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Exact solution and correlations of a dimer model on the checkerboard lattice
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We present analytic results for a special dimer model on the nonbipartite and nonplanar checkerboard lattice
that does not allow for parallel dimers surrounding diagonal links. We exactly calculate the number of closed
packed dimer coverings on finite checkerboard lattices under periodic boundary conditions and determine all
dimer-dimer correlations. The latter are found to vanish beyond a certain distance. We find that this solvable
model, despite being nonplanar, is in close kinship with well-known paradigm-setting planar counterparts that
allow exact mappings to Z2 lattice gauge theory.
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I. INTRODUCTION

A major challenge in condensed matter theory lies in the
endeavor of finding relatively simple toy models that are
tractable and at the same time capture relevant universal
physics. One long standing example for this is magnetic
systems whose collective behavior can often be well described
by relying on simple Ising- or Heisenberg-type models. Even
the latter are, however, beyond analytic treatment in all but
the simplest possible settings. The need for solvable models
is particularly acute when investigating physics outside estab-
lished paradigms.

Historically, models with dimer degrees of freedom (and
their associated constraints) have played a key role in con-
structing solvable models in statical physics and, somewhat
more recently, quantum magnetism. The enormous impact
dimer models have had on various areas of theoretical physics
can be traced back to Kasteleyn’s observation that a large
class of classical dimer models is solvable by Pfaffian methods
on planar lattice graphs [1], followed by developments by
Fisher [2] and Fisher and Stephenson [3], revealing deep
connections with Ising models. This method has since been
adopted to shine light on the phase diagram of quantum
magnets. Kivelson, Rokhsar, and Sethna [4,5] have introduced
the idea that quantum dimer models (QDMs) are effective
descriptions of highly frustrated quantum magnets and can
be tuned such that their ground-state correlations correspond
to those of a classical dimer model [5]. This, in particular,
is linked to scenarios of unconventional magnetism con-
ceived during the advent of high-temperature superconductors
[4,6–8]. In a seminal work, Moessner and Sondhi [9] demon-
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strated that Anderson’s idea of a short-ranged resonating
valence bond spin-liquid phase can be realized, under the as-
sumption of validity of the spin-to-quantum-dimer mapping,
on the triangular lattice. This assumption has been corrobo-
rated via a multitude of different approaches, including sys-
tematic expansion in an overlap parameter [10], which rests
on the linear independence [11,12] of spin singlet (valence
bond) states and the construction of SU (2)-invariant spin-1/2
models that realize the same ground states [13,14] and their
physics [15–17]. Moreover, deep connections between certain
QDMs and Kitaev’s toric code for topological quantum com-
puting [18] have long been appreciated, and the relation to the
underlying Ising (Z2) gauge theory can be made exact in the
kagome lattice model discussed by Misguich et al. [19]. Other
gauge theories describing QDMs on different lattices have
been introduced and studied [8,20,21]. QDM type physics also
appears in various orbital and spin-orbital systems [22] and
Josephson junction arrays [23].

Up until now, the construction of dimer models has thus
proven a profound and versatile tool, whose utility in the
applications discussed above was, however, largely limited
to planar lattice graphs. In this work, we show that no such
limitation fundamentally exists. That is, we construct a dimer
model on the checkerboard lattice, which is nonplanar due to
crossing links, and has all of the benefits discussed above. In
this work, we demonstrate the applicability of Pfaffian meth-
ods to this model. The model further allows exact mapping
to Ising gauge theory, along with existences of pertinent local
lattice symmetries, on which we will elaborate elsewhere.

II. A NONPLANAR DIMER MODEL

We will now introduce a dimer model acting on the space
of restricted dimer coverings on the checkerboard lattice
(Fig. 1). The model can be interpreted as a classical dimer
model at infinite temperature, but at the same time, the corre-
lations to be discussed have equal relevance to the ground state
of a suitable QDM. The configuration space of this model is
that of all possible dimer coverings subject to an additional
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FIG. 1. The checkerboard lattice with some dimer coverings.
(a) exemplifies a dimer covering that satisfies all constraints of our
model. (b) A dimer covering that features a pair of parallel dimers
(shaded) on the same crossed plaquette and is thus not allowed.

constraint. A “dimer covering” refers to a placing of dimers
on some of the links of a lattice, such that each vertex belongs
to exactly one such dimer. Here, crossed dimers on crossed-
linked plaquettes are explicitly allowed. However, we impose
the restriction that cross-linked plaquettes may not admit a
pair of parallel dimers (Fig. 1 and caption). Effectively, we
thus introduce an interaction ascribing a very large energy to
pairs of dimers occupying the vertical or horizontal links on
a cross-linked plaquette, whereas there is no such penalty for
single or double occupation of crossed links. In the following,
we will set this energy penalty to infinity first and then
consider the infinite temperature partition sum of the resulting
constrained dimer model.

