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Dynes-like superconductivity in thin Al films in parallel magnetic fields
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Recently, the ubiquitously applicable phenomenological Dynes formula for the tunneling density of states of
superconductors has been explained by assuming that the electrons scatter on a random magnetic field due to
impurities. In the original derivation, only the magnitude of the field was taken as random, but the direction of
the field was assumed to be fixed. Here we show that this assumption can be relaxed, and therefore the concept
of Dynes superconductivity is not restricted to systems with a preferred direction in spin space. We also address
the question whether thin Al films in parallel magnetic fields can be described as Dynes superconductors.
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I. INTRODUCTION

It was realized early on that different types of impurities
influence the superconducting state in different ways. In a
milestone paper, Anderson gave a nonperturbative argument
which shows that neither the thermodynamic properties nor
the tunneling density of states of a superconductor will change
in presence of time-reversal invariant potential disorder [1];
this type of disorder is therefore called pair-conserving. On
the other hand, as shown by Abrikosov and Gorkov within
the self-consistent Born approximation, magnetic impurities
do lead to such changes [2] and are called pair breaking. In
later work, the effect of magnetic impurities was studied ex-
tensively, mostly within the self-consistent T-matrix approxi-
mation [3] and its refinements [4]. In all these approaches, the
self-energy which characterizes the superconductor subject
to pair breaking can be found only numerically, except for
the trivial cases of vanishing or very strong pair-breaking
disorder.

In a recent series of papers, the problem of superconduc-
tors with simultaneously present pair-conserving and pair-
breaking impurities has been reconsidered within the coherent
potential approximation (CPA) [5–8], which is known to pro-
vide a very good description of the single-particle properties
of disordered metals [9]. Surprisingly, for a Lorentzian dis-
tribution of the pair-breaking fields, a simple analytic solution
for the Green’s function of the superconductor could be found.
Making use of this solution, it has been demonstrated that the
tunneling density of states is described by the well-known
Dynes formula [10]. Long ago, this formula was proposed
purely phenomenologically and because of its simplicity it is
widely used by the tunneling community until now.

Superconductors described by the Dynes formula have
been dubbed Dynes superconductors. The electron spectral
functions of Dynes superconductors depend on both the pair-
conserving and the pair-breaking scattering rates, and it was
demonstrated [6] that they fit the angle-resolved photoemis-
sion data in the nodal region of optimally doped cuprates
[11]. The optical conductivity of Dynes superconductors also
depends on both scattering rates [7] and the theory fits well
the recent anomalous data for disordered thin MoN films [12].

Finally, the CPA-based theory of Dynes superconductors has
been shown to be thermodynamically consistent [8] and the
theory predicts power-law behavior of several observables in
the low-temperature limit, even though the gap function is
isotropic.

As it stands, the theory of Dynes superconductors models
the magnetic impurities by local magnetic fields which have
a random magnitude but a fixed orientation. Thanks to this
simplification, it was sufficient to make use of the simplest
two-component Nambu-Gorkov spinors [5]. However, a fixed
orientation of the random fields implies the existence of a
special direction in spin space. In view of the experimentally
observed broad applicability of the Dynes formula, it is un-
likely that this assumption is universally met. The first goal of
the present paper is to check whether Dynes superconductivity
can also appear in systems where both the magnitude and
the orientation of the local magnetic fields are fluctuating.
To achieve this goal, we will reformulate the theory in terms
of the four-component Nambu-Gorkov spinors. Our second
goal is to apply our theory to the high-quality low-temperature
data for ultrathin Al films in parallel magnetic fields [13–15].
The specific question that we will be interested in is whether
the superconducting state of such films can be described as a
Dynes superconductor.

The outline of this paper is as follows. In Sec. II, we
describe the model of an impure superconductor which will be
studied. In Sec. III we derive, within CPA, the equations which
have to be solved. In Sec. IV, we present the solutions to
these equations, concentrating on analytically solvable special
cases. In Sec. V, we apply our theory to the experimental data
from Refs. [13–15]. Finally, in Sec. VI we will conclude.

