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Topological spin configurations in proximity to a superconductor have recently attracted great interest due
to the potential application of the former in spintronics and also as another platform for realizing nontrivial
topological superconductors. Their application in these areas requires precise knowledge of the existing exchange
fields and/or the stray fields, which are therefore essential for the study of these systems. Here, we determine the
effective stray field Hstr and the Meissner currents jS in a superconductor/ferromagnet/superconductor (S/F/S)
junction produced by various nonhomogenous magnetic textures M(r) in the F. The inhomogeneity arises either
due to a periodic structure with flat domain walls (DW) or is caused by an isolated chiral magnetic skyrmion (Sk).
We consider both Bloch- and Néel-type Sk and also analyze in detail the periodic structures of different types
of DW’s, that is, Bloch-type DW (BDW) and Néel-type DW (NDW) of finite width with in- and out-of-plane
magnetization vector M(x). The spatial dependence of the fields Hstr (r) and Meissner currents jS(r) are shown to
be qualitatively different for the case of Bloch- and Néel-type magnetic textures. While the spatial distributions
in the upper and lower S are identical for Bloch-type Sk and DW’s they are asymmetric for the case of Néel-type
magnetic textures. The depairing factor, which determines the critical temperature Tc and which is related to the
vector potential of the stray field, can have its maximum at the center of a magnetic domain but also, as we show,
above the DW. For Sk’s, the maximum is located at a finite distance within the Sk radius rSk. Based on this,
we study the nucleation of superconductivity in the presence of DW’s. Because of the asymmetry for Néel-type
structures, the critical temperature Tc in the upper and lower S is expected to be different. The obtained results
can also be applied to S/F bilayers.
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I. INTRODUCTION

Over the past decades, continuous efforts have been made
to study superconductor-ferromagnet heterostructures due to a
variety of interesting features caused by the proximity effect,
i.e., the penetration of Cooper pairs from the superconductor
(S) into the ferromagnet (F). The most interesting and well es-
tablished effects are the sign reversal of the Josephson current
in S/F/S junctions and the appearance of a long-ranged triplet
component (see review articles [1–7] and references therein).

Other interesting features involve the interplay of various
types of topological defects that, under certain conditions, can
be present in the superconductor and/or ferromagnet. One of
these topological defects are the Abrikosov vortices which
occur in type-II superconductors [8] in the magnetic field
interval, Hc1 < Hext < Hc2. There are also several different
topological structures that can be found in ferromagnets. The
most prominent ones are magnetic domain walls (DW), where
the magnetization vector M rotates by an angle π across the
DW. Another example of a topological defect that has received
much attention recently due to its potential application in
spintronics are the so-called magnetic skyrmions (Sk) [9–12].
These local whirl-like structures are topologically equivalent
to two DW’s as one can map the inner part of the Sk on the
stripes between two domains via conformal transformation.
Similar to flat DW’s, where the magnetization vector M
changes its direction by rotating either in the (x, z) plane

(Néel type) or in the (y, z) plane (Bloch type), the winding
of chiral Sk can either have a Bloch- or a Néel-like structure.
Which type of chiral Sk is realized depends on the underlying
chiral interaction. Note that there is already some work on
the mutual interaction between topological defects occurring
in ferromagnets and superconductors, see review [13] and
references therein. In the absence of the direct proximity
effect (no direct contact between S and F), this interaction is
realized through the magnetic stray field Hstr generated by the
nonuniform magnetic textures in the F and the magnetic field
associated with the superconducting vortices. The creation
of Pearl and Abrikosov vortices in S/F structures with and
without DW’s has been analyzed in Refs. [13–17]. More
recently, the spontaneous creation of vortices in S/F structures
with Sk’s with and without direct proximity effect was also
studied theoretically [18–23]

As it is well known, there is no stray field Hstr outside
of uniformly magnetized infinite film [24]. However, within
the ferromagnet the magnetic induction B(F) or the magnetic
field H(F) can still acquire finite values, i.e., B(F) = 4πM0

and H(F) = 0 for the in-plane magnetization and B(F) = 0 and
H(F) = −4πM0 for the out-of-plane magnetization. Therefore
for a uniform magnetization M0 in the F of a S/F/S struc-
ture, both the B(S), the H(S) and the Meissner current jS are
equal zero in the superconductors where B(S) = H(S). Thus
nonzero stray fields and Meissner currents can only occur if
the magnetization of an infinite F is nonhomogeneous. This
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was studied in S/F structures with DW’s of zero width in
Refs. [17,25,26], for DW’s of finite width in Ref. [27] and for
a magnetic vortex configuration in Ref. [28]. In the presence
of a proximity effect and spin-orbit coupling, the Meissner
current was recently calculated in a bilayer S/F structure with
a particular Néel-type Sk in the F and a vortex in the S [19].

Despite of existing literature, there are still no systematic
studies of Meissner currents in S/F and S/F/S structures with
different topological magnetic textures (Sk’s or flat DW’s)
with different orientations of the magnetization vector M.
This is particular interesting due to potential realization of
Majorana fermions in such heterostructures [22,29,30]. In the
present paper, we address this topic, by analyzing S/F/S sys-
tems with an isolated magnetic Sk (Bloch- and Néel-type Sk)
or with a periodic flat DW structure (out-of-plane and in-plane
magnetization, Bloch and Néel DW’s) in the ferromagnetic
material.