It is worth pointing out that constrained dimer models
on nonplanar lattices have appeared in the literature before
[24], though typically, the constraint disallows crossed dimers.
Even then, the nonplanarity of the model is evident by the
fact that typical overlap graphs [25] between two different
dimer coverings will have many crossings. We are not aware,
however, of any such model that allows exact calculation of
partition/correlation functions, which is what we will now
turn to for the model at hand. To appreciate why that is
possible, we first make contact with a well-known theorem by
Kasteleyn [1], which, however, applies only to planar lattices.

According to this theorem, for any planar graph, an an-
tisymmetric matrix A can be found such that the infinite
temperature dimer partition function is given by the Pfaffian
(Pf) of the matrix A. This matrix encodes a link orientation
of the graph, which has certain additional properties making
it a “Kasteleyn orientation.” Here, the indices of A are site
indices of the lattice, and Ai j �= 0 only if i, j are connected
by a link. The orientation is defined by arrows placed along
the links [Fig. 2(b)], and Ai j = 1 if the arrow points from i to
j, Ai j = −1 if it points from j to i. The defining property of
a Kasteleyn orientation is to place arrows on the links of the
planar lattice so that each plaquette is “clockwise odd,” e.g.,
the number of clockwise arrows around any elementary pla-
quette (face) is odd. Reference [26] introduced the notion of
a “pre-Kasteleyn” orientation. This notion is meaningful even
for nonplanar two-dimensional lattices, i.e., lattices equipped
with crossing links. An orientation for such links was defined
to be “pre-Kasteleyn” if for any closed, non-self-intersecting,
contractible loop along links, the number of clockwise ori-
ented links is even if the number of sites enclosed by the loop

FIG. 2. (a) The checkerboard lattice is shown; the unit cell is
depicted inside the dashed lines. (b) shows the four-site unit cell of
the checkerboard lattice. It contains twelve links each equipped with
a respective weight of x1, x2, y1, y2, z1, z2. The arrows on the links
indicate the Kasteleyn orientation.

is odd, and vice versa. The term “contractible” is necessary
only in the presence of nontrivial boundary conditions, in
particular toroidal, periodic ones. The main difference be-
tween Kasteleyn and pre-Kasteleyn orientations is that for the
latter, we do not need well-defined notions of an “elementary
plaquette,” or face, of the lattice. We only need the lattice to
be meaningfully embedded within a two-dimensional planar
or toroidal surface, so that “enclosed” is well defined. The
two notions agree, however, for planar lattice graphs [26]. The
arrows shown in Fig. 2(b) do endow the checkerboard lattice
with a pre-Kasteleyn orientation. This follows from the fact
that the checkerboard is obtained form the frustrated square
lattice (with all square cross-linked) and its pre-Kasteleyn
orientation discussed in Ref. [26] via removal of links.

For an ordinary Kasteleyn orientation, and assuming open
boundary conditions, one has that Pf(A) equals (up to a sign)
the number of all dimer coverings, i.e., the infinite temperature
dimer partition function. Similarly, for our pre-Kasteleyn ori-
entation, Pf(A) can be written as a sum, over dimer coverings,
of terms ±1. Here the positive (negative) sign corresponds
to dimer coverings with an even (odd) number of crossed
dimers. We now define “physical” dimer coverings as those
that do not have parallel dimers on any cross-linked plaquette.
On the checkerboard lattice, any unphysical dimer covering is
uniquely associated to a physical one, by replacing all unphys-
ical parallel pairs with crossed dimers on the same plaquette.
If we now consider any pair of crossed dimers together with
the two unphysical configurations associated to it, we find that
these three local configurations contribute −1 + 1 + 1 = 1 to
Pf(A). One then easily realizes that, for checkerboard lattices
of any size and shape (open boundary conditions), Pf(A) gives
the number of physical dimer configurations. Such counting
problems certainly have great tradition in the field [1,2]. One
has the intuition that whenever this counting is possible, then,
at the very least, correlations can also be calculated. This will
indeed turn out to be the case.