II. THE MODEL

In the four-component Nambu-Gorkov notation, we in-
troduce the spinor α

†
l = (c†

l↑, c†
l↓, cl↑, cl↓), where c†

lσ is the
creation operator for an electron with spin σ at site l . Our goal
will be to find the spatial and temporal Fourier transform of
the 4 × 4 Matsubara Green’s function defined by Ĝ(l, l ′, τ ) =
−〈T αl (−iτ )α†

l ′ 〉, where τ is imaginary time and T is the
time-ordering operator.
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For future convenience, let us introduce the following
4 × 4 matrices:

γ 0 = σ 0τ 0, γ 1 = σ 1τ 1, γ 2 = −σ 2τ 2, γ 3 = σ 0τ 3,

as well as �γ = diag(�σ ,−�σ T ). Here τ 0 and �τ = (τ 1, τ 2, τ 3)
are the unit matrix and the Pauli matrices in the Nambu
(particle-hole) space, while σ 0 and �σ = (σ 1, σ 2, σ 3) are the
unit matrix and the Pauli matrices in spin space. The Cartesian
components of �γ will be denoted as γ x, γ y, γ z.

We consider a single band of electrons characterized by
the bare dispersion εk, which are Zeeman coupled to an
external magnetic field B along the z direction [16]. The
4 × 4 bare Green’s function of the electron with momentum
k and Matsubara frequency ωn, defined in terms of the spinor
α

†
k = (c†

k↑, c†
k↓, c−k↑, c−k↓), reads

Ĝ0(nk) = (iωnγ
0 − Bγ z − εkγ

3)−1.

The electrons are assumed to interact via a local attrac-
tive potential U which is supposed to generate a spatially
uniform mean-field pairing potential �, in agreement with
scanning tunneling data for the Dynes superconductors [17].
Furthermore, at each lattice site l the electrons are supposed
to be subject to two random spatially uncorrelated fields:
the pair-conserving potential field Ul and the pair-breaking
magnetic field �Vl . Therefore, the total deviation from the bare
Hamiltonian is described by H′ = 1

2

∑
l α

†
l Ŵlαl , where the

local scattering potential Ŵl can be written as

Ŵl = �γ 2 + Ulγ
3 + �Vl · �γ . (1)

The distribution functions for both fluctuating fields are taken
mutually uncorrelated and even, for instance, we will assume
that P ( �V ) = P (− �V ).

III. CPA EQUATIONS

In CPA, we introduce an averaged electron self-energy 	̂n

which depends only on the Matsubara frequency ωn, in terms
of which the averaged full Green’s function reads

Ĝ−1(nk) = Ĝ−1
0 (nk) − 	̂n.

Following Janiš [18], in addition to 	̂n, we introduce another
independent variable, the averaged local Green’s function Ĝn,
which also depends only on frequency. In the superconducting
state, both 	̂n and Ĝ−1

n depend parametrically on the pairing
potential �.

Similarly as in Ref. [8], also in the present four-component
case, the central object is a functional of the free-energy
density F[�, 	̂n(�), Ĝ−1

n (�)]. Here we take the following
expression for F :

F = − T

2N
∑
nk

Tr ln
[
Ĝ−1

0 (nk) − 	̂n
] + |�|2

U

+ T

2

∑
n

[
Tr ln Ĝ−1

n − 〈
Tr ln(Ĝ−1

n − Ŵ + 	̂n)
〉]
, (2)

where N is the number of lattice sites and the angular brackets
denote averaging with respect to the fluctuating fields U and
�V . The site index in Wl is not written down in Eq. (2), since
after averaging F is independent of l .

