ (q)Gγ ′X (−q)

+ GY γ (q)Gγ ′Y (−q)]�γγ ′
(q, ω = 0)

d3q
(2π )3

. (11)

We have defined the constant D = (μ0/4π )2γ 2
μg2μ2

B/vc,
where g is the spectroscopic factor of the magnetic moments,
μB is the Bohr magneton, vc is the unit cell volume, and
γμ = 8.516 16 × 108 rad s−1 T−1 is the muon gyromagnetic
ratio. The integral extends over the first Brillouin zone. Tensor
G(q) accounts for the coupling between the muon spin and the
spins in the crystal [42]. This coupling is of dipolar origin.
In metallic systems the additional interaction between the
muon spin and the electronic spin density at the muon site is
described via the Fermi contact field, and its effect is included
in G(q).

Equation (11) is written in the laboratory reference frame
(X,Y, Z ), where Z is the direction along which the muon po-
larization is monitored (Sec. I) and X and Y are two Cartesian
directions perpendicular to each other and to Z . Naturally, the
components of the correlation tensor Λ are most conveniently
expressed in the (x, y, z) crystal frame. If the two frames do
not coincide, rotations can be introduced in the expression
of Eq. (11); see, e.g., Ref. [32]. Then all the components of
the product of tensors G(q)Λ(q, ω = 0)G(−q) in the crystal
frame may be involved, rather than only the laboratory frame
XX and YY components of this product as in Eq. (11).

As only long-wavelength correlations matter in our mod-
eling of the magnetic properties of the compound of interest,
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we are entitled to limit ourselves also to the long-wavelength
limit of Gαβ (q). Referring to Refs. [43–45],

Gαβ (q → 0) = −4π

(
Pαβ

L (q) − Cαβ (q = 0) − rμH

4π
δαβ

)
,

(12)

where

Pαβ

L (q) = qαqβ

q2
(13)

is a component of the longitudinal projection operator PL(q)
and rμH/4π quantifies the effect of the Fermi contact field
if present. The tensor C(q = 0) describes the analytical part
at q = 0 of the dipole interaction between the muon and
magnetic moments, while PL(q) is only piecewise continuous
at q = 0.

IV. CHIRAL CONTRIBUTION TO THE
POLARIZATION FUNCTION

We now examine the contribution of the chiral correlations
to the relaxation rate through the quantity

∫
G(q)�T2 (q, ω = 0)PT2 (q)G(−q)

d3q
(2π )3

. (14)

The tensor PT2 (q), together with the tensor G(q) in the limit of
small wave vectors of interest here [Eq. (12)], depend only on
the orientation of q and not its modulus, whereas it is just the
opposite for �T2 (q, ω = 0). This remark suggests to compute
the triple integral of Eq. (14) in spherical coordinates. We start
with the integrals over the polar and azimuthal angles. Given
that G(q) is the sum of PL(q) and a constant, the expan-
sion of the double product G(q)PT2 (q)G(−q) is a weighted
sum of four terms: PT2 (q), PL(q)PT2 (q), PT2 (q)PL(q), and
PL(q)PT2 (q)PL(q). The last three terms vanish because of the
orthogonality relation mentioned in Eq. (A2). Concerning the
first term, its contribution to Eq. (14) cancels since

∫ 2π

0

∫ π

0
Pγ γ ′

T2
(q) sin θ dθ dφ = 0, (15)

for all Cartesian components γ and γ ′.
We have therefore substantiated that the angular integrals

of Eq. (14) vanish. Finally, we check that the integral over q is
finite. Recasting to the fluctuation-dissipation theorem in the
limit h̄ω/kBT → 0 (see, e.g., Ref. [32]), we get

�T2 (q, ω = 0) ∝ χT2 (q)

�T2 (q)
, (16)

where χT2 (q) is the chiral static susceptibility and �T2 (q)
is the associated linewidth. We expect the latter quantity to
be independent of q in the long-wavelength limit above the
critical temperature since the DM interaction violates the total
spin conservation law [26]. Then from the q dependence of
χT2 (q) (see, e.g., Ref. [40]), we find the radial integral to
be finite.

In conclusion, the quantity defined in Eq. (14) is zero. We
have therefore established that the chiral correlations do not
contribute to the μSR relaxation rate.

