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Temperature evolutions of the electronic specific heat Ce(T ) [A. Amon et al., Phys. Rev. B 97, 014501 (2018)]
and the thermodynamic critical field Bc(T ) [R. Khasanov et al., Phys. Rev. Research 2, 023142 (2020)] of the
BeAu superconductor were reconsidered within the framework of the single-gap and two-gap scenarios. The
analysis shows that the single-gap approach, by being able to describe satisfactorily the temperature dependence
of Ce(T ), fails in the case of Bc(T ). The self-consistent two-gap model, in contrast, is able to describe both
thermodynamic quantities by using a similar set of parameters. Our results imply that in some particular cases,
such as in the case of BeAu, measurement of one single thermodynamic quantity may not be enough in order to
speculate on the nature of the superconducting pairing mechanism.
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I. INTRODUCTION

Measurements of temperature dependences of thermody-
namic quantities such as the superfluid density ρs, the elec-
tronic specific heat Ce, and the thermodynamic critical field Bc

are among the primary ways used to test pairing mechanisms
of new superconductors [1–6]. In particular, such experiments
allow us (i) to distinguish between the single-band and multi-
band scenarios [7–14], (ii) to determine the superconduct-
ing gap structure [15–26], (iii) to calculate the temperature
evolution(s) of the superconducting energy gaps [27–33],
etc. Obviously, the parameters obtained from the analysis of
various thermodynamic quantities need to be consistent with
each other. In other words, the temperature evolution of the
superfluid density, the specific heat, and the thermodynamic
critical field should be described within a similar model by
using the same set of parameters. For example, this is the case
in the analysis of conventional elemental and binary supercon-
ductors within the framework of the empirical α model (see
Refs. [34–38]) and the Eliashberg approach (see the classic
reviews of Carbotte [39] and Marsiglio and Carbotte [40])
and the two-gap superconductors within the self-consistent
approach using models developed by Kogan et al. [41,42] and
Bussmann-Holder et al. [43–45].

Our interest in interpreting the superfluid density, the
specific heat, and the thermodynamic critical field within
the single-gap and two-gap scenarios was initiated by recent
publications pointing to contradictory results for the non-
centrosymmetric BeAu superconducting compound [46–50].
Indeed, Refs. [46–49] consider BeAu to host a single isotropic
gap, which is a characteristic of predominantly s-wave spin-
singlet pairing in the weak-coupling limit. Such evidence
comes from the electronic specific heat measurements, sug-
gesting that Ce(T ) is well described within the single-gap
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approach with the ratio α = �(0)/kBTc ranging from the
weakly coupled BCS value αBCS = 1.764 up to α �
1.88 [46–49]. Here, �(0), Tc, and kB are the zero-temperature
value of the gap, the superconducting transition temperature,
and the Boltzmann constant, respectively. On the other hand,
precise measurements of the thermodynamic critical field
reported in Ref. [50] show that the temperature evolution of
Bc cannot be described within the single-gap scenario and the
presence of at least two different types of the superconducting
order parameters is required. The analysis of Bc(T ) within the
self-consistent two-gap approach suggests the presence of two
superconducting energy gaps with the ratios �/kBTc � 2.26
and 1.19 for the big and small gaps, respectively.

The aim of the present paper is to resolve the above
contradiction in interpreting the Ce(T ) and Bc(T ) data of
BeAu. In order to solve this dilemma, both Ce(T ) and Bc(T ),
as they were reported in Refs. [47,50], respectively, were
analyzed by means of the single-gap and two-gap models.
Our result confirms that the two-gap approach allows us to
describe both thermodynamic quantities with the same set of
parameters. Moreover, the fact that Ce(T ) could be interpreted
within the single-gap scenario becomes an interesting feature
of the BeAu superconductor. In BeAu, two contributions to
the electronic specific heat, by being summed together, result
in a behavior which is indistinguishable from expectations
of the single-gap scenario. The simulations show that this is
also the case for the temperature evolution of the superfluid
density. Our results imply, therefore, that in some particular
cases, such as in the case of BeAu studied here, measurement
of one single thermodynamic quantity may not be enough in
order to speculate about the mechanism of superconductivity.
The validity of the model used to describe the experimental
data for one particular thermodynamic quantity needs to be
cross-checked by analyzing the other quantities as well.