The CPA equations can be obtained by taking the func-
tional derivatives of Eq. (2) with respect to 	̂n and Ĝ−1

n and
by treating 	̂n and Ĝ−1

n as independent variables. In this way,
we obtain

Ĝn = 1

N
∑

k

[
Ĝ−1

0 (nk) − 	̂n
]−1

,

Ĝn = 〈(
Ĝ−1

n − Ŵ + 	̂n
)−1〉

. (3)

Note that the first of these equations is consistent with the
identification of Ĝn as a local Green’s function.

The gap equation can be found by minimizing F with
respect to �. To this end, let us note that F is stationary with
respect to 	̂n and Ĝ−1

n . Therefore, it suffices to minimize only
with respect to the explicit dependence on � of the second and
last terms (via Ŵ ) in Eq. (2). Making use of the CPA Eq. (3),
we finally find a BCS-like gap equation:

� = −UT

4

∑
n

Tr(Ĝnγ
2). (4)

To summarize, the ultimate goal within CPA is to solve the
coupled set of Eqs. (3) and (4).

It turns out that the CPA equations can be solved by the
following ansatz for the self-energy:

	̂n = −i
nγ
0 + �nγ

z + �nγ
2 + inγ

1. (5)

Making use of the symmetries of the Green’s function de-
scribed in the Appendix, one can show that 
n,�n,�n,
and n are real functions of the Matsubara frequency. The
functions 
n and �n describe the spin-independent and the
spin-dependent components of the normal self-energy, re-
spectively. They can be shown to satisfy the relations 
n =
−
−n and �n = �−n. The functions �n and n describe
the anomalous self-energy of an s-wave superconductor. The
component �n corresponds to singlet pairing and it is even
in frequency, �n = �−n, whereas n corresponds to triplet
pairing and it is odd in frequency, n = −−n.

For future convenience, let us introduce the spin-resolved
renormalized Matsubara frequency ω̃σ

n = ωn + 
n + iσ (B +
�n) and the gap function �̃σ

n = �n + iσn, where σ = ±1,
as well as the auxiliary variables

xσ
n = �̃σ

n√(
ω̃σ

n

)2 + (
�̃σ

n

)2
, yσ

n = ω̃σ
n√(

ω̃σ
n

)2 + (
�̃σ

n

)2
.

Note that for both values of σ we have (xσ
n )2 + (yσ

n )2 = 1.
Also note that (ω̃σ

n )∗ = ω̃−σ
n and (�̃σ

n )∗ = �̃−σ
n , wherefrom

it follows that (xσ
n )∗ = x−σ

n and (yσ
n )∗ = y−σ

n .
In terms of the variables xσ

n and yσ
n , the local Green’s

function can be written as

Ĝn = πN0

2

∑
σ

[−iyσ
n (γ 0 + σγ z ) − xσ

n (γ 2 + σγ 1)
]
, (6)

where N0 is the normal-state density of states. Similarly, the
inverse local Green’s function reads

Ĝ−1
n = 1

2πN0

∑
σ

[
iyσ

n (γ 0 + σγ z ) − xσ
n (γ 2 + σγ 1)

]
. (7)
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Inserting Eqs. (5)–(7) into the CPA Eqs. (3) and making
use of the scattering potential Eq. (1), after averaging over
the fluctuating fields, we can compare the coefficients in front
of the four γ matrices on both sides of Eqs. (3). In this way,
we obtain four self-consistent equations for the four unknown
functions 
n,�n,�n, and n. The explicit form of these
equations is too cumbersome to be written down explicitly.