V. SUMMARY AND DISCUSSION

We examined the influence of the chiral correlations on the
zero-field μSR spectra measured in the paramagnetic phase of
chiral magnets. The derivation is analytical and relies on the
specific q dependence of chiral correlations. It is performed
in the limit of small wave vectors at which these spin cor-
relations dominate. This approximation is especially justified
for magnets that order with a small propagation wave vector,
such as the systems for which the chirality stems from the DM
interaction. In addition, we note that when the temperature is
high enough that the small q approximation might no longer
be relevant, the chiral correlations tend to be suppressed
[46–48]. Owing to the specific symmetry properties of the
dipolar—and possible Fermi contact field—coupling between
the muon spin and the chiral correlations, it is found that
these correlations do not couple to the muon spin. As a conse-
quence the muon spin relaxation rate solely probes nonchiral
correlations.

At this stage, it is instructive to review how the analytical
derivation presented in Sec. IV can alternatively be inferred
from an inspection of Eq. (11). As already mentioned, λZ

involves an integral over the polar and azimuthal angles
of the components XX and YY of the product of tensors
G(q)PT2 (q)G(−q). For the former component as an example,
this product can be viewed as the scalar product of vectors
GXγ (q) and PT2 (q)Gγ ′X (−q). Since PT2 (q)Gγ ′X (−q) is per-
pendicular to Gγ ′X (−q) = Gγ ′X (q) = GXγ ′

(q) [see Eqs. (A1)
and (12) and Ref. [49]], the scalar product vanishes as λZ does.

Our result can be applied to the spin-lattice relaxation
time T1 measured in nuclear quadrupole resonance (NQR)
experiments. As for μSR, this technique is not sensitive to
chiral correlations [50]. We are not aware of any NQR study
of 1/T1 in the paramagnetic phase of a chiral magnet.

The conclusion about the absence of sensitivity of μSR to
chiral correlations does not mean that this technique provides
no information about other aspects of chiral magnetism. As far
as the model helimagnet MnSi is concerned, the chirality of
the zero-field magnetic order can be experimentally verified,
provided the handedness of the crystal structure is known
[28,29]. The unique wave-vector anisotropy of the dispersion
relation of the helimagnon excitations in the ordered phase
can also be probed [31].
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APPENDIX: THE PL(q) AND PT2 (q) OPERATORS

We provide an insight into the operators respectively de-
fined in Eqs. (13) and (6) and derive an orthogonality property
which is a key for the material presented in Sec. IV.

First, we note that the two operators are defined for any
nonzero q vector. When applied to a V vector, the result
PL(q)V is the vector collinear to q̂ ≡ q/q with a length equal
to the scalar product q̂ · V. This definition justifies the name
longitudinal projection operator given to PL(q). Concerning
PT2 (q), this is the vectorial product q̂ × V. The two relations
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summarize as

PL(q)V = (q̂ · V)q̂,

PT2 (q)V = q̂ × V.
(A1)

Inspecting Eq. (A1), we notice that PT2 (q)V is essentially a
vector perpendicular to q̂ and V and that PL(q) projects along

the q̂ vector. Therefore,

PL(q)PT2 (q) = PT2 (q)PL(q) = 0. (A2)

Obviously, an alternative derivation of these two relations
can be algebraically inferred from the definition of the two
operators [Eqs. (13) and (6)].

[1] L. Pasteur, Sur les relations qui peuvent exister entre la forme
cristalline, la composition chimique et le sens de la polarisation
rotatoire, Ann. Chim. Phys. 24, 442 (1848).

[2] H. D. Flack, Louis Pasteur’s discovery of molecular chirality
and spontaneous resolution in 1848, together with a com-
plete review of his crystallographic and chemical work, Acta
Crystallogr., Sect. A 65, 371 (2009).

[3] T. D. Lee and C. N. Yang, Question of parity conservation in
weak interactions, Phys. Rev. 104, 254 (1956).

[4] R. L. Garwin, L. M. Lederman, and M. Weinrich, Observations
of the failure of conservation of parity and charge conjugation
in meson decays: The magnetic moment of the free muon, Phys.
Rev. 105, 1415 (1957).

[5] M. Ishida, Y. Endoh, S. Mitsuda, Y. Ishikawa, and M. Tanaka,
Crystal chirality and helicity of the helical spin density wave in
MnSi. II. Polarized neutron diffraction, J. Phys. Soc. Jpn. 54,
2975 (1985).

[6] H. B. Braun, J. Kulda, B. Roessli, D. Visser, K. W. Krämer,
H. U. Güdel, and P. Böni, Emergence of soliton chirality in a
quantum antiferromagnet, Nat. Phys. 1, 159 (2011).