This paper is organized as follows: The analyses of the
Ce(T ) and Bc(T ) dependences of BeAu within the single-gap
and two-gap scenarios are presented in Secs. II A and II B,
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respectively. In Sec. III A, the specific heat and the superfluid
density data, simulated by means of the two-gap model, are
compared with the one-gap model fits. The simultaneous
single-gap and multiple-gap responses of other supercon-
ducting materials are discussed in Sec. III B. Conclusions
follow in Sec. IV. Descriptions of the single-gap and two-gap
approaches for analyzing the specific heat, the thermodynamic
critical field, and the superfluid density are given in the
Appendix.

II. THE SPECIFIC HEAT AND THE THERMODYNAMIC
CRITICAL FIELD OF BeAu

In this section, the comparison of the single-gap and two-
gap approaches in analyzing the temperature evolution of the
specific heat Ce(T ) and the thermodynamic critical field Bc(T )
of the BeAu superconductor is discussed. The Ce(T ) and
Bc(T ) data sets were taken from Refs. [47,50], respectively.
Note that currently, three sets of Ce(T ) and Bc(T ) data for
BeAu are available in the literature [46–51]. Among them,
the Ce(T ) and Bc(T ) dependences from Refs. [47,50] were
measured on BeAu samples from the same batch. For this
reason, these two data sets are going to be compared in this
paper. Note that the comparison of Bc(T ) from Ref. [50]
with Ce(T ) curves from Refs. [46,48] leads to the same basic
conclusions (not shown).

A. Ce(T ) and Bc(T ) of BeAu: Single-gap scenario

The single-gap analysis of the specific heat Ce(T ) and
the thermodynamic critical field Bc(T ) data of the BeAu su-
perconductor followed the procedure described in Appendix
Sec. A 1. Within the single-gap scenario, Eqs. (A1) and (A3)
were fit to the Ce(T ) and Bc(T ) data sets, respectively. The
temperature dependence of the superconducting energy gap
was assumed to be the same and was described within the α

model (Sec. A 1 b) by using

�(T ) = �(0)δBCS(T ) = αkBTcδBCS(T ). (1)

Here, �(0) is the zero-temperature value of the gap, δBCS(T )
is the normalized superconducting energy gap with the tem-
perature evolution following the BCS theory (see Ref. [52],
Sec. A 1 b, and Fig. 7), and α = �(0)/kBTc is the parameter
accounting for the deviation from the weakly coupled BCS
prediction (αBCS � 1.764).

The results of the analysis are shown by solid black lines
in Figs. 1 and 2 for Ce(T ) and Bc(T ) data, respectively. Note
that the thermodynamic critical field data from Ref. [50] are
expressed in terms of the deviation function D(T ) = Bc(T ) −
Bc(0)[1 − T 2/T 2

c ], which represents the deviation of Bc(T )
from the parabolic type of behavior.

The analysis of the specific heat data itself agrees with the
experiment (Fig. 1). The fit parameters are Tc = 3.29(1) K,
γn = 1.813(5) mJ/mol K2, and α = �(0)/kBTc = 1.686(8).
The goodness of the fit could be further judged from the calcu-
lated χ2

norm parameter (the sum of the mean-square deviations
divided by number of degrees of freedom minus 1), which
for a “good fit” should not be far from unity. The value of
χ2

norm = 1.87 is found, thus suggesting satisfactory agreement
between the data and the fit. It is worth noting here that

FIG. 1. The electronic specific heat Ce(T ) of BeAu (after
Ref. [47]). The solid line is the fit of the single-gap α model to
the experimental data with α = �(0)/kBTc = 1.686(8). Satisfactory
agreement between the fit and the data is confirmed by the value of
χ 2

norm = 1.87. The inset shows the results of the fit by fixing the value
of the parameter α = 1.89 to that obtained in the analysis of Bc(T )
data. See text for details.

the value of α = 1.686(8) is only slightly smaller than the
weakly coupled BCS value αBCS = 1.764. This agrees with
the previous observations suggesting the presence of a single
isotropic energy gap in BeAu [46–49].

The analysis of Bc(T ) data does not lead to agreement
between the theory and the experiment (Fig. 2). The theoret-
ical D(T ) curve deviates strongly from the data. The value
χ2

norm = 8.82 remains far from unity. The best-fit parameters
are Tc = 3.195(3) K, Bc(0) = 26.65(6) mT, and α = 1.89(1).