IV. RESULTS

A. Vanishing Zeeman coupling to external field

Let us start by considering the case B = 0, when the
external magnetic field vanishes. In this case, the ansatz for
the self-energy Eq. (5) can be simplified by taking �n = 0 and
n = 0. As a result, xσ

n = xn and yσ
n = yn become independent

of the spin projection σ and the components of Ĝn and Ĝ−1
n

proportional to γ z and γ 1 vanish.
After introducing the dimensionless fluctuating fields

μ = πN0U and �λ = πN0 �V , as well as the dimensionless
self-energies ϑn = πN0
n and δn = πN0(� − �n), the self-
consistent Eqs. (3) for the unknown functions 
n and �n can
be written as

xn = (xn + δn)K−
n , yn = (yn − ϑn)K+

n , (8)

where

K±
n =

〈
L±

n

(L−
n )2 + 4(yn − ϑn)2|�λ|2 − 4μ2|�λ|2

〉
and the angular brackets denote averaging with respect to the
fluctuating fields μ and �λ. Moreover, to simplify the formulas,
we have introduced

L±
n = (xn + δn)2 + (yn − ϑn)2 + μ2 ± |�λ|2.

Note that the energy scale � enters Eqs. (8) only as an
external parameter. In a fully self-consistent solution, this
scale has to be determined from Eq. (4). Obviously, this task
is much simpler when Eqs. (8) can be solved analytically.
However, for a general distribution of the fluctuating fields
μ and �λ, Eqs. (8) for the unknowns 
n and �n at a fixed
Matsubara frequency ωn can be solved only numerically.
Nevertheless, there do exist special cases when an analytical
solution is available and these cases will be treated in what
follows:

(i) No pair breaking. If the pair-breaking processes are
absent, i.e., in the case �V = 0 which corresponds to �λ =
0, one observes readily that K+

n = K−
n = Kn. Excluding Kn

from Eqs. (8) we find that ωn�̃n = ω̃n�. However, if we
remember that in terms of the wave-function renormalization
Zn, we can write ω̃n = Znωn and �̃n = Zn�n, then we find that
the energy-dependent gap function �n is not renormalized,
�n = �. Consequently, none of the thermodynamic proper-
ties of the superconductor is changed with respect to the BCS
prediction, including in particular the density of states. This is
of course consistent with the Anderson theorem [1].

(ii) Fluctuating magnetic field. Let us assume next that
the pair-breaking field �V as well as the potential field U
are nonvanishing. This case is similar to the one studied in
previous works on the Dynes superconductors [5,8], but it
goes beyond those studies by allowing for fluctuations not

FIG. 1. Schematic view of the disordered lattice. Blue dots: Ran-
dom pair-conserving field U . Orange arrows: Random pair-breaking
magnetic field �V .

only of the magnitude of the internal field �V , but also of
its direction, see Fig. 1. In other words, the present case
does not assume any anisotropy of the spin space, as has
been done in Refs. [5,8]. Nevertheless, remarkably, Dynes
superconductivity also arises in this case and the required
distribution function is very similar as before: All we have
to assume is that the distribution of the magnitude of the field
�V is Lorentzian:

P (| �V |) = 2

π

�

| �V |2 + �2
.

There exist three simple limiting realizations of this distribu-
tion: The internal fields may be either completely isotropic,
or confined to a plane (easy plane), or lying along a special
direction (easy axis). It is the last realization which has been
discussed in Refs. [5,8].

Once the magnitude of the field �V is Lorentzian distributed,
the analysis of Eqs. (8) becomes identical to that presented
earlier [5] and we recover the known results for Dynes super-
conductors,

ω̃n = (ωn + sn�)

(
1 + �s

�n

)
, �̃n = �

(
1 + �s

�n

)
, (9)

where sn = sgn(ωn) and �n =
√

(ωn + sn�)2 + �2. Note that
the self-energy depends on two scattering rates: the pair-
breaking rate � which is equal to the width of the Lorentzian
distribution P (| �V |), and the pair-conserving rate �s which
is determined by the distribution function of the potential
scatterers Ps(U ) [5]. Only the pair-breaking rate � enters the
density of states which is given by the Dynes formula:

N (ω) = N0Re

[
ω + i�√

(ω + i�)2 − �2

]
. (10)

B. Finite Zeeman coupling to external field

This case is considerably more difficult to solve, since all
four self-energies 
n, �n, �n, and n are nonvanishing. For
definiteness, we will assume that the external field lies along
the z direction. In what follows, we will consider two special
situations:

(i) No pair breaking. Let us assume that the potential
scattering U is finite, but the fluctuating magnetic field due to
impurities vanishes, �V = 0. In this case, Anderson’s theorem
applies and the density of states is a sum of BCS-like results
shifted by ±B.
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(ii) Dynes superconductors. In another and more interest-
ing analytically solvable case, we allow for a finite potential
scattering U and, simultaneously, for a finite fluctuating mag-
netic field V z due to impurities, polarized in the z direction. If
we assume that the distribution function of V z is Lorentzian
with width �, then a calculation which closely parallels that
in the B = 0 case leads to the following results for the self-
energy:

ω̃σ
n = (ωn + iσB + sn�)

(
1 + �s

�σ
n

)
,

(11)

�̃σ
n = �

(
1 + �s

�σ
n

)
,

where �σ
n =

√
(ωn + iσB + sn�)2 + �2. Note that these re-

sults represent a natural generalization of Eqs. (9) to the case
with a finite Zeeman coupling to an external field B. Since
both ω̃σ

n and �̃σ
n are complex valued, the self-energies �n

and n are finite. This means that the electrons experience
a renormalized magnetic field B̃n = B + �n and, at the same
time, an odd-frequency triplet pairing field is generated. Ex-
panding to first order in the external field B, we find that
�n, n ∝ �sB�. This means that the nontrivial self-energies
�n and n are finite only if all three components are present:
superconductivity (� 
= 0), Zeeman coupling to an external
field (B 
= 0), and pair-conserving scattering (�s 
= 0).

In what follows, we will briefly describe the physical prop-
erties of the state described by Eqs. (11). Let us start by noting
that the density of states is given by the spin-split version
of the Dynes formula Eq. (10), N (ω) → 1

2

∑
σ N (ω − σB).

It should be pointed out that this result differs from the classic
results obtained in the Born approximation [19–21] in that, in
the present case, any finite pair-breaking � completely fills the
gap, a point we will come to in more detail in the next Section.

The self-consistent Eq. (4) for �(T, B, �) which is implied
by Eqs. (11), takes the simple BCS-like form

� = 2gπT
�max∑
ωn>0

Re

[
�√

(ωn + iB + �)2 + �2

]
,

where g = N0U is the dimensionless coupling constant and
�max is the frequency cutoff. Making use of this result and
of Eqs. (11) in the free-energy functional Eq. (2), we find the
following expression for the condensation energy:

δF = −2N0πT
�Max∑
ωn>0

Re

[
[�+

n − (ωn + iB + �)]2

�+
n

]
.

The knowledge of δF allows us to construct the phase
diagrams in the T versus B plane. It is well known that
at low temperatures and high fields, the superconductor to
normal metal transition is of first order. The equilibrium
transition lines B = B(T ) determined by solving δF = 0 are
shown in Fig. 2. As was to be expected, the region where
superconductivity is stable shrinks with increasing �. Also
shown in Fig. 2 are regions of metastability of the normal
(� = 0) and superconducting (� 
= 0) states. Note that these
regions shrink with increasing the pair-breaking parameter
�, and for � > 0.355�00—where �00 is the gap parameter

FIG. 2. Phase diagrams in the T versus B plane for a BCS super-
conductor and a Dynes superconductor with � = 0.2�00. Regions
of metastability of the superconducting (S) and normal (N) phase are
also shown. Tc0 is the critical temperature of the BCS superconductor
in zero applied field.

for T = 0 and B = 0 of a system without pair breaking—the
superconductor to normal metal transition is of second order
down to the lowest temperatures.

V. AL FILMS IN PARALLEL FIELD

In what follows, the results of the previous section will
be compared with experimental data for thin superconducting
films in parallel magnetic fields, since in this case the orbital
coupling to the field can be neglected with respect to the much
more important Zeeman coupling to the field. In previous
theoretical work, the effect of magnetic impurities as well
as that of the spin-orbit scattering on the superconducting
properties has been treated in a comprehensive way within the
self-consistent Born approximation [19–21]. The main finding
of these papers is that, unless the pair-breaking effects are very
strong, the superconducting gap remains hard, i.e., the density
of states is strictly zero in a finite interval of energies around
the Fermi level.