[7] V. P. Plakhty, J. Kulda, D. Visser, E. V. Moskvin, and J.
Wosnitza, Chiral Critical Exponents of the Triangular-Lattice
Antiferromagnet CsMnBr3 as Determined by Polarized Neu-
tron Scattering, Phys. Rev. Lett. 85, 3942 (2000).

[8] H. J. Williams, J. H. Wernick, R. C. Sherwood, and G. K.
Wertheim, Magnetic properties of the monosilicides of some
3D transition elements, J. Appl. Phys. 37, 1256 (1966).

[9] M. Tanaka, H. Takayoshi, M. Ishida, and Y. Endoh, Crystal
chirality and helicity of the helical spin density wave in MnSi.
I. Convergent-beam electron diffraction, J. Phys. Soc. Jpn. 54,
2970 (1985).

[10] V. A. Dyadkin, S. V. Grigoriev, D. Menzel, D. Chernyshov,
V. Dmitriev, J. Schoenes, S. V. Maleyev, E. V. Moskvin, and
H. Eckerlebe, Control of chirality of transition-metal monosili-
cides by the Czochralski method, Phys. Rev. B 84, 014435
(2011).

[11] V. Dmitriev, D. Chernyshov, S. Grigoriev, and V. Dyadkin, A
chiral link between structure and magnetism in MnSi, J. Phys.:
Condens. Matter 24, 366005 (2012).

[12] Y. Ishikawa, K. Tajima, D. Bloch, and M. Roth, Helical spin
structure in manganese silicide MnSi, Solid State Commun. 19,
525 (1976).

[13] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A.
Neubauer, R. Georgii, and P. Böni, Skyrmion lattice in a chiral
magnet, Science 323, 915 (2009); 333, 1381(E) (2011).

[14] A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nat.
Nanotechnol. 8, 152 (2013).

[15] B. Lebech, J. Bernhard, and T. Freltoft, Magnetic structures of
cubic FeGe studied by small-angle neutron scattering, J. Phys.:
Condens. Matter 1, 6105 (1989).

[16] S. V. Grigoriev, D. Chernyshov, V. A. Dyadkin, V. Dmitriev,
E. V. Moskvin, D. Lamago, Th. Wolf, D. Menzel, J. Schoenes,
S. V. Maleyev, and H. Eckerlebe, Interplay between crystalline
chirality and magnetic structure in Mn1−xFexSi, Phys. Rev. B
81, 012408 (2010).

[17] T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B.
Pedersen, H. Berger, P. Lemmens, and C. Pfleiderer, Long-
Wavelength Helimagnetic Order and Skyrmion Lattice Phase
in Cu2OSeO3, Phys. Rev. Lett. 108, 237204 (2012).

[18] T. Lottermoser, T. Lonkai, U. Amanna, D. Hohlwein, J.
Ihringer, and M. Fiebig, Magnetic phase control by an electric
field, Nature (London) 430, 541 (2004).

[19] T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura,
Ferroelectricity and Giant Magnetocapacitance in Perovskite
Rare-Earth Manganites, Phys. Rev. Lett. 92, 257201 (2004).

[20] O. B. Dor, S. Yachelis, S. P. Mathew, R. Naaman, and Y. Paltiel,
A chiral-based magnetic memory device without a permanent
magnet, Nat. Commun. 4, 2256 (2013).

[21] I. E. Dzyaloshinskii, A thermodynamic theory of “weak” ferro-
magnetism of antiferromagnetics, J. Phys. Chem. Solids 4, 241
(1958).

[22] T. Moriya, Anisotropic superexchange interaction and weak
ferromagnetism, Phys. Rev. 120, 91 (1960).

[23] S. V. Maleev, V. G. Bar’yakhtar, and R. A. Suris, The scattering
of slow neutrons by complex magnetic structures, Fiz. Tverd.
Tela 4, 3461 (1962) [Sov. Phys. Solid State 4, 2533 (1963)].

[24] M. Blume, Polarization effects in the magnetic elastic scattering
of slow neutrons, Phys. Rev. 130, 1670 (1963).

[25] B. Roessli, P. Böni, W. E. Fischer, and Y. Endoh, Chiral
Fluctuations in MnSi above the Curie Temperature, Phys. Rev.
Lett. 88, 237204 (2002).

[26] S. V. Maleyev, Cubic magnets with Dzyaloshinskii-Moriya
interaction at low temperature, Phys. Rev. B 73, 174402 (2006).

