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Quantitative prediction of the gap behavior via first-principles calculations has thus far been restricted to
temperature dependence. Here, we present a gap equation developed based on the current-density functional
theory for superconductors. This equation is applicable to superconductors immersed in a magnetic field and
enables us to quantitatively describe the magnetic-field and temperature dependence of the superconducting gap.
We also develop a practical scheme in which the gap equation is solved simultaneously with a proposed relation
between the energy gain of the superconducting state at zero magnetic field and that at a finite magnetic field. The
presented scheme is applied to aluminum immersed in a magnetic field, and successfully reveals the temperature
and magnetic-field dependences of the superconducting gap. The critical magnetic field thus obtained shows
good agreement with experimental results.
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I. INTRODUCTION

First-principles calculation methods utilizing the density
functional theory [1,2] (DFT) are widely employed for quan-
titative prediction of material properties. DFT-based theories
for superconductors provide well-developed first-principles
calculation methods [3–5]. Oliveira et al. first developed
the DFT-based theory for superconductors [3]. Lüders et al.
extended this theory by adding the density matrix of the nuclei
to the members of basic variables, to treat electron-electron
and electron-phonon interactions on the same footing [4,5].
This extended theory has been successfully applied to various
systems [5–24].

DFT-based theories for superconductors [3–5] can predict
the critical temperature (Tc) and temperature dependence of
the order parameter of the superconducting state (OPSS).
However, they cannot predict the critical magnetic field (Bc) or
the magnetic-field dependence of the OPSS because they can-
not consider superconductors immersed in a magnetic field. Bc

is related to the critical current (Silsbee’s rule [25,26]), which
provides the upper limit of the current that can flow through
the superconductor while maintaining the superconducting
state. Therefore, the prediction of Bc as well as Tc is crucial
for the application of superconductors to electrical power
engineering devices, magnetic energy storage systems, and
other systems.

To predict the critical magnetic field, DFT-based theories
for superconductors should be extended so that they can treat
superconductors immersed in a magnetic field. For this, the
spin DFT for superconductors (SpinSCDFT) has been devel-
oped by Linscheid et al. [21] and is applied to a free electron
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gas featuring an exchange splitting, a phononic pairing field,
and a Coulomb repulsion [22]. However, the effects of the
currents are not taken into consideration in the SpinSCDFT
[21,22]. To incorporate the effect of currents and to discuss
the Meissner effect, we have developed a current-density
functional theory (CDFT) for superconductors [27] based on
the extended constrained-search theory [28–34]. This theory
is regarded as an extension of the CDFT for the normal state
[35–42] so that it can treat superconductors immersed in a
magnetic field with considering the effects of the currents. In
this paper, a gap equation is developed based on the CDFT
for superconductors, considering the interaction between the
magnetic field and electron spin (spin-Zeeman effect). This
gap equation enables us to describe the gap behavior with
respect to the magnetic field and temperature. In addition, a
practical scheme to solve the gap equation is presented. We
apply the practical scheme to aluminum immersed in a mag-
netic field. It is shown that the presented scheme successfully
demonstrates the magnetic-field and temperature dependences
of the superconducting gap and predicts the critical magnetic
field for aluminum.

II. GAP EQUATION BASED ON THE CURRENT-DENSITY
FUNCTIONAL THEORY FOR SUPERCONDUCTORS

A. Outline of the current-density functional
theory for superconductors

We have developed the CDFT for superconductors [27]
based on the extended constrained-search theory [28–34], in
which the spin-Zeeman effect is not taken into consideration.
In this subsection, we present the outline of the CDFT for
superconductors with taking the spin-Zeeman effect into con-
sideration.
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Let us consider the superconductor immersed in a magnetic
field, the Hamiltonian of which is given by

Ĥ = T̂ + Ŵ1 + Ŵ2 + e
∫

Agiven(r) · ĵ
(T )
p (r)d3r

+ e
∫

Agiven(r) · ĵMs
(r)d3r

+ e2

2m

∫
Agiven(r)2n̂(r)d3r +

∫
vext (r)n̂(r)d3rdζ ,

(1)

with

T̂ =
∫

ψ†(rζ )
p2

2m
ψ (rζ )d3rdζ , (2)

Ŵ1 = e2

2

∫∫
ψ†(rζ )ψ†(r′ζ ′)ψ (r′ζ ′)ψ (rζ )

|r − r′| d3rdζd3r′dζ ′,

(3)

Ŵ2 = 1

2

∫∫
�̂†(r1ζ1, r2ζ2)w(r1ζ1r2ζ2; r3ζ3r4ζ4)