We proceed by reviewing nuts and bolts of Kasteleyn’s
formalism. Assuming, now, periodic boundary conditions, the
partition sum for all dimer coverings is given by [27]

Z = 1
2

( − Pf(A00) + Pf(A
1
2 0) + Pf(A0 1

2 ) + Pf(A
1
2

1
2 )

)
, (1)

where A00 encodes the (pre)-Kasteleyn orientation as before,
in the presence of periodic boundary conditions. The other
three matrices are the same, except for the presence of vertical
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and/or horizontal boundary “twists.” Here, a twist introduces
a flip of orientation along all links crossed by a closed path
that traverses the lattice horizontally (vertically) as indicated
by a 1

2 in the first (second) index. The Pfaffians Pf(Aαβ ) then
satisfy

Pf(Aαβ ) = ±
√

det(Aαβ ) , (2)

where we will fix the signs below. The matrices Aαβ can be
block diagonalized by a Fourier transformation, giving

det(Aαβ ) =
N−1∏
n=0

M−1∏
m=0

detA(θn,α, φm,β ), (3)

where the matrix blocks A(θn,α, φm,β ) are given by [28]

A(θn,α, φm,β ) =
∑

M1,N1

aM1,N1 ei(N1θn,α+M1φm,β ) . (4)

Here, the phases θn,α and φm,β are specified via

θn,α = 2π (n + α)

N
and θm,β = 2π (m + β )

M
(5)

with n = 0, . . . , N − 1 and m = 0, . . . , M − 1. M (N ) is the
number of unit cells as depicted in Fig. 2(b) in vertical (hori-
zontal) direction. The aM1,N1 encode the Kasteleyn orientation
as follows: Let j = (M1, N1, ν) be a multi-index specifying
the lattice site in the unit cell given by indices M1, N1 and
corresponding to a unit-cell basis-index ν, and let similarly
i = (0, 0, μ) specify a lattice site in the (0,0)-unit cell, then
[aM1,N1 ]μ,ν = Ai j . Formally, M1 and N1 also run over M and
N distinct values, respectively, but only values M1, N1 =
−1, 0, 1 will lead to nonzero aM1,N1 , referring to a unit cell
(0,0) and its neighbors.

The pre-Kasteleyn orientation of Fig. 2(b) does, by itself,
not enlarge the two-site unit cell of the checkerboard lattice.

However, we may be interested in a more general problem
by endowing links with certain positive weights xk , yk , zk ,
k = 1, 2, as shown in the figure. The weights multiply the
corresponding matrix elements of Ai j . For x2

1 + y2
1 � z1z2,

x2
2 + y2

2 � z1z2 the identification of unphysical parallel dimer
pairs with crossed pairs can still be interpreted as a positive
partition function. The resulting unit cell then has four sites.
Though in the end, we mostly will be interested in the case
with all weights equal to 1, it has certain advantages to
think of the larger unit cell whose sites comprise one crossed
plaquette, garnished with the weights shown in Fig. 2(b). In
the following, we will refer to this unit cell, which contains
twelve links.

The nine nonzero matrices aM1,N1 may now be read off from
Fig. 2(b). One has

a0,1 =

⎛
⎜⎝

0 0 0 0
x1 0 0 0
0 0 0 0
0 0 x1 0

⎞
⎟⎠, a1,0 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
y1 0 0 0
0 −y1 0 0

⎞
⎟⎠,

a1,1 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

−z1 0 0 0

⎞
⎟⎠, a1,−1 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 z2 0 0
0 0 0 0

⎞
⎟⎠,

a0,0 =

⎛
⎜⎝

0 x2 −y2 −z1

−x2 0 z2 y2

y2 −z2 0 x2

z1 −y2 −x2 0

⎞
⎟⎠ . (6)

Furthermore,

a−1,0 = −aT
1,0, a0,−1 = −aT

0,1,

a−1,−1 = −aT
1,1, a−1,1 = −aT

1,−1. (7)

The matrices A(θn,α, φm,β ) can be written as

A(θn,α, φm,β ) =
∑

M1,N1

aM1,N1 ei(N1θnα+M1φmβ )