For comparison, the Ce(T ) [Bc(T )] data were fit by fixing
the parameter α to the value obtained in the analysis of
the critical field (specific heat) data. The results of the fits
are shown in insets of Figs. 1 and 2 for Ce(T ) and Bc(T ),
respectively. The agreement between the fit and the data is
relatively poor, which is also confirmed by high values of
χ2

norm [χ2
norm = 43.2 for Ce(T ) and χ2

norm = 64.9 for Bc(T )].

B. Ce(T ) and Bc(T ) of BeAu: Two-gap scenario

The two-gap analysis followed the procedure described in
subsection 2 of the Appendix. Equations (A10) and (A12)
were fit simultaneously to the Ce(T ) and Bc(T ) experimental
data. The individual components of these equations were
described by Eqs. (A1), (A4), and (A5), respectively. The tem-
perature dependences of the big [�1(T )] and small [�2(T )]
superconducting energy gaps were obtained by solving the
system of coupled nonlinear equations [Eq. (A14)].

At first glance, the number of fit parameters is quite high,
so the fitting procedure might be unstable, and good fits are
expected to be found for various combinations of the param-
eters. The number of fit parameters is seven for Eq. (A14)
(N1, N2, V11, V12, V21, V22, and ωD), four for Eq. (A10) (Tc, γn,
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FIG. 2. The deviation of the temperature evolution of the ther-
modynamic critical field Bc(T ) of BeAu from the parabolic behavior
D(T ) = Bc(T ) − Bc(0)[1 − T 2/T 2

c ] (after Ref. [50]). The solid line
is the fit of the single-gap α model to the experimental data with
α = �(0)/kBTc = 1.89(1). The inset shows the results of the fit by
fixing the value of the parameter α = 1.686 to that obtained in the
analysis of Ce(T ) data. See text for details.

γn1, and γn2), and five for Eq. (A12) [Tc, Bc(0), γn, γn1, and
γn2]. This results in a total of 16 fit parameters. In reality, the
number of fit parameters could be reduced substantially since
some of them are related to each other, while the others could
be determined in an independent set of experiments.

The following arguments can be considered:
(i) Within the free-electron approximation, the product

γni/γn (i = 1, 2) from Eqs. (A10) and (A12) is equal to the
corresponding partial density of states Ni in Eq. (A14), so that
γn1/γn ≡ N1 and γn2/γn ≡ N2.

(ii) The value of the Debye frequency could be indepen-
dently derived from the specific heat measurements. Amon
et al. [47] found ωD � 33.4 meV. Note that slightly smaller
ωD � 25.4 meV was reported by Rebar et al. [46,48].

(iii) The value of the electronic specific heat component
(Sommerfeld constant) could be determined from the linear
fit of Ce(T ) data for T above Tc (see Fig. 3). The fit reveals
γn � 1.81 mJ/mol K2.

(iv) The electronic specific heat component γn is derived as
the sum of two contributions, γn = γn1 + γn2 [7].

By considering the above arguments, the total number of
fitting parameters for simultaneous analysis of Ce(T ) and
Bc(T ) data is reduced from 16 to 8, namely, four coupling
constants (two intraband, V11 and V22, and two interband, V12

and V21, coupling strengths), two transition temperatures (T Ce
c

and T Bc
c ) [53], the zero-temperature value of the thermody-

namic critical field Bc(0), and the weighting factor wCe ≡
wFs = γn1/γn.

The analysis of Ce(T ) and Bc(T ) data within the two-gap
scenario was performed in a few steps. First, by solving two
nonlinear coupled gap equations [Eq. (A14)], the tempera-
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FIG. 3. (a) The electronic specific heat Ce(T ) of BeAu (after
Ref. [47]) and (b) the deviation of the temperature evolution of
the thermodynamic critical field Bc(T ) of BeAu from the parabolic
behavior D(T ) = Bc(T ) − Bc(0)[1 − T 2/T 2

c ] (after Ref. [50]) ana-
lyzed within the self-consistent two-gap model. Equations (A10)
and (A12) were fitted simultaneously to the data with the same
big �1(T ) and small �2(T ) superconducting energy gaps and the
weighting factor wCe ≡ wFs = 0.63. See text for details.

ture dependences of the big and small superconducting gaps
were calculated. Note that the combination of the coupling
strengths and the Debye frequency determines uniquely the
value of Tc. By substituting �1(T ) and �2(T ) into Eqs. (A10)
and (A12), the corresponding Ce(T ) and Bc(T ) were derived.
The difference between the experimental data and the theory
was minimized by adjusting T Ce

c , T Bc
c , Bc(0), and wCe ≡ wFs .