Assuming that there is no proximity effect present and
that there are no Abrikosov vortices in the S/F/S structure,
i.e., magnetic stray fields are supposed to be less than the
critical field Hc1, we find the effective magnetic stray field
from which we deduce the induced screening currents jS. Note
that the obtained spatial distribution of the current density jS

in the S in a Josephson system S/F/S is qualitatively similar
to that in S/F bilayer. The knowledge of the effective stray
field Hstr and the current density jS allows one to estimate
the region where superconductivity nucleates upon decreasing
the temperature T below Tc: either at the DW’s or in the
center of the domains. Available experimental data point out
that the nucleation of superconductivity preferably occurs at
the DW’s [31]. However, it will be shown that the exact
location depends on the considered type of DW’s. In addition,
we show that new interesting and nontrivial features arise
in the system under consideration. For example, we find an
pronounced asymmetry in the z dependence of jS(z), which
occurs for both Néel DW’s and Néel-type magnetic Sk’s. This
asymmetry is characterized by the in-plane dependence r⊥ of
the Meissner current jS(r⊥) and stray field Hstr(r⊥), which
differs greatly above and below the ferromagnet and can even
result in a local sign change of the Meissner current. In the
absence of a superconductor, the asymmetry of the stray field
for DW’s is already known [32]. For instance, it was recently
demonstrated in experiments on artificial magnetic structures
[33]. The asymmetry arises due to a nonzero ∇ · M term
inside the ferromagnet. In the case of Bloch DW’s, such an
asymmetry does not appear, since ∇ · M term vanishes.

This difference between Bloch- or Néel-type DW’s and
Sk’s follows from the different orientation of the vector êrot

which describes the rotation axis of the magnetization M
along the domain wall. For instance, in the case of Bloch-
and Néel-type DW one can define a vector êN ≡ (êrot × êx ),
where êx is a unit vector normal to the plane of the DW. For
Néel-type DW’s this vector is nonzero, while for Bloch-type
DW’s the vector product is zero because the rotation vector
êrot is collinear to the vector êx. In the language of magnetic
monopoles, which can be used for magnetic stray fields, the
presence of êN translates into the existence of magnetic bulk
charges. In combination with the magnetic surface charges,
the stray field components of the bulk charges results in the
aforementioned asymmetry. In the case of a S/F bilayer it

generally makes no sense to speak about an asymmetry, but
the spatial distribution of the Meissner jS in the S still depends
on the direction of the vector êN with respect to the F film
(upward or downwards).

We will begin this paper by calculating a general expres-
sion for the effective magnetic stray field H(r) in an S/F/S
structure generated by a nonhomogeneous two-component
magnetization M, see Sec. II. From the stray field, we extract
an expression for the Meissner current in the two supercon-
ducting region, which is then applied to describe induced cur-
rents in the presence of isolated Néel- and Bloch-type Sk, see
Sec. III, as well as for various magnetic DW configurations,
see Sec. IV. In Sec. V, we use a Ginzburg-Landau model in
the absence of external currents to estimate the nucleation
of superconductivity in the presence of the DW structures,
we considered earlier. Note that the obtained results in this
sections are independent of the type of S, as we are working
with unscreened magnetic stray fields. The universal expres-
sions for these unscreened fields can be easily extracted from
our results in the previous section. We end this work with a
conclusion in Sec. VI.

II. STRAY FIELD AND MEISSNER CURRENT

We consider an S/F/S structure, that is, a ferromagnetic
film of thickness 2dF interfaced by two superconductors at z =
±dF. The magnetization M(r) inside the ferromagnet can be
written in the form

M(r) = M0n(r) (1)

where the unit vector n(r) is a function of the position vector
r = (r⊥, z) with r⊥ lying in the (x, y) plane. In the following
the magnetization is assumed to be independent of the z
coordinate.

We will now begin with determining the spatial distri-
bution of the screened stray field in the superconducting
regions. The superconducting order parameters (OP) are as-
sumed to be homogeneous. Any magnetic field H(S)(r) =
(H(S)

⊥ (r), H(S)
z (r)) inside the S must then satisfy the Lon-

don equation which we write for the Fourier component
H(S)(k, z) = ∫

dr⊥H(S)(r⊥, z)exp(−ik · r⊥)

∂2
zzH

(S)(k, z) − κ2H(S)(k, z) = 0, S regions (2)

where κ2 = |k|2 + λ−2
L and λL is the London penetration

depth. In the general case, the two superconductors may have
different London penetration depth λ+

L and λ−
L . The solution

of Eq. (2) is given by

H(S)(k, z) = C±(k)e−κ±|z|, S regions (3)

where the index ± of the constant C± = (C⊥
±, Cz

±) and κ±
indicates their values in the upper/lower superconducting
regions, respectively.

The stray field generated by the magnetization M inside
the F has to fulfill the magnetostatic condition ∇ × H(F) = 0
which allows us to define a magnetic scalar potential U with

H(F)(k, z) = −(ikU (k, z), ∂zU (k, z)). (4)

In the absence of the proximity effect (PE), the potential U is
related to the magnetization M via ∇ · H(F) = −4π∇ · M so
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that we can write

∂2
zzU (k, z) − |k|2U (k, z) = 4πM0ik · n⊥(k), F film.

(5)
Solving Eq. (5) for U (k, z), we obtain

U (k, z) = 4πM0

{
A(k) sinh(|k|z) + B(k) cosh(|k|z)

− ik · n⊥(k)

|k|2 + C0δ(k) + ik · Cr⊥

|k|2 δ(k)

}
(6)

with the Dirac δ function δ(k). The last two terms are con-
tributions to the homogeneous solutions of Eq. (5). In the
coordinate representation it has the form: C0 + C⊥r⊥ Note,
the constant C0 does not affect any physical quantity, so that
we can set C0 = 0. The constant C⊥ on the other hand, is
related to a noncompensated magnetic moment Mun in the
F which turns to zero for Mun = 0. Using Eq. (4) we can
determine the stray field H(F) in the F film

H(F)
⊥ (k, z) = − 4πM0ik

{
A(k) sinh(|k|z)

+ B(k) cosh(|k|z) − ik · n̄⊥(k)

|k|2
}
, (7)

H(F)
z (k, z) = − 4πM0|k|{A(k) cosh(|k|z) + B(k) sinh(|k|z)},

(8)

where we defined

n̄⊥(k) := (n⊥(k) − Cr⊥δ(k)). (9)