The experimental study of spin splitting in superconductors
has a long history. In the classic work on Al films in parallel
magnetic fields [21], the authors argue that to fit the tunneling
data, it is sufficient to consider the scattering processes in
the Born approximation. However, the relatively large value
of the thermal smearing of the differential conductance at
the experimental temperature T = 400 mK of Ref. [21] does
not allow us to clearly discriminate between the hard gap
predicted by the Born approximation and the soft gap of a
Dynes superconductor.

On the other hand, the more recent set of experiments
on ultrathin Al films in parallel magnetic fields [13–15],
which has been carried out at much lower temperatures,
allows us to give a sharp answer to the question whether
the superconducting gap is hard or soft. To illustrate this
point, in Fig. 3 we show the tunneling conductance of a
normal metal-insulator-superconductor (NIS) junction with
a superconducting Al electrode in a parallel field B = 5 T
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FIG. 3. Tunneling conductance of an NIS junction with a su-
perconducting Al electrode in a parallel field B = 0.29 meV, which
corresponds to 5 T, at temperature T = 30 mK (blue line) [14]. The
red curve is a fit which takes the pair-breaking effects into account
within the Born approximation. The green curve is a fit using the
spin-split Dynes formula. Thermal smearing has been taken into
account in both fits. The fitting parameters are shown in the text.

at temperature T = 30 mK [14]. Two fits of the data are
presented in the same figure.

The first fit is based on the standard theory within the
Born approximation [19–21]. To achieve a good fit in the
superconducting peak region, we have taken � = 0.43 meV
and two pair-breaking scattering rates: magnetic scattering
rate �mag = 0.006 meV and spin-orbit scattering rate �s.o. =
0.015 meV. Note that we cannot simultaneously achieve a
good fit of both the filled gap and the sharp peaks within this
formalism.

The second fit makes use of the spin-split Dynes formula
Eq. (10). One observes that with just two fitting parameters,
� = 0.415 meV and � = 0.028 meV, the fit is of reasonable
quality in the whole measured range of energies. To summa-
rize, the analysis of NIS data leads us to conclude that the Al
samples can be described as Dynes superconductors.

Unfortunately, the agreement between theory and exper-
iment is spoiled by the data for superconductor-insulator-
superconductor (SIS) junctions in applied magnetic fields
[15]. In fact, if we assume that Al films in parallel fields
are Dynes superconductors, then, taking as usual the tun-
neling process to be spin conserving, the expected tunneling
conductance of the SIS junctions (for identical superconduc-
tors on both sides of the junction) is plotted in Fig. 4. As
can be seen there, in a Dynes superconductor one should
find dominant peaks at |ω| ≈ 2�, but also smaller features
at |ω| ≈ � ± B. As shown in the inset, these peaks arise
from transitions between states in the vicinity of the Fermi
level (where the density of states in a Dynes supercon-
ductor is finite) and states in the coherence peaks. These
processes are completely analogous to the processes which
generate the smaller absorption edge at ω ≈ � in the opti-
cal conductivity of Dynes superconductors (in zero external
field B) [7].

However, although the experimental tunneling conduc-
tance of the SIS junctions does exhibit small features within

FIG. 4. Low-temperature tunneling conductance of an SIS junc-
tion between two identical Dynes superconductors with pair-
breaking parameters � = 0.05� in external magnetic field B =
0.2�. Spin-conserving tunneling was assumed. The inset shows
processes which generate the subgap peaks at |ω| ≈ � ± B for spin-
up electrons. The shaded area denotes the occupied states below the
Fermi level (shown as vertical dashed line). Spin-down electrons
generate the same peaks.

the gap, these are not located at |ω| ≈ � ± B, as expected for
a Dynes superconductor, but rather at |ω| ≈ 2(� − B) [15].
Thus, the NIS data [13,14] and the SIS data [15] seem to
be mutually inconsistent. One possible way out is to assume
that the dominant pair-breaking mechanisms are different in
the NIS and SIS samples. This assumption should be, in
principle, falsifiable experimentally. However, if this possibil-
ity does not happen to be the case, then most likely a new
ingredient will have to be added to the analysis presented
here.