= a0,0 + a0,1eiθn − aT
0,1e−iθn + a1,0eiφm − aT

1,0e−iφm + a1,1ei(θn+φm ) − aT
1,1e−i(θn+φm ) + a−1,1e−i(θn−φm )−aT

−1,1ei(θn−φm )

=

⎛
⎜⎜⎜⎝

0 x2 − x1e−iθn −y2 − y1e−iφm −z1 + z1e−i(θn+φm )

−x2 + x1eiθn 0 z2 − z2ei(θn−φm ) y2 + y1e−iφm

y2 + y1eiφm −z2 + z2e−i(θn−φm ) 0 x2 − x1e−iθn

z1 − z1ei(θn+φm ) −y2 − y1eiφm −x2 + x1eiθn 0

⎞
⎟⎟⎟⎠. (8)

Any single block (8) is, in general, not skew symmetric and
so by itself does not represent a well-defined contribution
to the Pfaffian. However, such a block comes with a con-
jugate partner, and a change of basis within the two blocks
(corresponding to a real, sine-cosine Fourier transform of the
original matrix) restores skew symmetry and shows that such
partners contribute a positive factor to the Pfaffian [29]. For
even M, N , except in A00, all blocks (8) come with conjugate
partners, so the Pfaffians of the remaining three Aαβ lead to
a positive contribution. For A00, the sign of the Pfaffian may
be worked out from the four special, already skew symmetric
blocks with θ, φ ∈ {0, π}. One then finds that it is given by

the sign of

[(x1 + x2)2 + (y1 + y2)2 − 4z1z2]

×[(x1 − x2)2 + (y1 − y2)2 − 4z1z2] , (9)

where the first factor is non-negative under our earlier assump-
tion, x2

1 + y2
1 � z1z2. In particular, if we now specialize to

x1 = x2 = x, y1 = y2 = y and z1 = z2 = z for simplicity, the
sign of PfA00 is negative, Eq. (1) becomes

Z = 1

2

∑
αβ

√
det(Aαβ ) for α, β = 0,

1

2
. (10)
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From (8),

detA(θn,α, φm,β ) = 4[x2 + y2 + (z2 − x2)cos θ

+ (y2 − z2)cos φ]2 . (11)

In the thermodynamic limit, the distinction between “twists”
(α, β ) becomes irrelevant, and we may evaluate the per-dimer
free energy as

f (x, y, z) = 1

2(2π )2

∫ 2π

0

∫ 2π

0
ln Pf[A(θ, φ)] dθ dφ

= 1

2π

∫ 2π

0
log[x2 + y2 + (z2 − x2) cos θ

+
√

(x2 + y2 + (z2 − x2) cos θ )2 − (z2 − y2)2] dθ.

(12)

It is interesting to evaluate this last expression in the limit
z2 → x2 + y2, when the effective weight of crossed dimers
becomes zero. In this limit we have a highly constrained
model, where diagonal dimers are still possible, but no pair
of dimers, parallel or crossed, may occupy a cross-linked
plaquette. One may infer from the last equation that this is
a critical point, where

f = x2 + y2 − z2

2π (y2 − z2)2
log(x2 + y2 − z2) + . . . , (13)

and where the ellipses represent less singular terms. It is
interesting to note that field-theoretic mappings indicate an
abundance of (first-order) transitions in the phase diagram
of the frustrated square lattice (with one diagonal in each
square) [30]. The present model gives analytic access to
similar transitions in a microscopic setting.

Specializing from now on to x = y = z, and going back to
a finite lattice with PBCs, Eqs. (8)–(11) directly give

Z = 2 · (4x2)MN x=1= 2 · 4MN , (14)

where the x = 1 result is the number of dimer coverings of
the lattice of MN (four-site) unit cells [31]. Interestingly, the
latter is formally the same expression as for the kagome. We
caution, however, that the number of sites per unit cell is
different for the checkerboard and kagome, so the counting
in terms of lattice sites is different.