The tiny difference between T Ce
c and T Bc

c was accounted for by
assuming T Ce

c = coeff × T Bc
c (coeff � 0.983, see Ref. [53]),

which is equal to rescaling both gaps as �1,2(T/coeff). In the
next step, the coupling strength parameters were readjusted,
and the calculations of Ce(T ) and Bc(T ) were repeated. After
about 10 to 15 such iterations the fit converges.

The results of the self-consistent two-gap analysis
are presented in Figs. 3(a) and 3(b) for the Ce(T )
and Bc(T ) data sets, respectively. The fit parameters
are Bc(0) = 26.47(5) mT, wCe = 0.630(3), V11 = 0.243(3),
V22 = 0.319(4), V12 = 0.281(3), and V21 = 0.068(1). The
values of the superconducting transition temperature are
T Ce

c = 3.29(1) K and T Bc
c = 3.233(3) K. Obviously, the self-

consistent two-gap model describes both sets of experimental
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FIG. 4. Temperature evolution of the big (�1, red line) and small
(�2, blue line) superconducting energy gaps, obtained within the
framework of the self-consistent two-gap model. The dashed lines
are the weakly coupled BCS prediction [52].

data remarkably well. The values of χ2
norm are found to be

1.97 and 1.46 for the Ce(T ) and Bc(T ) data sets, respectively.
A substantial improvement of χ2

norm [from 8.82 to 1.46; see
Figs. 2 and 3(b)] is observed for the Bc(T ) set of data. The
slight increase in χ2

norm for Ce(T ) [from 1.87 to 1.97; see
Figs. 1 and 3(a)] is most likely caused by the increased
number of fit parameters in the two-gap model compared to
the single-gap one.

The temperature evolution of the big and small gaps and
the comparison of their temperature dependences with the
weakly coupled BCS prediction (see Fig. 7) are presented
in Fig. 4. Obviously, both �1(T ) and �2(T ) are slightly
weaker than the expectation of the weakly coupled BCS
model (dashed lines). Such behavior is expected in the case
of multiband superconductors. It is confirmed theoretically as
well as experimentally for the most famous two-gap supercon-
ductor MgB2 [32,41,54–56].

III. COMPARISON BETWEEN THE SINGLE-GAP AND
TWO-GAP APPROACHES

A. The specific heat and the superfluid density data

An obvious question arises: Why was the previous analysis
of the specific heat data of the BeAu superconductor found to
be consistent with the presence of a single isotropic energy
gap [46–49]? In order to answer this question, the simulated
“two-gap” Ce(T ) curve [see Fig. 3(a)] was reanalyzed by
using the single-gap α model [see Eq. (A1) and Fig. 5].
In addition, the superfluid density ρs(T )/ρs(0) curve was
calculated by means of Eq. (A11) and further reanalyzed
within the single-gap approach by using Eq. (A2) (see Fig. 6).
In the two-gap ρs calculation, the “weighting” parameter wρ

was assumed to be equal to wCe . Surprisingly, in both cases the
single-gap curves stay relatively close to the two-gap ones.
The fit parameters are α = 1.734(5) and 1.675(6) for the
specific heat and the superfluid density, respectively. Note that
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FIG. 5. (a) Comparison of the temperature evolution of the
electronic specific heat obtained within the framework of the self-
consistent two-gap model (red line) with the fit to the single-gap α

model [Eq. (A1), blue line]. (b) The individual contributions to the
specific heat, obtained within the framework of the self-consistent
two-gap model. See text for details.

α = 1.734, obtained from the fit of two-gap specific heat data,
stays relatively close to the values reported in Refs. [46–49].