VI. CONCLUSIONS

In this paper, we have reformulated the theory of the Dynes
superconductors within the four-component Nambu-Gorkov
notation. Making use of this formalism, we have found the
following results:

(i) Recently it has been shown that the ubiquitous Dynes
formula, Eq. (10), describes the tunneling density of states in
systems with pair breaking modelled by a random internal
magnetic field with fluctuating magnitude, but fixed orien-
tation [5]. Here we have generalized this result by showing
that the field orientation may also fluctuate and the field
distribution may be completely isotropic.

(ii) The theory for Dynes superconductors has been gen-
eralized by including the Zeeman coupling to an external
magnetic field B. We have found that the combined presence
of the finite B field and of pair-conserving scattering causes
an admixture of an odd-frequency triplet component to the
order parameter. A closed-form formula for the condensation
energy in a finite B field has been found and phase diagrams
in the B-T plane were constructed; we have shown that the
region of first-order transitions between the normal and su-
perconducting states shrinks with increasing the pair-breaking
parameter �.
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(iii) There exists an alternative explanation of the ubiq-
uitous applicability of the Dynes formula Eq. (10) to the
tunneling data, according to which the presence of the param-
eter � in Eq. (10) is caused by inelasticity of the tunneling
process [22]. To unambiguously discriminate between this
explanation and the intrinsic mechanism based on the concept
of Dynes superconductivity [5], we propose to measure the
tunneling conductance G(ω) of SIS junctions formed by two
identical Dynes superconductors, for instance, break junc-
tions. As should be clear from Fig. 4, in such junctions G(ω)
should exhibit a subgap peak at |ω| ≈ � (in zero applied
field). On the other hand, no such peak is to be expected if
the mechanism of Ref. [22] is at work.

(iv) We have analyzed the tunneling experiments on ul-
trathin Al films in parallel magnetic fields, which have been
carried out at very low temperatures. We find that the NIS
data [13,14] imply that in-gap states should be present in Al,
whereas no such states are visible in the SIS data [15]. Further
experimental and theoretical work is needed to resolve this
discrepancy.
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APPENDIX: SYMMETRIES OF THE GREEN’S FUNCTION

Let us study the Fourier transform of a Green’s function
with fermionic operators A and B:

G(A, B, ωn) = −
∫ β

0
dτeiωnτ 〈TA(−iτ )B〉.

It is straightforward to prove the identities

G(B†, A†, ωn) = G(A, B,−ωn)∗,

G(B, A, ωn) = −G(A, B,−ωn).

These relations imply the following symmetries of the 4 × 4
Nambu-Gorkov Green’s function:

Ĝ∗
i j (ωn, k) = Ĝ ji(−ωn, k),

Ĝi j (ωn, k) = −Ĝ j̄ī(−ωn,−k),

where we have introduced the notations 1̄ = 3, 2̄ = 4, 3̄ = 1,
and 4̄ = 2.

In addition to these symmetries which are gener-
ally present, in an isotropic system we have Ĝ(ωn, k) =
Ĝ(ωn, |k|). Moreover, if we consider only the Zeeman cou-
pling and neglect the orbital coupling to an external magnetic
field B pointing along the z direction, we expect the following
symmetries:

Ĝ11(ωn, |k|, B) = Ĝ22(ωn, |k|,−B),

Ĝ33(ωn, |k|, B) = Ĝ44(ωn, |k|,−B).
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