× �̂(r4ζ4, r3ζ3)d3r1dζ1d3r2dζ2d3r3dζ3d3r4dζ4, (4)

where ψ (rζ ) and ψ†(rζ ) are field operators of electrons,
and r and ζ are spatial and spin coordinates, respectively. In
Eqs. (1) and (4), �̂(r1ζ1, r2ζ2), n̂(r), ĵ

(T )
p (r), and ĵMs

(r) denote
operators of the OPSS [27,43], electron density, transverse
component of the paramagnetic-current density [27,44], and
spin current density [44], respectively. They are defined by

�̂(r1ζ1, r2ζ2) = ψ (r2ζ2)ψ (r1ζ1), (5)

n̂(r) =
∫

ψ†(rζ )ψ (rζ )dζ , (6)

ĵ
(T )
p (r) = h̄

4π im

∫
{∇r′ψ†(r′ζ ′) × ∇r′ψ (r′ζ ′)}

× r − r′

|r − r′|3 d3r′dζ ′, (7)

ĵMs
(r) = g

μB

eh̄
∇ ×

∫
ψ†(rζ )ŝζ

opψ (rζ )dζ , (8)

where g and μB are the g factor (g = 2.0023) and Bohr magne-
ton (μB = eh̄/2m), respectively, and ŝζ

op is the usual operator
of spin. The first, second, and third terms of Eq. (1) are opera-
tors of the kinetic energy, electron-electron interaction energy,
and attractive interaction energy via w(r1ζ1r2ζ2; r3ζ3r4ζ4),
respectively [27]. The vector potential Agiven(r) denotes a
before-given electromagnetic field that is determined by the
microscopic Maxwell equation [27], and the Coulomb gauge
is adopted to Agiven(r). The fourth term of Eq. (1) is the
interaction between the vector potential and paramagnetic-
current density [27]. The fifth term of Eq. (1) denotes the
spin-Zeeman effect. Note that the fourth and sixth terms
denote the effects of currents that are not considered in Spin-
SCDFT [21,22]. Hereafter, we denote the statistical averages
of �̂(r1ζ1, r2ζ2), n̂(r), ĵ

(T )
p (r), and ĵMs

(r) by �(r1ζ1, r2ζ2),
n(r), j (T )

p (r), and jMs
(r), respectively.

In the present theory, n(r), j (T )
p (r), jMs

(r), �(r1ζ1, r2ζ2),
and �∗(r1ζ1, r2ζ2) are chosen as basic variables. In compar-
ison with the previous theory [27], jMs

(r) is added into the
member of basic variables due to the incorporation of the
spin-Zeeman effect into the Hamiltonian. In a way similar
to the previous theory [27], we define the universal energy
functional as

F
[
n, j (T )

p , jMs
,�,�∗]

= Min
ρ̂→(n, j (T )

p , jMs ,�,�∗ )
Tr

{
ρ̂(T̂ + Ŵ1 + Ŵ2) + 1

β
ρ̂ ln ρ̂

}
, (9)

where ρ̂ denotes the statistical operator. The right-hand side
of Eq. (9) means that the minimum value of the statistical
average of T̂ + Ŵ1 + Ŵ2 plus entropy-related term is searched
within the set of statistical density operators that yield
prescribed (n, j (T )

p , jMs
, �, �∗). The extended Hohenberg-

Kohn (HK) theorem can be proved by means of this universal
energy functional. The extended HK theorem consists of the
following two theorems. (I) One is the variational principle
with respect to basic variables. This variational principle can
be derived by rewriting Gibbs’s variational principle. (II) The
other is a one-to-one correspondence between the correct
density operator and basic variables for the equilibrium state.
The details of the proof of the extended HK theorem are
given in the previous paper [27] for the case where n(r),
j (T )

p (r), �(r1ζ1, r2ζ2), and �∗(r1ζ1, r2ζ2) are chosen as basic
variables. Also for the present case, the extended HK theorem
can be proved in a similar way as the previous case [27].