Correlations

Though the present case represents a highly nonstandard
application of Pfaffian methods, experience nonetheless sug-
gests that if Z is computable, then so are correlation functions.
We will now show that this is indeed the case. We are inter-
ested in the correlation of the dimer operator ni j , where i and
j denote neighboring lattice sites, and ni j = 1(0) if the link
i j is occupied (empty). Since products of these operators are
projection operators, their expectation values can be written
as Z ′/Z , where Z is the original partition function, and Z ′ the
partition function restricted to the subspace onto which the
operator in question projects. In practice, Z ′ is the partition
function of the same lattice with certain links removed. E.g.,
if i j is a horizontal or vertical link, one may easily see that
dimerizations that have this link occupied, subject to our

no-double-occupancy rule, are in one-to-one correspondence
with dimerizations of the same lattice that have all other links
of the cross-linked square containing i j removed, as well as
all other links attaching to either i or j. For a diagonal link i j,
the same prescription effectively leads to counting all dimer-
izations having this link occupied but not crossed. Let’s call
the associated partition function Z ′′. The partition function Z ′′′
of configurations where i j is occupied and crossed is similarly
related to the partition function of the lattice with all links on
or attached to the cross-linked plaquette removes, except for
the cross [32]. Thus Z ′ = Z ′′ + Z ′′′. Products of ni j operators
are dealt with accordingly. Based on these observations, the
calculation of correlation functions for the present problem
differs only slightly from the standard case of unrestricted
dimer coverings of a planar lattice graph. The difference is
only in working out the links to be removed for a given
numerator Z ′. We may denote by � the matrix obtained from
A by keeping only those matrix elements corresponding to
removed links, setting the others equal to zero. It is then
standard to express Z ′/Z (or Z ′′/Z , Z ′′′/Z) in terms of �

and the Green’s function matrix, G = A−1. We review this
technique in the Supplemental Material [33].

We are now interested in connected correlation functions

C[i j, kl] = 〈ni jnkl〉 − 〈ni j〉〈nkl〉 . (15)

Classical and quantum dimer models throughout the literature
exhibit a great variety of behaviors, including power-law
[34–36] and (super)-exponentially decaying [9,19] correla-
tions, mirrored by a class of closely related spin-degree wave
functions [19,37,38]. In the present case, we find the correla-
tions (15) to be ultra-short ranged, i.e., nonvanishing only up
to a certain finite distance. The finitely many nonzero values
of the correlator are listed in Tables I–III of the Supplemental
Material [33]. This property is familiar from a few select
dimer models, notably that on the kagome lattice [19]. It hints
at a deeper solvable structure of the present model, which we
now outline.

III. DISCUSSION AND CONCLUSION

Planar dimer models exhibit a plethora of phases, including
broken symmetry and Z2-topological phases. The correlators
addressed in the preceding section do not indicate any broken
symmetry. On the other hand, with periodic boundary condi-
tions, dimer coverings can be subdivided into four topological
sectors, as familiar from planar dimer models [25]. The latter
transform nontrivially under symmetries of the lattice. Related
to this, any absence of symmetry breaking in dimer models
has long been associated to topological order [39,40]. Indeed,
these arguments may be sharpened when considering quantum
dimer models of the RK type, whose ground state correlators
agree with those of the classical model considered here. In
particular, this then allows one to study question of universal-
ity through entanglement properties of the ground state, and
properties of the excitations, such as braiding statistics. Such a
program can be carried out in full detail for the present model.
Here we summarize key features, while details will be given
elsewhere [41].

It is worth noting that a small subset of QDMs are fully
solvable—all eigenstates are known, not just the RK ground
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state. This is in particular true for the kagome QDM [19],
which can be written as the sum of commuting local op-
erators, permitting an exact mapping to Ising gauge theory,
and for which the vanishing of all correlations between
local operators at sufficient distance can be demonstrated
exactly [19,42–44]. Despite its nonplanarity, we have noted
a number of parallels between the present model and the
kagome case. This is no coincidence. The key uniting feature
between these models turns out to be the existence of an
arrow representation for permissible dimer coverings, which
has been appreciated for the kagome for some time [45]. This
translates the construction principle for the kagome QDM to
the present case, with all the benefits mentioned. Moreover,
the calculation of ground state entanglement entropy is pos-

sible exactly, exposing a topological part of ln 2, proving the
topological nature of the ground state. Finally, quasiparticle
statistics are accessible through modular properties of so-
called minimally entangled states (MES) [46], which are again
exactly computable for the QDM associated to the present
model.

The purpose of this work is to illustrate that a wealth of
beautiful models realizing topological orders lies hidden in
nonplanar dimer physics. Such models can be made accessible
through the notion of a pre-Kasteleyn orientation. We have
discussed a checkerboard model that is fully solvable and
whose quantum version describes a topological liquid. We
are hopeful that this approach will stimulate many fruitful
developments.
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