This is rather unexpected, meaning that in the particular
case of the BeAu superconductor, the summed contributions
of the big and small gaps [dashed and dash-dotted lines in
Figs. 5(b) and 6(b)] are indistinguishable from the single-gap
scenario. By following the data presented in Figs. 5 and 6,
this becomes true for at least two thermodynamical quantities,
such as the electronic specific heat and the superfluid density.
On the other hand, the thermodynamic critical field Bc(T ) fails
to be described within the single-gap behavior and requires
the use of the self-consistent two-gap model for its description
(see also Ref. [50]).

B. Other superconducting materials

The situation described in our paper is not unique
for the particular BeAu superconductor. For example, the
LaFeAs1−xFex, SrPt3P, and Nb5Ir3−xPtxO superconducting
compounds can be mentioned. In LaFeAs1−xFex, the super-
fluid density data are well described within the single s-wave
gap approach [57], while the Andreev reflection studies point
to the presence of several (at least two) superconducting
energy gaps with different absolute values [58]. In SrPt3P, the
single-gap behavior of the superfluid density was found to be
in contradiction to the multiple-band response of the upper
critical field [59]. In that paper it was also shown that two
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FIG. 6. (a) Comparison of the temperature evolution of the
superfluid density ρs(T )/ρs(0) obtained within the self-consistent
two-gap model [Eq. (A11), red line] with the fit to the single-gap
α model [Eq. (A2), blue line]. (b) The individual contributions to
the superfluid density, obtained within the framework of the self-
consistent two-gap model. See text for details.

superconducting energy gaps with different values may, in
principle, result in temperature evolution of the superfluid
density which is indistinguishable from the single-gap ap-
proach (see the discussion in Sec. S3b in the Supplemental
Material of Ref. [59]). In the Nb5Ir3−xPtxO system, Nb5Ir3O
(i.e., the x = 0.0 representative of the family) demonstrates
the two-gap behavior, which is confirmed by field depen-
dences of the electronic specific heat coefficient and the
magnetic penetration depth, as well as by the temperature
dependence of the upper critical field [60]. At the same time,
the temperature dependences of the specific heat and the
superfluid density stay in agreement with the single s-wave
gap behavior.

The self-consistent two-gap approach, presented here, is
used to describe the temperature evolutions of the specific heat
Ce, the superfluid density ρs, and the thermodynamic critical
field Bc. Among them, the specific heat and the superfluid
density may not be able to distinguish between the single-gap
and two-gap scenario within a certain parameter range. This
becomes true for BeAu, studied here, and, most likely, for
Nb5Ir3O from Ref. [60]. The deviation of the thermodynamic
critical field from the parabolic behavior D(T ) reacts, how-
ever, quite differently than that of Ce(T ) and ρs(T ). The best
way to distinguish between the single- and two-gap behaviors
is therefore the simultaneous analysis of D(T ) and Ce(T ) (as
is made in our studies) or D(T ) and ρs(T ) data. Following the
results presented in Sec. III A, the analysis of Ce(T ) and/or

ρs(T ) data alone may not lead to correct conclusions. Un-
fortunately, direct measurements of Bc(T ) are quite difficult
since the majority of superconducting materials are type-II
superconductors.

At the end of this section, we would stress that the two-gap
approach presented here is, probably, the simplest one to de-
scribe multiband superconductivity. The model considers, in
particular, the presence of only two isotropic superconducting
energy gaps of s-wave symmetry. In a real situation, however,
the anisotropy of Fermi surfaces may still lead to a different
functional form of Bc(T ) or Ce(T ). In addition, more than
two bands with different energy gaps may intersect the Fermi
level.

In BeAu, at least four anisotropic Fermi surfaces were
obtained from density functional theory calculations [46–48].
In this respect, the self-consistent two-gap approach is sup-
posed to be used just as the first reliable step for justifying
the multiple-gap behaviorx. As soon as the orientational de-
pendences of thermodynamic quantities, such as Bc, Ce, λ, �,
etc., become available, the model could be reconsidered.

IV. CONCLUSIONS

The temperature evolution of the electronic specific heat
Ce(T ) and the thermodynamic critical field Bc(T ) of the
noncentrosymmetric BeAu superconductor were analyzed by
means of the single-gap α model and the self-consistent two-
gap model. Our results confirm that the two-gap approach
allows us to describe both thermodynamic quantities with
the same set of parameters. The fact that Ce(T ) could be
interpreted within the single-gap scenario is unique for the
BeAu superconductor. In this particular case, the big and
small gap contributions to the electronic specific heat result in
behavior which is hardly distinguishable from the single-gap
approach. A similar situation was obtained for the temperature
dependence of the superfluid density ρs(T )/ρs(0).