The constants A(k), B(k) and C±(k) can be found using the
matching conditions for the magnetic field and the magnetic

induction at the S/F interfaces. They are reduced to the
continuity of the tangential components of the in-plane field
H⊥(k, z) and the normal component of the magnetic induction
Bz(k, z) = Hz(k, z) + 4πM0nz(k), i.e.,

H(S)
⊥ (±dF) = H(F)

⊥ (±dF), (10)

H(S)
z (±dF) = H(F)

z (±dF) + 4πM0nz(k). (11)

In addition, the in-plane component of H(S) is coupled to the
normal component via the equation ∇ · H(S) = 0 so that

C⊥
±(k) = ∓ ik

|k|
κ±
|k|Cz

±(k). (12)

Using Eqs. (10)–(12), we can determine the coefficients A(k)
and B(k), which are given by

A(k) = nz(k)
κ+D−

2 (k) + κ−D+
2 (k)

|k|D(k)

+ n̄⊥(k)
ik
|k|

D−
2 (k) − D+

2 (k)

D(k)
, (13)

B(k) = nz(k)
κ+D−

1 (k) − κ−D+
1 (k)

|k|D(k)

+ n̄⊥(k)
ik
|k|

D−
1 (k) + D+

1 (k)

D(k)
(14)

with D(k) = D−
1 (k)D+

2 (k) + D+
1 (k)D−

2 (k), where

D±
1 (k) = |k| sinh(|k|dF) + κ± cosh(|k|dF), (15)

D±
2 (k) = |k| cosh(|k|dF) + κ± sinh(|k|dF). (16)

The coefficient C±(k) is given by

Cz
±(k) = −4πM0|k| sinh(|k|dF)eκ±dF

[
± ik

|k|
n̄⊥(k)

D(k)
({D−

1 (k) + D+
1 (k)} ± {κ− − κ+} cosh(|k|dF))

−nz(k)

D(k)
({D−

2 (k) + D+
2 (k)} ± {κ− − κ+} sinh(|k|dF))

]
. (17)

For the sake of simplicity, we will from now on consider
two identical superconducting materials, i.e., λ+

L = λ−
L . In this

case the expression for the coefficients can be reduced to

A(k) = κ

|k|
nz(k)

D1(k)
, B(k) = ik

|k|
n̄⊥(k)

D2(k)
, (18)

and

Cz
±(k) = −4πM0|k| sinh(|k|dF)eκdF

[
± ik

|k|
n̄⊥(k)

D2(k)
− nz(k)

D1(k)

]
.

(19)

With this we obtain the k-space representation of the screened
stray field in an S/F/S junction for two identical supercon-
ductors.

In the S region |z| > dF,

H̃(S)
⊥ (k, z) = κ sinh(|k|dF)

ik
|k|

[
ik
|k|

n̄⊥(k)

D2(k)
∓ nz(k)

D1(k)

]
e−κ|z∓dF|,

(20)

H̃(S)
z (k, z)=−|k| sinh(|k|dF)

[
± ik

|k|
n̄⊥(k)

D2(k)
− nz(k)

D1(k)

]
e−κ|z∓dF|.

(21)

In the F film |z| < dF,

H̃(F)
⊥ (k, z) = − ik

|k|
[

ik
|k| n̄⊥(k)

( |k| cosh(|k|z)

D2(k)
− 1

)

+ nz(k)κ sinh(|k|z)

D1(k)

]
, (22)

H̃(F)
z (k, z)=−

[
ik
|k|

n̄⊥(k)|k| sinh(|k|z)

D2(k)
+ nz(k)κ cosh(|k|z)

D1(k)

]
,

(23)

where we expressed the results in terms of a dimensionless
field H̃ = H/4πM0.

The obtained expressions describe the screened stray field
in an S/F/S structure. By taking λL → ∞, i.e., κ → k, we
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can also extract the unscreened stray field which would be
present in the absence of superconductors. In this limit, the
result describes the general distribution of the stray field cre-
ated by a nonhomogeneous magnetization in a F in vacuum.
The associated vector potential is later used to estimate the
nucleation of superconductivity. The origin of the screening
field that leads to the effective stray field in Eqs. (22) and (23),
are the induced supercurrents inside the S. The supercurrent
(Meissner current) jS can be determined using Ampère’s law
∇ × H = 4π

c jS.

jS(r⊥, z) = c

4π
[(∇r⊥ + êz∂z ) × (H⊥(r⊥, z) + êzHz(r⊥, z))].

(24)

In the Fourier representation, we further obtain

jS(k, z) = c

4π
[(ik + êz∂z ) × (H⊥(k, z) + êzHz(k, z))].

(25)

It can easily be shown, that the supercurrent disappears within
the F, which is the expected result when the PE is absent.
Outside the ferromagnet |z| > dF, we obtain the following
expression:

jS(k, z) = cM0λ
−2
L

|k|
(

êz × ik
|k|

)
H̃(S)

z (k, z) (26)

from which we can directly derive the vector potential A in
the superconductor using jS = −cλ−2

L A(S)/4π

A(S)(k, z) = −4πM0

|k|
(

êz × ik
|k|

)
H̃(S)

z (k, z). (27)

III. ISOLATED SKYRMION

In this section, we will set the magnetization profile M to
describe an isolated magnetic skyrmion (Sk) in a ferromag-
netic background. It is assumed that the Sk’s are stabilized by
an underlying chiral interaction resulting in either Bloch- or
Néel-type Sk’s. The magnetization profile has a cylindrical
symmetry and varies along the radial direction ρ so that
r⊥ = ρ. The unit vector n of a chiral Bloch or Néel Sk can
then be written as

n⊥(ρ) = ρ

ρ
sin(θ (ρ))	(rSk − ρ), Néel Sk, (28)

n⊥(ρ) = êz × ρ

ρ
sin(θ (ρ))	(rSk − ρ), Bloch Sk, (29)

for the in-plane component and

nz(ρ)=[1 + cos(θ (ρ))]	(rSk − ρ) − 1, Bloch and Néel Sk
(30)

for the out-of-plane component. Here, θ (ρ) describes the
angular variation of the magnetization with respect to the z
axis and 	(rSk − ρ) is a Heaviside step function with rSk

being the skyrmion radius. The Fourier components of n(ρ)
are equal to

n⊥(k) = − 2π
ik
k

m⊥(k), Néel Sk, (31)

n⊥(k) = − 2π
êz × k

k
m⊥(k), Bloch Sk, (32)

and

nz(k) = 2π [mz(k) − 2πδ(k)], Bloch and Néel Sk. (33)