We introduce the noninteracting system as the reference
system, in which basic variables for the equilibrium state
of the real system are reproduced. The Hamiltonian of the
reference system is supposed to be given by

Ĥs =
∫

ψ†(rζ )

[
1

2m
{p + eAs(r)}2

]
ψ (rζ )d3rdζ

+
∫

vs(r)ψ†(rζ )ψ (rζ )d3rdζ + e
∫

ĵMs
(r) · As(rt )d3r

+
∫∫

D∗
s (rζ r′ζ ′)�̂(rζ r′ζ ′)d3rdζd3r′dζ ′

+
∫∫

Ds(rζ r′ζ ′)�̂†(rζ r′ζ ′)d3rdζd3r′dζ ′, (10)

where vs(r), As(r), Ds(rζ r′ζ ′), and D∗
s (rζ r′ζ ′) are effective

mean-field potentials. If the universal energy functional of the
reference system is defined by

Fs
[
n, j (T )

p , jMs
,�,�∗]

= Min
ρ̂→(n, j (T )

p , jMs ,�,�∗ )
Tr

{
ρ̂T̂ + 1

β
ρ̂ ln ρ̂

}
, (11)

then we can prove the extended HK theorem for the reference
system in a similar way to the case of the real system.

The effective potentials are determined by using the ex-
tended HK theorems for the real and reference systems so that
the basic variables for the equilibrium state of the real system
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are reproduced in the reference system [27]. The concrete
expressions of effective potentials are given by

vs(r) = vext (r) + e2
∫

n0(r′)
|r − r′|d3r′

+ δFxc
[
n, jT

p , jM s, �, �∗]
δn(r)

∣∣∣∣∣n = n0

j (T )
p = j (T )

p0
jMs = jMs0
� = �0
�∗ = �∗

0

+ e2

2m

{
A2

given(r) − A2
s (r)

}
, (12)

As(r) = Agiven(r)

+ 1

e

δFxc[n, jT
p , jM s, �, �∗]

δ j (T )
p (r)

∣∣∣∣∣n = n0

j (T )
p = j (T )

p0
jMs = jMs0
� = �0
�∗ = �∗

0

, (13)

Ds(rζ , r′ζ ′) = δFxc
[
n, jT

p , jM s, �, �∗]
δ�∗(rζ , r′ζ ′)

∣∣∣∣∣n = n0

j (T )
p = j (T )

p0
jMs = jMs0
� = �0
�∗ = �∗

0

, (14)

D∗
s (rζ , r′ζ ′) = δFxc

[
n, jT

p , jM s, �, �∗]
δ�(rζ , r′ζ ′)

∣∣∣∣∣n = n0

j (T )
p = j (T )

p0
jMs = jMs0
� = �0
�∗ = �∗

0

, (15)

where n0, j (T )
p0 , jMs0, �0, and �∗

0 are the basic variables
for the equilibrium state of the system. The energy func-
tional Fxc[n, jT

p , jM s, �, �∗] that appears in Eqs. (12)–(15)
denotes the exchange-correlation energy functional of the
present theory. This functional is defined by

Fxc
[
n, jT

p , jM s, �, �∗]
= F

[
n, jT

p , jM s, �, �∗] − Fs
[
n, jT

p , jM s, �, �∗]
− e2

2

∫∫
n(r)n(r′)
|r − r′| d3rd3r′. (16)

To perform actual calculations, the approximate form of
Fxc[n, jT

p , jM s, �, �∗] is indispensable. The approximate
form will be proposed in the next subsection.

The Hamiltonian of the reference system Ĥs can be di-
agonalized in terms of the fermion quasiparticle via the
Bogoliubov-Valatin (BV) transformation [45,46]. The trans-
formation is supposed to be given by

ψ (rζ ) =
∑

k

uk(rζ )γk +
∑

k

vk(rζ )γ †
k ,

ψ†(rζ ) =
∑

k

u∗
k(rζ )γ †

k +
∑

k

v∗
k (rζ )γk, (17)

where γk and γ
†
k denote annihilation and creation operators of

the fermion quasiparticles, and uk(rζ ) and vk(rζ ) correspond
to the matrix elements of the BV transformation. They are
determined by requiring Ĥs to be diagonalized in terms of
γk and γ

†
k [27]. As a result, we obtain the Bogoliubov–de

Gennes (BdG)–Kohn-Sham (KS) equation for uk(rζ ) and
vk(rζ ) in a way similar to the case of the previous paper
[27]:

(
hr

s − μ
)
uk(rζ ) +

∫
D̃s(rζ , r′ζ ′)v∗

k (r′ζ ′)dr′dζ ′

= Ekuk(rζ )

−(
hr

s − μ
)
vk(rζ ) +

∫
D̃s(rζ , r′ζ ′)u∗

k(r′ζ ′)dr′dζ ′

= Ekvk(rζ ), (18)

with

hr
s = {p + eAs(r)}2

2m
+ vs(r) + g

μB

h̄
ŝζ

op · Bs(r), (19)