Our results imply that in some particular cases, such as the
case for BeAu studied here, the measurement of one single
thermodynamic quantity may not be sufficient to establish the
symmetry of the superconducting order parameter.
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APPENDIX: THE SINGLE-GAP AND THE TWO-GAP
APPROACHES

This Appendix describes the single-gap and two-gap mod-
els, which are traditionally used to analyze temperature depen-
dences of the electronic specific heat Ce, the superfluid density
ρs, and the thermodynamic critical field Bc. The single-gap
approach is based on the model first introduced by Padamsee
et al. [34] and is known as the α model. The model was
recently reconsidered by Johnston [35]. The two-gap model
for analyzing Ce(T ) and ρc(T ) was introduced by Bouquet
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et al. [7], Carrington and Manzano [8], and Fletcher et al. [10]
for analyzing the specific heat and the superfluid density
data of MgB2. The extension of this model for analyzing the
thermodynamic critical field data is given in Ref. [50]. There
are two approaches considering different temperature depen-
dences of the big [�1(T )] and small [�2(T )] superconducting
energy gaps. The simplest, i.e., the two-gap version of the α

model, assumes the gaps are described within the weakly cou-
pled BCS approach by following the functional form derived
by Mühlschlegel [52]. The more advanced version determines
temperature evolutions of the small and big gaps by solving
the coupled gap equations self-consistently [41–45].

1. Single-gap approach

a. Ce, ρs, and Bc within the single-gap BCS model

Within the isotropic s-wave gap scenario, the temperature
dependences of the electronic specific heat Ce, the superfluid
density ρs(T )/ρs(0), and the thermodynamic critical field
Bc(T ) can be obtained analytically [3,34,35,50]:

Ce(T )

γnTc
= 6

π2k3
BTcT 2

∫ ∞

0
f (1 − f )

×
[
ε2 + �(T )2 − T ∂�(T )2

2 ∂T

]
dε, (A1)

ρs(T )

ρs(0)
= 1 − 1

2T

∫ ∞

0
cosh−2

[√
ε2 + �(T )2

2T

]
dε, (A2)

and

B2
c (T )

γnT 2
c

= 8π
Fn − Fs

γnT 2
c

. (A3)

Here, f = {1 + exp[
√

ε2 + �(T )2/kBT ]}−1 is the Fermi
function, and γn is the normal-state electronic specific heat
coefficient (Sommerfeld constant). Fn and Fs are the normal-
and superconducting-state free energies given by [35,50]

Fn

γnT 2
c

= − T 2

2T 2
c

(A4)

and

Fs[T,�(T )]

γnT 2
c

= − 3

π2k2
BT 2

c

[
�(T )2

4
+

∫ ∞

0
f

2ε2+ �(T )2√
ε2 + �(T )2

dε

]
.

(A5)

Note that Eqs. (A1), (A3), (A4), and (A5) are expressed in cgs
units [35].

b. Single-gap α model

Originally, the α model was adapted from the single-band
BCS theory of superconductivity in order to explain devia-
tions of the temperature behavior of the electronic specific
heat and the thermodynamic critical field from the weakly
coupled BCS prediction [34,35]. The model assumes that the
temperature dependence of the normalized superconducting
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FIG. 7. Normalized BCS energy gap δBCS(T/Tc ) =
�BCS(T/Tc )/�BCS(0), obtained by solving the self-consistent
single-gap equation (A8) (red curve) and the approximated gap
calculated by means of Eq. (A9) (blue curve). The inset shows
the difference δBCS(T/Tc ) − δappr (T/Tc ) between the BCS and the
approximated solutions.

energy gap

δBCS(T ) = �(T )

�(0)
= �BCS(T )

�BCS(0)
(A6)

[�(0) is the zero-temperature value of the gap] is the same as
that for BCS theory [52]. The parameter

α = �(0)

kBTc
(A7)

is further introduced in order to account for the deviation from
the weakly coupled BCS prediction αBCS � 1.764.