The functions m⊥(k) and mz(k) are defined as

m⊥(k) =
∫ rSk

0
dρρJ1(kρ) sin(θ (ρ)), (34)

mz(k) =
∫ rSk

0
dρρJ0(kρ)[1 + cos(θ (ρ))], (35)

where Jn(x) is the Bessel-function of the first kind of order n.
The angular dependence of the Sk profile θ (ρ), is described
using a circular 360◦-domain wall ansatz [34].

θ (ρ) =
∑
±

arcsin

[
tanh

(
−ρ ∓ c

w/2

)]
(36)

with c being the size of the domain core and w is the
domain wall width. For the remainder of this work, we set
c = 0 nm. Using Eq. (36), one can estimate the radius rSk

of the Sk. It should be noted that the expressions in this
section can be used for any radially symmetric magnetization
profile.

Using the obtained result from the previous section, we
will begin analyzing the effective stray field generated by a Sk
in our S/F/S structure in the case of two identical supercon-
ductors. Afterwards we will determine the corresponding in-
duced Meissner currents. Taking into account that for a Bloch
Sk n⊥ ∝ (êz × k) [see Eq. (29)], we see that the first term
in Eqs. (20)–(23) vanishes. This means that the individual
components of the stray field are either symmetric Hz(z) =
Hz(−z) or antisymmetric functions H⊥(z) = −H⊥(−z) of z.
On the other hand, the in-plane magnetization of a Néel Sk
n⊥ ∝ k. Hence, in this case H(z) 
= H(−z) which describes
an asymmetry of the magnetic stray field. This asymmetry is
a typical feature of stray fields generated by magnetic textures
with Néel-like magnetization [32,33].

In order to fully determine the magnetic stray field and
the Meissner current, we first need to specify the value of
the constant Cr⊥ . Using the condition that the spatial average
of the in-plane component of the stray field vanishes, i.e.,∫

drH⊥(ρ, z) = 0, we get an additional equation for Cr⊥ .
For the case of an isolated Sk this constant is equal to zero
Cr⊥ = 0. The real-space representation of the screened stray
field in Eqs. (20)–(23) can now be easily expressed as

In the S region |z| > dF,

H̃(S)
⊥ (ρ, z) = −ρ

ρ

∫ ∞

0
dkkJ1(kρ)κ sinh(kdF)

×
[

m̄⊥(k)

D2(k)
∓ mz(k)

D1(k)

]
e−κ|z∓dF|, (37)

H̃ (S)
z (ρ, z) = −

∫ ∞

0
dkkJ0(kρ)k sinh(kdF)

×
[
± m̄⊥(k)

D2(k)
− mz(k)

D1(k)

]
e−κ|z∓dF|. (38)
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(a)

(b)

(c)

(d)

FIG. 1. Radial plots of the normalized Meissner current j̃S = jS/cM0λ
−2
S w generated by the stray field of a Néel Sk, shown in the inset

of (b), in the (a) upper and (b) lower superconducting regions for λL = w and dF = 10w. The arrows in the corresponding 2D plots (c) and
(d) indicate the direction of the circular screening current. The color map is normalized with respect to the maximal value of jS in the upper
(c) and lower (d) superconductors, respectively. The asymmetry of the stray fields in the upper and lower superconductors leads to a sign
change of the Meissner current in the upper S above the Sk region.

In the F film |z| < dF,

H̃(F)
⊥ (ρ, z) = ρ

ρ

∫ ∞

0
dkkJ1(kρ)

×
[

m̄⊥(k)

(
k cosh(kz)

D2(k)
−1

)
+mz(k)

κ sinh(kz)

D1(k)

]
,

(39)

H̃ (F)
z (ρ, z) = −

∫ ∞

0
dkkJ0(kρ)

×
[

m̄⊥(k)
k sinh(kz)

D2(k)
+ mz(k)

κ cosh(kz)

D1(k)

]
+ 1

2
,

(40)

where we inserted the magnetization profile Eqs. (28)–(30)
and defined

m̄⊥(k) =
{

m⊥(k) Néel Sk

0 Bloch Sk
. (41)

Analogously, the Meissner current can be found using
Eq. (26), which has the following form in real-space

jS(ρ, z) = cM0λ
−2
L

∫ ∞

0
dkkJ1(kρ) sinh(kdF)

×
[
± m̄⊥(k)

D2(k)
− mz(k)

D1(k)

]
e−κ|z∓dF|êϕ. (42)

The stray field induces circulating supercurrents pointing in
êϕ direction. Since the supercurrent is linked to the stray field,
the Meissner current also features the asymmetry which is
related to the magnetization profile of the Néel Sk. Using
Eq. (42), this asymmetry can be identified by the changing
sign in the term associated with the in-plane contribution of
the magnetization. In Fig. 1, we show the spatial dependence
of the Meissner current jS(ρ,±dF) in the upper (a) and (c)
and the lower (b) and (d) superconductors in the presence
of a Néel-type Sk in the ferromagnetic material. The curves
are displayed for the parameters λF = w and dF = 10w. As
expected, we observe a strong asymmetry in the dependence
jS(ρ, dF) and jS(ρ,−dF) in the upper and lower supercon-
ductors. The current jS(ρ, dF) in the upper S changes sign
at some finite distance within the Sk region whereas the
current jS(ρ,−dF) remains negative for all ρ. Note that the
sign reversal of the Meissner current in S/F systems has
been found earlier [35–37], but its underlying mechanism was
different as it was related to the proximity effect. In the case
of Bloch Sk, all the mentioned features are missing and the
Meissner current in both superconducting regions is the same,
see Fig. 2.