[27] M. Janoschek, F. Bernlochner, S. Dunsiger, C. Pfleiderer, P.
Böni, B. Roessli, P. Link, and A. Rosch, Helimagnon bands as
universal excitations of chiral magnets, Phys. Rev. B 81, 214436
(2010).

[28] A. Amato, P. Dalmas de Réotier, D. Andreica, A. Yaouanc,
A. Suter, G. Lapertot, I. M. Pop, E. Morenzoni, P. Bonfà, F.
Bernardini, and R. De Renzi, Understanding the μSR spectra
of MnSi without magnetic polarons, Phys. Rev. B 89, 184425
(2014).

[29] P. Dalmas de Réotier, A. Maisuradze, A. Yaouanc, B. Roessli,
A. Amato, D. Andreica, and G. Lapertot, Determination of the
zero-field magnetic structure of the helimagnet MnSi at low
temperature, Phys. Rev. B 93, 144419 (2016).

[30] P. Dalmas de Réotier, A. Maisuradze, A. Yaouanc, B. Roessli,
A. Amato, D. Andreica, and G. Lapertot, Unconventional mag-
netic order in the conical state of MnSi, Phys. Rev. B 95,
180403(R) (2017).

020404-4

https://doi.org/10.1107/S0108767309024088
https://doi.org/10.1103/PhysRev.104.254
https://doi.org/10.1103/PhysRev.105.1415
https://doi.org/10.1143/JPSJ.54.2975
https://doi.org/10.1038/nphys152
https://doi.org/10.1103/PhysRevLett.85.3942
https://doi.org/10.1063/1.1708422
https://doi.org/10.1143/JPSJ.54.2970
https://doi.org/10.1103/PhysRevB.84.014435
https://doi.org/10.1088/0953-8984/24/36/366005
https://doi.org/10.1016/0038-1098(76)90057-0
https://doi.org/10.1126/science.1166767
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1088/0953-8984/1/35/010
https://doi.org/10.1103/PhysRevB.81.012408
https://doi.org/10.1103/PhysRevLett.108.237204
https://doi.org/10.1038/nature02728
https://doi.org/10.1103/PhysRevLett.92.257201
https://doi.org/10.1038/ncomms3256
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.130.1670
https://doi.org/10.1103/PhysRevLett.88.237204
https://doi.org/10.1103/PhysRevB.73.174402
https://doi.org/10.1103/PhysRevB.81.214436
https://doi.org/10.1103/PhysRevB.89.184425
https://doi.org/10.1103/PhysRevB.93.144419
https://doi.org/10.1103/PhysRevB.95.180403


WHY PARAMAGNETIC CHIRAL CORRELATIONS IN THE … PHYSICAL REVIEW B 102, 020404(R) (2020)

[31] A. Yaouanc, P. Dalmas de Réotier, B. Roessli, A. Maisuradze,
A. Amato, D. Andreica, and G. Lapertot, Dual nature of mag-
netism in MnSi, Phys. Rev. Research 2, 013029 (2020).

[32] A. Yaouanc and P. Dalmas de Réotier, Muon Spin Rotation,
Relaxation, and Resonance: Applications to Condensed Matter
(Oxford University Press, Oxford, UK, 2011).

[33] R. S. Hayano, Y. J. Uemura, J. Imazato, N. Nishida, T.
Yamazaki, H. Yasuoka, and Y. Ishikawa, Observation of the

T
(T −Tc ) Divergence of the μ+ Spin-Lattice Relaxation Rate in
MnSi near Tc, Phys. Rev. Lett. 41, 1743 (1978).

[34] R. Kadono, T. Matsuzaki, T. Yamazaki, S. R. Kreitzman, and
J. H. Brewer, Spin dynamics of the itinerant helimagnet MnSi
studied by positive muon spin relaxation, Phys. Rev. B 42, 6515
(1990).

[35] D. Braam, C. Gomez, S. Tezok, E. V. L. de Mello, L. Li, D.
Mandrus, H.-Y. Kee, and J. E. Sonier, Magnetic properties of
the helimagnet Cr1/3NbS2 observed by μSR, Phys. Rev. B 91,
144407 (2015).

[36] R. Khasanov, Z. Guguchia, I. Eremin, H. Luetkens, A. Amato,
P. K. Biswas, C. Rüegg, M. A. Susner, A. S. Sefat, N. D.
Zhigadlo, and E. Morenzoni, Pressure-induced electronic phase
separation of magnetism and superconductivity in CrAs, Sci.
Rep. 5, 13788 (2015).