D̃s(rζ , r′ζ ′) = Ds(rζ , r′ζ ′) − Ds(r′ζ ′, rζ ), (20)

where Bs(r) = ∇ × As(r). The basic variables are reproduced
by means of the solution of the BdG–KS equation as follows:

n0(r) =
∑

k

f (Ek)
∫

|uk(rζ )|
2

dζ +
∑

k

{1 − f (Ek)}
∫

|vk(rζ )|
2

dζ , (21)

j (T )
p0 (r) = h̄

i4πm

∑
k

[
f (Ek)

∫
{∇r′u∗

k(r′ζ ′) × ∇r′uk(r′ζ ′)} × r − r′

|r − r′|3 d3r′dζ

+{1 − f (Ek)}
∫ {∇r′v∗

k (r′ζ ′) × ∇r′vk(r′ζ ′)
} × r − r′

|r − r′|3 d3r′dζ

]
, (22)

jMs0(r) = g
μB

eh̄
∇ ×

∫ ∑
k

[
f (Ek)u∗

k(rζ )ŝζ
opuk(rζ ) + {1 − f (Ek)}v∗

k (rζ )ŝζ
opvk(rζ )

]
dζ , (23)

�0(rζ , r′ζ ′) = 1

2

∑
k

{uk(r′ζ ′)vk(rζ ) − vk(r′ζ ′)uk(rζ )}{1 − 2 f (Ek)}, (24)

�∗
0(rζ , r′ζ ′) = 1

2

∑
k

{u∗
k(r′ζ ′)v∗

k (rζ ) − v∗
k (r′ζ ′)u∗

k(rζ )}{1 − 2 f (Ek)}, (25)
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where f (Ek) denotes the Fermi-Dirac distribution function
and is given by 1/(eβEk + 1).

The calculation procedure is similar to the previous theory
[27]. For a before-given electromagnetic field Agiven(r) (in-
put electromagnetic field), Eqs. (12)–(15) and (18)–(25) are
solved in a self-consistent way. Then we obtain the electron
density and current density by using thus obtained basic
variables [27]. By using the electron density and current
density, the electromagnetic field is calculated by solving the
microscopic Maxwell equation. Comparing the thus obtained
electromagnetic field with the input one, if they are not
consistent with each other, then the input electromagnetic field
is changed until the self-consistency is attained within some
accuracy [27].

B. Gap equation for superconductors immersed
in a magnetic field

To implement numerical calculations based on the CDFT
for superconductors, we need the approximate form of
the exchange-correlation energy functional, the definition of
which is given by Eq. (16). In this study, we assume the
following approximate form that induces the OPSS with spin-
singlet symmetry:

Fxc
[
n, jT

p , jM s, �, �∗]
= Exc

[
n, jT

p , jM s

] + 1

2

∫∫
�∗(r1ζ1, r2ζ2)

×w(r1ζ1, r2ζ2; r3ζ3, r4ζ4)

×�(r4ζ4, r3ζ3)dr1dζ1dr2dζ2dr3dζ3dr4dζ4, (26)

with

w(r1ζ1, r2ζ2; r3ζ3, r4ζ4)

= −V (|r1 − r2|)δ(r1 − r4)δ(r2 − r3)〈ζ1|σy|ζ2〉〈ζ4|σy|ζ3〉.
(27)

The first term on the right-hand side of Eq. (26) denotes
a part of the exchange-correlation energy functional that is
independent of the OPSS. The second term has a form that is
obtained from the expectation value of the attractive interac-
tion energy (Ŵ2) under the mean-field approximation. In this
approximation, the effective pair potential D̃s(rζ , r′ζ ′) can be
obtained by using Eqs. (14), (15), and (20). We have

D̃s(rζ , r′ζ ′) = iV (|r − r′|)�̄(r, r′)〈ζ |σy|ζ ′〉, (28)

with

�̄(r, r′) = 1

i

∫∫
�(rζ , r′ζ ′)〈ζ |σy|ζ ′〉dζdζ ′. (29)

Here, 〈ζ |σy|ζ ′〉 is given by i{χ↓(ζ )χ↑(ζ ′) − χ↑(ζ )χ↓(ζ ′)},
where χσ (ζ ) denotes the spin function, and �̄(r, r′) denote
a the singlet part of �(rζ , r′ζ ′).