IV. FLAT DOMAIN WALLS

In this section, we consider the magnetization profiles of
several different periodic flat DW’s, as illustrated in Fig. 3.
The alignment of magnetization changes across the DW’s as
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(a) (b)

FIG. 2. (a) Radial plots of the normalized Meissner current j̃S = jS/cM0λ
−2
S w generated by the stray field of a Bloch Sk (shown in the

inset) for λL = w and dF = 10w. (b) 2D plot of the Meissner current with arrows indicating the direction of the circular screening current. The
color map is normalized with respect to the maximal value of jS. The current is identical for both superconducting regions.

a function of the x coordinate, i.e., r⊥ = xêx with êx being the
corresponding unit-vector. The period of the structures is 2L0.
This enables us to expand all function as a Fourier series: For
example, the vector n(x, z) is represented as

n(x, z) =
∞∑

n=−∞
n(kn, z) exp(iknx) (43)

with

n(kn, z) = 1

2L0

∫ L0

−L0

dxn(x, z) exp(−iknx), (44)

where kn = πn/L0. Below we drop the subindex n for brevity.
Now suppose that the vector n(x) depends only on the x

coordinate, i.e., it is completely described by its x component
k = (k, 0). In this case, the expression for the normalized
magnetic stray field (H̃x(k, z), 0, H̃z(k, z)) and the Meissner
current jS can be obtained in the same manner as in Sec. II.
For instance, for two identical S, we obtain the magnetic
stray field H(S)(k, z) by substituting n⊥(k) → (nx(k), 0) and
Cr⊥ → (Cx, 0) in Eqs. (20) and (21). For periodic DW’s, one
further needs to replace δ(k) → sin(kL0)/kL0, which follows
from the finite range of integration in Eq. (44). Finally, the

FIG. 3. Schematic picture of the S/F/S structure with DW’s
under consideration. Arrows describe the magnetization vectors M
in the domains with orientation chosen along the z axis. The gray
color indicate the domain-wall regions.

normalized field components in the superconducting regions
|z| > dF are

H̃ (S)
x (k, z) = − κ sinh(|k|dF)

[
n̄x(k)

D2(k)
± ik

|k|
nz(k)

D1(k)

]
e−κ|z∓dF|,

(45)

H̃ (S)
z (k, z)=−|k| sinh(|k|dF)

[
± ik

|k|
n̄x(k)

D2(k)
− nz(k)

D1(k)

]
e−κ|z∓dF|

(46)

with

n̄x(k) := nx(k) − Cx
sin(kL0)

kL0
, (47)

and analogously within the ferromagnet |z| < dF,

H̃ (F)
x (k, z)

=
[

n̄x(k)

( |k| cosh(|k|z)

D2(k)
− 1

)
− ik

|k|
nz(k)κ sinh(|k|z)

D1(k)

]
,

(48)

H̃ (F)
z (k, z)=−

[
ik

|k|
n̄x(k)|k| sinh(|k|z)

D2(k)
+ nz(k)κ cosh(|k|z)

D1(k)

]
.

(49)

The Meissner current can be extracted from Eq. (26). The
supercurrent flows in y direction jS(k, z) = (0, jS(k, z), 0) and
has the magnitude

jS(k, z)= cM0λ
−2
L sinh(|k|dF)

[
± n̄x(k)

D2(k)
+ ik

|k|
nz(k)

D1(k)

]
e−κ|z∓dF|,

(50)

where once again the ± indicates the solution in the upper
or lower S region, respectively. The current in coordinate
representation j(x, z) can be calculated using

j(x, z) =
∑

k

j(k, z) exp(ikx). (51)

Having determined the expressions for Hstr and jS for an
arbitrary type of DW, we need to specify the precise magnetic
texture. Its components can be expressed in terms of the
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FIG. 4. Schematic representation of a single period of different periodic flat domain wall textures of Néel-type (NDW) and Bloch-type
(BDW). The magnetization continuously changes from the domain in the center (blue arrow) to the outer domains (red arrows) via the domain
walls (green arrows). The superscripts indicate the orientation of the magnetization across the domain. For orientations along the x direction,
there are two possible NDW configuration described by the subscripts y and z. These subscripts describe the axis over which the magnetization
changes along the DW.

function neven and nodd, which are characterized by an even
or odd dependency on x or k. Since we are interested in a
qualitative spatial dependence of all quantities (the fields and
the Meisner currents), we approximate neven,odd by

nodd(x) = cos

(
π

2

(x − L)

w

)
θ (w − |x − L|)

− cos

(
π

2

(x + L)

w

)
θ (w − |x + L|), (52)

neven(x) =
[

1 − sin

(
π

2

(x − L)

w

)]
θ (w − |x − L|)

+
[

1 + sin

(
π

2

(x + L)

w

)]
θ (w − |x + L|)

+ 2θ (L − w − |x|) − 1 (53)

with the domain wall width 2w and the size of the domain
2(L − w). That is, we assume that the rotation angle of the
vector n outside the DW’s (|x ∓ L| > w) remains constant
whereas it changes linearly inside the DW’s (|x ∓ L| < w).
This approximation allows us to present results in a simple an-
alytical form. Outside the interval |x| < L0, n(x) is a periodic
function of x: n(x) = n(x + 2L0). The Fourier components of
nodd(x) and neven(x) are equal to

nodd(k) = 2π iw

2L0

cos(kw) sin(kL)

k2w2 − (π/2)2
= 2π iw

2L0
f (k), (54)

neven(k) = π2

2L0k

cos(kw) sin(kL)

k2w2 − (π/2)2
− 2 sin(kL0)

2L0k
= 2πw

2L0
F (k)

(55)

with

f (k) = cos(kw) sin(kL)

k2w2 − (π/2)2
, (56)

F (k) = π

2kw
f (k) − sin(kL0)

πkw
. (57)

Obviously, f (k) is also an odd function, whereas F (k) is an
even function of k. It should be noted that the limiting case of
the DW width w = 0 was analyzed in Refs. [17,25,26,38].