[37] T. Lancaster, F. Xiao, Z. Salman, I. O. Thomas, S. J. Blundell,
F. L. Pratt, S. J. Clark, T. Prokscha, A. Suter, S. L. Zhang, A. A.
Baker, and T. Hesjedal, Transverse field muon-spin rotation
measurement of the topological anomaly in a thin film of MnSi,
Phys. Rev. B 93, 140412(R) (2016).

[38] P. Bak and M. H. Jensen, Theory of helical magnetic structures
and phase transitions in MnSi and FeGe, J. Phys. C 13, L881
(1980).

[39] Here, we consider the correlation tensor defined in Eq. (8)
rather than the usual symmetrized quantity �αβ (q, ω) =
[〈Sα (q, ω)Sβ (−q)〉 + 〈Sβ (−q)Sα (q, ω)〉]/2 [32]. Since we re-
strict ourselves to the paramagnetic phase in zero field, time-
reversal symmetry holds and the two terms of the symmetrized
tensor are equal. This tensor is therefore equal to that defined
in Eq. (8).

[40] S. V. Grigoriev, S. V. Maleyev, A. I. Okorokov, Yu. O.
Chetverikov, R. Georgii, P. Böni, D. Lamago, H. Eckerlebe, and
K. Pranzas, Critical fluctuations in MnSi near TC : A polarized
neutron scattering study, Phys. Rev. B 72, 134420 (2005).

[41] P. Dalmas de Réotier and A. Yaouanc, Muon spin rotation and
relaxation in magnetic materials, J. Phys.: Condens. Matter 9,
9113 (1997).

[42] Equation (11) is valid for a crystal. For a powder sample an
angular average is required. Such an average does not hamper
the conclusion of this Rapid Communication.

[43] A. Yaouanc, P. Dalmas de Réotier, and E. Frey, Zero-field
muon-spin-relaxation depolarization rate of paramagnets near
the Curie temperature, Phys. Rev. B 47, 796 (1993).

[44] A. Yaouanc, P. Dalmas de Réotier, and E. Frey, Probing longi-
tudinal and transverse spin dynamics of paramagnets near Tc by
zero-field μSR measurements, Europhys. Lett. 21, 93 (1993).

[45] P. Dalmas de Réotier and A. Yaouanc, Possibility of Obser-
vation of the Critical Paramagnetic Longitudinal Spin Fluctu-
ations in Gadolinium by Muon Spin Rotation Spectroscopy,
Phys. Rev. Lett. 72, 290 (1994).

[46] C. Pappas, E. Lelièvre-Berna, P. Falus, P. M. Bentley, E.
Moskvin, S. Grigoriev, P. Fouquet, and B. Farago, Chiral Para-
magnetic Skyrmion-Like Phase in MnSi, Phys. Rev. Lett. 102,
197202 (2009).

[47] S. V. Grigoriev, S. V. Maleyev, E. V. Moskvin, V. A. Dyadkin, P.
Fouquet, and H. Eckerlebe, Crossover behavior of critical helix
fluctuations in MnSi, Phys. Rev. B 81, 144413 (2010).

[48] C. Pappas, E. Lelièvre-Berna, P. Bentley, P. Falus, P. Fouquet,
and B. Farago, Magnetic fluctuations and correlations in MnSi:
Evidence for a chiral skyrmion spin liquid phase, Phys. Rev. B
83, 224405 (2011).

[49] As a general property, the G(q) tensor is symmetric; see
Ref. [32].

[50] Strictly speaking, NQR does not probe the correlation functions
at an angular frequency ω = 0 as μSR but at a value corre-
sponding to the quadrupole splitting. However, this splitting is
extremely small compared to the relevant energies in F (r) or to
the thermal energy.

020404-5

https://doi.org/10.1103/PhysRevResearch.2.013029
https://doi.org/10.1103/PhysRevLett.41.1743
https://doi.org/10.1103/PhysRevB.42.6515
https://doi.org/10.1103/PhysRevB.91.144407
https://doi.org/10.1038/srep13788
https://doi.org/10.1103/PhysRevB.93.140412
https://doi.org/10.1088/0022-3719/13/31/002
https://doi.org/10.1103/PhysRevB.72.134420
https://doi.org/10.1088/0953-8984/9/43/002
https://doi.org/10.1103/PhysRevB.47.796
https://doi.org/10.1209/0295-5075/21/1/016
https://doi.org/10.1103/PhysRevLett.72.290
https://doi.org/10.1103/PhysRevLett.102.197202
https://doi.org/10.1103/PhysRevB.81.144413
https://doi.org/10.1103/PhysRevB.83.224405