To solve the BdG–KS equation, we adopt the approxima-
tion method presented by de Gennes [47]. He introduced one-
electron wave functions in the normal state when solving the
BdG equation [47], and assumed that the solutions of the BdG

equation have the same spatial dependence as the one-electron
wave functions [47]. Similar to this approximation method,
the solution of the BdG–KS equation is determined in the
following form:

uk(rζ ) = ūkwk↓(r)χ↓(ζ ),

vk(rζ ) = v̄kwk↑(r)χ↑(ζ ), (30)

where wkσ (r)χσ (ζ ) denotes the KS orbital of the normal state
that is defined as the eigenfunction of hr

s − μ:(
hr

s − μ
)
wkσ (r)χσ (ζ ) = ξkσwkσ (r)χσ (ζ ). (31)

Substituting Eqs. (28) and (30) into Eq. (18), and using
Eq. (31), the BdG–KS equation can be rewritten as[

ξk↓ i
k(Bs, T )
−i
k(Bs, T ) −ξk↑

][
ūk

v̄∗
k

]
= Ek

[
ūk

v̄∗
k

]
, (32)

with


k(Bs, T ) = i
∫∫

w∗
k↓(r)V (|r − r′|)�̄(r, r′)w∗

k↑(r′)drdr′.

(33)

By solving Eq. (32), we have

Ek =
√

ξ̄ 2
k + |
k(Bs, T )|2 − �ξk

2
, (34)

|ūk|2 = 1

2

⎧⎨
⎩1 + ξ̄k√

ξ̄ 2
k + |
k(Bs, T )|2

⎫⎬
⎭, (35)

|v̄k|2 = 1

2

⎧⎨
⎩1 − ξ̄k√

ξ̄ 2
k + |
k(Bs, T )|2

⎫⎬
⎭, (36)

where �ξk = ξk↑ − ξk↓ and ξ̄k = (ξk↑ + ξk↓)/2. Equation
(34) implies that the energy gap 
k(Bs, T ) appears in the en-
ergy spectrum of the superconducting state. It should be noted

that Ek, |ūk|2, and |v̄k|2 are reduced to
√

ξ 2
k + |
k(0, T )|2,

{1 + ξk/Ek}/2, and {1 − ξk/Ek}/2 in the limit of Bs(r) → 0
and vext (r) → const. (homogeneous limit), where ξk denotes
the eigenvalue of the normal state in the zero-magnetic-field
case. These expressions in the limit are identical to those of the
Bardeen-Cooper-Schrieffer (BCS) theory [48], which implies
that the present scheme is reasonable because it covers the
BCS theory as the limiting case.

Substituting Eq. (30) into Eq. (24), and using Eq. (29), we
have

�̄(r, r′) =
∑

k

ūkv̄kwk(r)wk(r′) tanh

{
β

2
Ek

}
. (37)

Substituting Eq. (37) into Eq. (33), and using Eqs. (35) and
(36), we have


k(Bs, T ) = 1

2

∑
k′

Vkk′
k′ (Bs, T )√
ξ̄ 2

k′ + |
k′ (Bs, T )|2

× tanh

{
β

2

[√
ξ̄ 2

k′ + |
k′ (Bs, T )|2 − �ξk′

2

]}
,

(38)
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with

Vkk′ = 1

2

∫∫
w∗

k↓(r)w∗
k↑(r′)V (|r − r′|)wk′↑(r)wk′↓(r′)

× d3rd3r′ + 1

2

∫∫
w∗

k↓(r)w∗
k↑(r′)

×V (|r − r′|)wk′↓(r)wk′↑(r′)d3rd3r′. (39)

Equation (38) is regarded as the gap equation for supercon-
ductors immersed in a magnetic field. If 
k(Bs, T ) is obtained
by solving Eq. (38), then uk(rζ ) and vk(rζ ) are calculated by
using Eqs. (30) and (34)–(36). Therefore, the basic variables
are calculated by using Eqs. (21)–(25). Thus, by employing
approximation Eqs. (26) and (30), the problem of solving the
BdG–KS equation [Eq. (18)] is reduced to that of solving the
gap equation [Eq. (38)].

Similarly to the BCS theory, the matrix elements of the
attractive interaction Vkk′ are assumed to be nonzero and
constant (V0) for the electrons inside the energy region (ξ̄k <

h̄ωD) near the Fermi energy, where ωD denotes the Debye fre-
quency. In this case, it is reasonable to assume that 
k(Bs, T )
is independent of k in a similar way to the BCS theory [48].
Furthermore, �ξk is supposed to be independent of k because
the splitting �ξk is mainly caused by the spin-Zeeman effect.
The summation with respect to k′ in Eq. (38) can be rewritten
as an integral with respect to the energy by using the density
of state (DOS). In this case, the gap equation is reduced to

1 = V0D(0)
∫ h̄ωD

0

tanh
{

β

2

[√
ξ 2 + |
0(Bs, T )|2 − �ξ

2

]}
√

ξ 2 + |
0(Bs, T )|2
dξ,

(40)
where D(0) denotes the DOS for ξ̄k at the Fermi energy.
Here, 
k(Bs, T ) and �ξk are denoted as 
0(Bs, T ) and �ξ ,
respectively. It is confirmed that Eq. (40) is reduced to the
gap equation of the BCS theory [48] in the limit of Bs(r) → 0
and vext (r) → const. (homogeneous limit), which implies the
validity of the approximation.