In our model, the vector n has two nonzero components
that allow the construction of six different magnetic textures
(see Fig. 4). They are characterized by vectors n with
the following components: (0, neven, nodd ), (0, nodd, neven ),
(neven, 0, nodd ), (nodd, 0, neven ) and (neven, nodd, 0),
(nodd, neven, 0). Note that we are working with the underlying
assumption of fixed chirality, i.e., the vector n rotates in the
same direction within the DW’s, which is either clockwise
or counter-clockwise. Another chirality may be obtained
if the rotation of the vector n in adjacent DW’s occurs in
different directions; then the function nodd should be replaced
by nodd ⇒ ñeven, where ñeven is equal to

ñeven(x) = cos

(
π

2

(x − L)

w

)
θ (w − |x − L|)

+ cos

(
π

2

(x + L)

w

)
θ (w − |x + L|), (58)

ñeven(q) = − 2πw

2L0

cos(kw) cos(kL)

k2w2 − (π/2)2
. (59)

In order to obtain our final result for the magnetic stray
field and the Meissner current from Eqs. (45)–(50), we need
to determine the constant Cx. As mentioned in Sec. II, the
average over the in-plane component H (F)

x has to vanish, i.e.,
〈H (F)

x (x, z)〉 = 0. From this follows:

〈
H (F)

x (x, z)
〉 = 1

2L0

∫ L0

−L0

dx
1

2dF

∫ dF

−dF

dzH (F)
x (x, z) (60)

=4πM0λ
−1
L dF

1 + λ−1
L dF

[nx(k = 0) − Cx]
!= 0, (61)

where we used
∫ L0

−L0
dxH (F)

x (x, z) = 2L0H (F)
x (k = 0, z).

Hence, the constant Cx is given by

Cx = nx(k = 0, z). (62)
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(a) (b)

FIG. 5. (a) Spatial dependence of the normalized Meissner current j̃S = 2L0 jS/(4πM0cw2λ−2
L ) for a periodic NDW(z) for L0 = 11w,

L = (11/2)w, λL = w, and dF = 0.2w. The structure of a single period 2L0 of the NDW(z) is shown in the insets. The currents flow mainly
above/below the DW regions, which are indicated by the green areas in the figure. The currents above and below the superconductor show a
strong asymmetric behavior. (b) Meissner current for the same configuration but with λL = (1/3)w. In this case, the asymmetry can even lead
to sign changes across the domain.

The quantity nx(k = 0, z) can be either neven(k = 0, z) or
nodd(k = 0, z). In the latter case, nx(k = 0, z) = 0 [see
Eqs. (54) and (56)] and therefore Cx = 0. The other case is
only realized for certain Néel-type DW’s and results in

Cx = 2L

L0
− 1, (63)

i.e., the constant Cx vanishes for L0 = 2L. Otherwise, if L0 
=
2L, the domains with positive and negative magnetization
differ in size, which leads to an uncompensated total mag-
netization Mun and Cx 
= 0. We will now examine the various
possible magnetic textures that exhibit a chirality as defined
in Eq. (52). Note that the type of DW in a ferromagnetic
sample is determined by the existing magnetic interaction and
material specific parameters (temperature, thickness of the F
film, etc.). Accordingly, the actual magnetic texture in the F
corresponds to the configuration associated with the minimum
of the thermodynamic potential. Nevertheless, we will find the
spatial distribution of the Meissner currents for all possible
configurations, bearing in mind that some of these textures
might not be energetically favorable, but could be achieved in
artificial magnetic structures [33].

A. Out-of-plane n (Néel and Bloch DW’s)

For an out-of-plane magnetization, both Néel and/or Bloch
DW’s [see Figs. 4(a) and 4(b)] can exist within the F. The Néel
DW (NDW(z)) is described by the following configuration
n(x):

n(x) = (nodd, 0, neven ), NDW(z). (64)

The superscript (z) indicates the alignment of the vector
n(x) across the domains, which is oriented along the z axis.
The Meissner current at the interfaces z = ±dF is obtain by
inserting the corresponding Fourier components in Eq. (50).

jS(k,±dF) = cM0λ
−2
L sinh(|k|dF)

2π iw

2L0

×
[
± f (k)

D2(k)
+ sgn(k)F (k)

D1(k)

]
, (65)

where f (k) and F (k) are given in Eqs. (56), (57). One can
easily see that the current is an odd function of k. In the
coordinate representation, we obtain the following result:

jS(x,±dF) = −4πM0cwλ−2
L

2L0

∞∑
k=0

sin(kx) sinh(kdF)

×
[
± f (k)

D2(k)
+ F (k)

D1(k)

]
. (66)

In Fig. 5(a), we plot the dependence of the normal-
ized current j̃S = 2L0 jS/(4πM0cw2λ−2

L ) for L0 = 11w, L =
(11/2)w, λL = w and dF = 0.2w. This plot shows a strong
asymmetry between the upper and lower superconductors
with currents flowing above/below the DW regions. The di-
rection of the supercurrent depends on the direction of rotation
of the DW. Varying the value for the London penetration
depth λL = (1/3)w reveals a sign change for the supercurrent
within DW’s in the lower supercurrent [see Fig. 5(b)]. One
can see that the Meissner currents at different DW’s flow in
opposite directions. This means that the currents flow along
closed loops. Unlike the case of Abrikosov vortices, there
is no phase change along these loops. This sign change is
similar to the behavior described for the Néel Sk’s. As in the
case of the Sk, the asymmetry follows from the nonvanishing
∇ · M term inside the FM, which means that both the bulk
and the surface magnetic charges are present. Note that in the
zero-width domain wall limit, the nx component vanishes, i.e.,
∇ · M = 0. As a result the asymmetry would disappear.