The BCS temperature dependence of the gap is obtained
by solving the self-consistent gap equation [3,35]:

1 = NV
∫ ωD

0

1√
ε2 + �(T )2

tanh
ε2 + �(T )2

2kBT
dε. (A8)

Here, ωD is the Debye frequency, N is the normal-state
electronic density of states at the Fermi level, and V is the
electron-phonon interaction potential. The temperature depen-
dence of the normalized BCS gap is normally approximated
by [8]

δappr (T ) = tanh{1.82[1.018(Tc/T − 1)]0.51}, (A9)

which results in less than 1% deviation from the exact solution
of Eq. (A8).

Figure 7 compares the exact solution of Eq. (A8) with the
results of Eq. (A9). The deviation of the approximated gap
function δappr (T/Tc) from δBCS(T/Tc) is given in the inset.

2. Two-gap approach

a. Ce, ρs, and Bc within the two-gap model

Following Refs. [7–9,11–14,41,44,50], the temperature
evolutions of Ce, ρs, and Bc within the two-gap approach can
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be obtained as

Ce(T )

γnTc
= Ce1(T ) + Ce2(T )

γnTc

= wCe

Ce1(T )

γn1Tc
+ (1 − wCe )

Ce2(T )

γn2Tc
, (A10)

ρs(T )

ρs(0)
= ρs1(T ) + ρs2(T )

ρs(0)

= wρ

ρs1(T )

ρs1(0)
+ (1 − wρ )

ρs2(T )

ρs2(0)
, (A11)

and

B2
c (T )

γnT 2
c

= 8π
Fn − Fs1 − Fs2

γnT 2
c

= 8π

[
Fn

γnT 2
c

− wFs

Fs1

γn1T 2
c

− (1 − wFs )
Fs2

γn2T 2
c

]
.

(A12)

Here, 1 and 2 are gap indices. wCe , wρ , and wFs are the
contributions of the first gap to the resulting electronic specific
heat, the superfluid density, and the superconducting free
energy, respectively. γn = γn1 + γn2. Note that in accordance
with Eqs. (A10) and (A12)

wCe ≡ wFs = γn1

γn1 + γn2
. (A13)

The analytical equation for wρ was calculated by Kogan
et al. [41], within the framework of the self-consistent two-gap
model. wρ was found to depend on the partial densities of
states and the average Fermi velocities of the first and second
bands, respectively. In general, wρ �= wCe ≡ wFs .

b. Self-consistent two-gap model

The self-consistent two-gap model was introduced shortly
after the formulation of the BCS theory by Suhl et al. [61]
and Moskalenko [62] in order to account for a more complex
Fermi surface topology than the one introduced by BCS
weakly coupled theory. Extensions of this approach were
suggested shortly afterward [63]. The important clue of these
extensions to superconductivity is an interband pair scatter-
ing potential, which leads to enhanced pair scattering via
exchange through an additional channel. The revised version
of the model for two isotropic s-wave gaps was recently
reconsidered in a series of publications by Kogan et al. [41,42]
and Bussmann-Holder et al. [43–45]. Here, the approach
developed in Refs. [43–45] is described.

Following Refs. [43–45,50,64,65], within the two-gap ap-
proach, the coupled s-wave gap equations are described as

�i(T ) =
2∑

j=1

∫ ωD j

0

NjVi j� j (T )√
ε2 + �2

j (T )
tanh

√
ε2 + �2

j (T )

2kBT
dε.

(A14)

Here, Ni is the partial density of states for the ith band at the
Fermi level (N1 + N2 = 1); Vii and Vi j �=i are the intraband and
interband interaction potentials, respectively. For simplicity,
one normally assumes that the Debye frequency ωD is the
same for both bands (ωD1 = ωD2 = ωD) [41,44,50,64,65].

The system of self-consistent coupled gap equations
[Eq. (A14)] might be solved for certain values of the intraband
(V11, V22) and interband (V12, V21) coupling potentials and the
Debye frequency (ωD), which results in temperature depen-
dences of the big �1(T ) and small �2(T ) superconducting
energy gaps. The respective �1(T ) and �2(T ) are further sub-
stituted into Eqs. (A10), (A11), and (A12) [with the individual
components described by Eqs. (A1), (A2), (A4), and (A5)],
and the temperature dependences of Ce(T ), ρs(T ), and Bc(T )
are obtained.
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