III. PRACTICAL SCHEME FOR SOLVING
THE GAP EQUATION

To validate the proposed gap equation, we apply it to
aluminum immersed in a magnetic field. For this purpose, we
consider homogeneous electron gas immersed in a magnetic
field. The value of rs, which stands for the average distance
between electrons, of the homogeneous electron gas is 2.07
for aluminum [49]. The external magnetic field is supposed
to be parallel to the z axis. In the present calculations, we
neglect Exc[n, jT

p , jM s] [50], which is independent of the
OPSS [Eq. (26)] and denotes the exchange-correlation effects
of the electron-electron interaction. Because the potential
energy caused by the positive background charge is canceled
out by the Hartree potential, we have vs(r) ≈ 0 and As(r) ≈
Agiven(r) under these approximations. Although the profile
of Agiven(r) is determined by solving the gap equation and
microscopic Maxwell equation simultaneously as mentioned
in the previous section, we suppose that the thus obtained
Agiven(r) is given by

Agiven(r) =
[
0, λB̄ sinh

( x

2λ

)
, 0

]
, (41)

with B̄ = Bext/cosh(Lx/2λ), where λ and Bext denote the mag-
netic penetration depth and the magnitude of the external mag-
netic field, respectively. Hereafter, we denote the magnetic-
field dependence of the superconducting gap as 
0(Bext, T )
instead of 
0(Bs, T ), because of Eq. (41). By using vs(r) ≈ 0
as previously discussed, and Eq. (41), we calculate the KS
orbital of the normal state and eigenvalue of Eq. (31).

Although the magnetic-field-containing relativistic tight-
binding approximation (MFRTB) method [51–56] is useful
for calculating the electronic structure of materials immersed
in a uniform magnetic field, the magnetic field is nonuni-
form in this case [Eq. (41)]. Therefore, we employ the
perturbation theory in the present calculations. Specifically,
the magnetic-field-dependent terms in hr

s, which are given

by e
2m {p · As(r) + As(r) · p}, e2As (r)2

2m , and gμB

h̄ ŝζ
op · Bs(r), are

treated as the perturbation. We calculate the eigenvalue ξkσ

and the DOS by considering the first and second order of Bext.
To perform the above-mentioned calculations, the value of

λ should be determined appropriately. For this, we use the
following relation:

2n(2)
max(Bext, T )
0(Bext, T ) = 2n(2)

max(0, T )
0(0, T ) − B2
ext

2μ0
�,

(42)
where 2n(2)

max(Bext, T ) is the number of superconducting elec-
trons [43]. The left-hand side of this equation denotes the
energy gain obtained in the superconducting state (the super-
conducting energy gain in the presence of the magnetic field),
and the right-hand side suggests that the superconducting
energy gain in the absence of the magnetic field is reduced
because of the diamagnetic potential energy caused by the
Meissner effect. This equation corresponds to Ittner’s relation
[57], if λ is considerably smaller than the thickness of the
superconductor and if the magnitude of the magnetic field
approaches the critical magnetic field. Therefore, the calcu-
lation properties that will be presented in Sec. IV correspond
to those of the bulk system. The value of 2n(2)

max(Bext, T ) can be
calculated from �(rζ , r′ζ ′) in the present scheme. Since the
occupation number of a two-particle state becomes an order
N in the superconducting state, �(rζ , r′ζ ′) can be described
by [43]

�(rζ , r′ζ ′) =
√

2n(2)
max(Bext, T )νmax(rζ , r′ζ ′), (43)

where νmax(rζ , r′ζ ′) denotes the two-particle state. This equa-
tion leads to 2n(2)

max(Bext, T ) = ∫∫ |�(rζ , r′ζ ′)|2d3rd3r′dζdζ ′.
By using Eqs. (24), (30), (35), and (36), we have

2n(2)
max(Bext, T )

= 1

8

∑
k′

|
k′ (Bext, T )|2
ξ̄ 2

k′ + |
k′ (Bext, T )|2

× tanh2

{
β

2

[√
ξ̄ 2

k′ + |
k′ (Bext, T )|2 − �ξk′

2

]}

≈ D(0)

4

∫ h̄ωD

0

|
0(Bext, T )|2
ξ 2 + |
0(Bext, T )|2

× tanh2

{
β

2

[√
ξ 2 + |
0(Bext, T )|2 − �ξ

2

]}
dξ . (44)
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FIG. 1. Dependence of the superconducting gap on the tempera-
ture and magnetic field.