In the case of a Bloch DW (BDW(z)), the vector n(x) has
the components

n(x) = (0, nodd, neven ), BDW(z), (67)

where the magnetization in the domain is once again oriented
along the z direction. The Meissner current in Fourier repre-
sentation is given by

jS(k,±dF) = cM0λ
−2
L sinh(|k|dF)

2π iw

2L0

sgn(k)F (k)

D1(k)
(68)
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(a) (b) (c)

(d) (e) (f)

FIG. 6. Spatial dependence of the normalized Meissner current j̃S = 2L0 jS/(4πM0cw2λ−2
L ) for L0 = 11w, L = (11/2)w, λL = w, and

dF = 0.2w. The figures describe different periodic magnetic textures (see insets for the depiction of a single period 2L0: (a) NDW(z), (b)
BDW(z), (c) NDW(x)

y , (d) NDW(y), (e) BDW(y), and (f) NDW(x)
z ). The magnetization continuously changes via the DW’s, which are indicated

by the green areas. Depending on the underlying magnetization, screening currents preferably flow either above/below the DW [(a), (b),
(d) and (e)] or above/below the domain [(c) and (f)]. Their general distribution is unique for every DW structure. In the presence of Bloch-like
magnetic textures [(b) and (e)], the Meissner current in the upper and lower superconductors are identical. This is not the case for Neel-like
structures, since they exhibit either antisymmetric [(c) and (d)] or even asymmetrical behavior [(a) and (f)].

and in the coordinate representation by

jS(x,±dF) = −4πM0cwλ−2
L

2L0

∞∑
k=0

sin(kx) sinh(kdF)
F (k)

D1(k)

(69)

One can directly deduce that the resulting Meissner currents
are identical in the upper and lower superconductors, which is
due to the missing x component of the magnetization. This
is once again, similar to the Sk case, as there was also no
asymmetry present for Bloch Sk’s. For both NDW(z) and
BDW(z) follows that jS(x, z) is an odd function of x so that the
total current Jav = ∫

dx jS(x,±dF) vanishes. In Fig. 6(b), we
plot the dependence of the Meissner current for the considered
case of a BDW(z). The parameter are the same as in Fig. 5.

B. In-plane n (Néel and Bloch DW’s)

Let us first consider a Néel-type DW where the magne-
tization vector n(x) at the domains is oriented along the y
direction [see Fig. 4(d)], then

n(x) = (nodd, neven, 0), NDW(y). (70)

The Fourier component of the Meissner current is equal to

jS(k,±dF) = ±cM0λ
−2
L sinh(|k|dF)

2π iw

2L0

f (k)

D2(k)
(71)

and in the coordinate representation

jS(x,±dF) = ∓4πM0cwλ−2
L

2L0

∞∑
k=0

sin(kx) sinh(kdF)
f (k)

D2(k)
.

(72)

The functions jS(x, dF) and jS(x,−dF) are shown in Fig. 6(d).
Once again the currents differ in the two superconducting

regions. The magnitude of the currents is the same, but the
currents flow in opposite direction, resulting in an antisym-
metric behavior.

The Bloch type DW [see Fig. 4(e)] is described by

n(x) = (0, neven, nodd ), BDW(y). (73)

The occurring currents jS(x, z) for BDW(y) are even function
of x given by

jS(x,±dF) = −4πM0cwλ−2
L

2L0

∞∑
k=0

cos(kx) sinh(kdF)
f (k)

D1(k)
.

(74)

For both z = ±dF the currents are equal. In Fig. 6(e), we plot
the x dependence of the functions jS(x, dF) and jS(x,−dF).
The Meissner currents in the upper and lower S near the
BDW flow in the same direction. The total current jav is zero.
The results for jS(x, z) for the BDW(y) are similiar to those
obtained by Burmistrov and Chtchelkatchev [27].

C. Other types of NDW

Other types of NDW’s correspond to a magnetization
profile n(x) in which the alignment in the domain is along
the x direction [see Figs. 4(c) and 4(f)]. The rotation of the
vector n(x) occurs either in the (x, z) plane or in the (x, y)
plane. Thus the vector n(x) has the components

n(x) = (neven, nodd, 0), NDW(x)
y , (75)

n(x) = (neven, 0, nodd ), NDW(x)
z . (76)
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Remember, that for the case nx(x) = neven(x) the constant Cx

has a finite value given by Cx = 2L/L0 − 1. It follows that

n̄x(k) = neven(x) − Cx
sin(kL0)

kL0
= 2πw

2L0
F̄ (k) (77)

with

F̄ (k) = π

2kw
f (k) − 2L

L0

sin(kL0)

πkw
. (78)

With this expression, we obtain the Meissner current

j1
S(x,±dF) = ± 4πM0cwλ−2

L

2L0

∞∑
k=0

cos(kx) sinh(kdF)
F̄ (k)

D2(k)
,

(79)

j2
S(x,±dF) = 4πM0cwλ−2

L

2L0

∞∑
k=0

cos(kx) sinh(kdF

×
[
± F̄ (k)

D2(k)
− f (k)

D1(k)

]
. (80)

We continue to consider a compensated magnetization
where L0 = 2L so that F̄ (k) = F (k).

Once again, we find the typical asymmetry associated with
Néel-type magnetic textures. The plots for the two magnetiza-
tion NDW(x)

y and NDW(x)
z can be found in Figs. 6(c) and 6(f),

respectively.