By solving the gap equation [Eq. (40)] simultaneously with
Eq. (44), we can obtain 
0(Bext, T ) and λ. This practical
scheme enables us to solve the gap equation without solving
the microscopic Maxwell equation simultaneously.

The procedure of numerical calculations is as follows.
First, we calculate D(0) for a trial value of λ by means
of the perturbation theory. Then, we solve the gap equation
[(Eq. (40)] by using the obtained D(0), and get 
0(Bext, T ).
By means of Eq. (44), 2n(2)

max(Bext, T ) can be calculated by
using D(0) and 
0(Bext, T ). By substituting the values of
2n(2)

max(Bext, T ) and 
0(Bext, T ) into Eq. (42), we can check
whether Eq. (42) is satisfied or not. If not, the value of λ

is changed appropriately. This procedure is performed until
Eq. (42) holds.

In actual calculations, the value of V0 is assumed to be
the same as that for the zero-magnetic-field case. We employ
the unperturbed KS orbital to calculate the matrix elements
of the attractive interaction. Specifically, the value of V0 is
determined by using the formula for the critical temperature
[48], kBTc ≈ 1.134h̄ωD exp[−1/V0N̄ (0)], where N̄ (0) denotes
the DOS at the Fermi energy for the zero magnetic field. This
formula is obtained by the BCS theory. We use V0N̄ (0) =
0.1661. The value is obtained by using Tc = 1.18 K for alu-
minum and ωD = kBθD/h̄ with the Debye temperature θD =
428 K for aluminum [58]. For the value of N̄ (0), we use the
DOS of the homogeneous electron with rs = 2.07 [49]. We
consider a rectangular system with the dimensions Lx = 1 cm,
Ly = 10 cm, and Lz = 10 cm.

IV. CALCULATION RESULTS AND DISCUSSION

Figure 1 shows the dependence of the superconducting gap
on the temperature and magnetic field. The z axis denotes
the ratio 
0(Bext, T )/
0(0, 0), where 
0(0, 0) is calculated
as 0.1793 eV by Eq. (40). This value of 
0(0, 0) is consis-
tent with the literature data [58]. Thus, the present scheme
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FIG. 2. Magnetic-field dependence of the superconducting gap
for fixed temperature.

enables us to predict the temperature and magnetic-field de-
pendences of the superconducting gap. This is a prediction of
the magnetic-field and temperature dependence of the super-
conducting gap on the basis of the first-principles calculation
method, i.e., the CDFT for superconductors. In the following,
we discuss this dependence in detail.

The projection of this three-dimensional plot (Fig. 1) onto
the T = 0 plane is shown in Fig. 2. The gap 
0(Bext, T )
monotonically decreases with the magnetic field and is con-
vex upward. The critical magnetic field is defined as the
magnetic field at which the superconducting gap disappears.
The obtained value of Bc is approximately 76.79 G at T =
0.01 K. This value is in reasonably good agreement with the
experimental result (Bc = 99 G) [59].

The projection of Fig. 1 onto the Bext = 0 plane is shown
in Fig. 3. The critical temperature is also defined as the
temperature at which the superconducting gap disappears. The
critical temperature decreases with an increase in the magnetic
field. The critical temperature at Bext = 0 is in good agreement
with the experimental result (Tc = 1.18 K). This is because
the gap equation is reduced to that of the BCS theory, and
because the value of V0 used in the present calculation is
determined by using the critical temperature formula obtained
by the BCS theory.

Next, we consider the characteristic dependence of the
superconducting gap on the temperature (Fig. 3). For low
magnetic fields (Bext � 45 G) of Fig. 3, 
0(Bext, T ) remains
almost constant with increasing temperature, and rapidly de-
creases near the critical temperature. This temperature de-
pendence is similar to the zero-magnetic-field case. The tem-
perature dependence of 
0(Bext, T ) for high magnetic fields
(Bext > 45 G) is different from that for the low magnetic
fields. That is, the superconducting gap slightly increases
with temperature, and then rapidly decreases near the critical
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FIG. 3. Temperature dependence of the superconducting gap for
fixed magnetic fields.

temperature. This characteristic dependence of 
0(Bext, T ) on
temperature is revealed only after solving the gap equation for
superconductors immersed in a magnetic field.

To understand the characteristic dependence, the temper-
ature dependence of the total number of superconducting
electrons 2n(2)

max(Bext, T ) is calculated. As shown in Fig. 4,
2n(2)

max(Bext, T ) decreases gradually with temperature, and
rapidly decreases near the critical temperature. Considering
that the required number of electrons contributing to the
diamagnetic current of the Meissner effect is determined by
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FIG. 4. Temperature dependence of the penetration depth for
fixed magnetic fields.
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FIG. 5. Temperature dependence of the number of superconduct-
ing electrons for fixed magnetic fields.

the strength of the magnetic field, the diamagnetic current
is maintained with an increasing temperature as follows. (A)
Increasing λ to increase the number of superconducting elec-
trons that contribute to the diamagnetic current, (B) increasing
the density of superconducting electrons near the surface, or
(C) increasing the velocity of superconducting electrons near
the surface. In the case of (C), the kinetic energy increases,
so case (C) cannot be realized. The increase of λ [case
(A)] would lead to the decrease of the diamagnetic potential
energy, while it leads to the decrease of the superconducting
gap which causes the reduction of the superconducting energy
gain. Figure 5 shows the temperature dependence of λ. The
value of λ decreases with an increasing temperature, and
then upturns near the critical temperature. This means that
case (A) is realized near the critical temperature. In the other
temperature range, case (B) seems to be realized with decrease
in λ. This is because, according to the London theory, λ is
inversely proportional to the square root of the superconduct-
ing electron density. Therefore, the temperature dependence
of λ (Fig. 5) suggests that the density of superconducting
electrons near the surface increases with temperature; there-
fore, λ decreases with an increasing temperature. Thus, we
may say that case (B) is realized with a decrease in λ. The
rate of decrease of λ becomes larger at a higher magnetic
field, as shown in Fig. 5. This would be because the required
number of electrons contributing to the diamagnetic current of
the Meissner effect becomes larger at a higher magnetic field,
so that the density of the superconducting electron becomes
larger near the surface [case (B)]. Due to this decrease of λ,
the superconducting gap increases with temperature (at low
T ) for high magnetic fields (Fig. 3). Thus, the characteristic
dependences of both the superconducting gap and penetration
depth on temperature are strongly related to the Meissner
effect.
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Finally, the cross section of Fig. 1 at the 
0(Bext, T ) = 0
plane is shown in Fig. 6. The curve in Fig. 6 indicates the
phase boundary between the superconducting and normal
phases. The superconducting state is stable in the inner region
of the curve, where the superconducting gap has a finite value.
The temperature dependence of the critical magnetic field is
qualitatively consistent with experiments.

Thus, the present scheme was successfully applied to su-
perconductors immersed in a magnetic field, and it can predict
the temperature and magnetic properties of the superconduct-
ing gap.

V. CONCLUSION

This paper presents a gap equation for superconductors
immersed in a magnetic field, based on a first-principles
calculation method, i.e., CDFT for superconductors. This gap
equation enables us to describe the magnetic and temperature
behaviors of the gap for superconductors immersed in a
magnetic field. Furthermore, we present a calculation scheme
to solve the gap equation in consistency with a proposed rela-
tion for the superconducting energy gain for superconducting
electrons. The presented scheme is applicable to supercon-
ductors immersed in a magnetic field and can predict both
the temperature dependence and magnetic-field dependence
of the superconducting gap.

The proposed scheme was applied to aluminum immersed
in a magnetic field; it predicted the characteristic dependence
of the superconducting gap on the magnetic field. In addition,
the resultant critical temperature and magnetic field were in
good agreement with those obtained experimentally. These
calculation results demonstrate the usefulness and validity of
the presented scheme.

In the derivation of the gap equation, the attractive in-
teraction part of the exchange-correlation energy functional
was evaluated within the mean-field approximation. If the
approximate form is improved beyond the mean-field approx-
imation, a gap equation similar to Eqs. (38) or (40) would
be obtained. Furthermore, if the approximate form for the
exchange-correlation energy functional that induces the OPSS
with spin-triplet symmetry [27] is employed, the gap equation
for superconductors with triplet OPSS can be developed in
a similar manner to the presented gap equation. Thus, the
proposed scheme has extensive utility and provides a useful
framework for describing the properties of superconductors
immersed in a magnetic field.
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