V. NUCLEATION OF SUPERCONDUCTIVITY

In this section, we analyze qualitatively the nucleation of
superconductivity in S films in an S/F/S structure when the
temperature drops below the critical value in a bulk super-
conductor TcB. The value of the critical temperature Tc differs
from its bulk value in the presence of a local depairing factor
V (r⊥). This problem was analyzed in the case of ferromag-
netic superconductors with DW’s both theoretically [39–42]
and experimentally [40,41,43,44]. Results of intensive studies
of hybrid S/F structures are summarized in a review [45].
Theoretical studies were carried out under approximation of
zero DW width. In particular the authors of Ref. [42] have
studied the so-called diode effect, that is an asymmetrical
dependence of the critical current jcr in the S film with respect
to the “magnetic current” jM = ∇ × M. Near the critical tem-
perature at which superconductivity nucleates or disappears,
the Ginzburg-Landau equation for the order parameter (OP)
ψ can be linearized. In the studies [40–42,46], the OP ψ

is presented in the form ψ = f exp(iχ ), where in a one-
dimensional case the phase of the OP is χ = kx. However,
in a single-connected superconductor and in the absence of
vortices, one can choose a gauge with χ = 0. On the other
hand, if we consider our system in the form of a ring (annular
geometry) with x = rϕ, then the phase is χ = nϕ, where ϕ is
the azimuthal angle, n is an integer number of fluxons and
R is the radius of the ring. Even in this case, the gauge is
not established in a unique way: one can add in principle
an arbitrary constant Aext to the vector potential A without
changing the observable quantity, the magnetic induction B =
∇ × A. From the physical point of view, adding a constant
Aext means adding a uniform external or spontaneous (in the
annular setup) current. Observe that calculating the spatial
dependence A(r⊥), we assumed, unlike previous theoretical

studies, that Aext = 0. This means that the total current in the
system vanishes 〈 jS(r⊥)〉 = −(c/4π )〈A(r⊥)〉 = 0.

Thus, assuming Aext = 0, we consider the Ginzburg-
Landau equations for the order parameter f (see, for example,
Ref. [41]) near Tc.

−dS∇2
r⊥ f + V (r⊥) f − E f = −E f 3, (81)

where V (r⊥) = dS(2π{A0(r⊥) − Aext}/
0)2. Here A0(r⊥) is
not a gauge invariant quantity, so any observable quantity
like the magnetic induction B = ∇ × A will not change by
adding a constant Aext. However, in doing so it is necessary
to analyze the excitation mechanism of the persistent current
and to estimate the condensation energy ES = �2N (0)V in
comparison to the magnetic energy FI = I2

extL/c2 of the cur-
rent Iext, where N (0) is the density-of-states in the normal
state, V = 2πR(2S)Lx is the volume of the superconductors
and L is the inductance of the superconducting ring. The
ratio γ of these two energies depends on various parameters
of the system such as the London penetration depth λL and
the DW width w and may be both smaller or larger than 1.
Thus the excitation of the current Iext may not be necessarily
energetically favorable. In addition, for a single-connected
superconducting system, the problem should be then solved
under the condition of the absence of the total current in
a finite S/F/S structure disconnected from external circuits.
Our solution with Aext = 0 would immediately satisfy these
constrains. A more detailed analysis of the problem for a finite
current Iext should be left for future studies.

The vector potential A0 defines the stray field in absence
of superconductivity, which can be extracted from Eq. (27) by
taking the limit λL → ∞.

A0(k, z) = 4πM0

|k| sinh(|k|dF)

(
êz × ik

|k|
)

×
[
± ik

|k|n⊥(k) − nz(k)

]
e−|k||z|. (82)

For simplicity, we assume that the thickness of the S films
dS is smaller than ξS, so that the order parameter (OP) f
depends only on the in-plane coordinates. At larger dS, the
factor V (r⊥, z) depends on the coordinate z and the effect of
this depairing factor on the nucleation of superconductivity
becomes weaker. Equation (81) is called the time-independent
Gross-Pitaevskii [47,48] equation or nonlinear Schrödinger
equation. The “energy” E is related to the coherence length
ξS(T ) = ξS0/

√
1 − T/TcB, E = dS/ξ

2
S . This equation is also

used to analyze the nucleation of superconductivity near the
critical magnetic field Hc2 (see Abrikosov’s book [49] and
[50]) and also near DW in a S/F system [41]. Note also
Ref. [51], where this equation is applied for studying the
appearance of an OP in a system with two competing OPs.

In the following, we will focus on DW structures where in
Eq. (81) ∇r⊥ → (∂x, 0). In this case the real space expression
for the vector potential at the interface z = ±dF is given by

A0(x,±dF) = −4πM0

∑
k

sinh(|k|dF)

|k| eikx

×
[
±nx(k) + ik

|k|nz(k)

]
êy. (83)
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Spatial dependence of the normalized depairing potential Ṽ (x) = dSV (x)(2L0
0/8π 2M0w
2)2 for L0 = 11w, L = (11/2)w, and

dF = 0.2w. The figures describe different periodic magnetic textures (see insets for the depiction of a single period 2L0: (a) NDW(z), (b)
BDW(z), (c) NDW(x)

y , (d) NDW(y), (e) BDW(y), and (f) NDW(x)
z ), where the magnetization continuously changes across the green areas

indicating the DW regions. The minima of the potential are either at the DW’s [(c), (e), and (f)] or in the center of the domain [(a), (b) and (d)]
and correspond to the regions where superconductivity nucleates first. In contrast to the Meissner current (see Fig. 6), there is no antisymmetric
behavior for NDW(x)

y (c) and NDW(y) (d), so that the potential in the upper and lower superconductor is the same. In the case of NDW(z) (a) and
NDW(x)

y (f), however, the potential remains asymmetric, which should lead to different critical temperatures in the superconductors.

The associated depairing potential V (x) ∝ A2
0(x) is shown

in Fig. 7 for the different magnetization configurations.
The potential V (x) has minima located either at the DW’s
(x = (2n + 1)L, n = 0,±1, . . . ) or in the center of the do-
mains (x = 2nL, n = 0,±1, . . . ). The critical temperature
Tc is determined by the condition Emin = dS/ξ

2
S (Tc), where

Emin is the minimal “energy” at which Eq. (81) has a nontrivial
solution. We assume that the domain size 2L is much larger
than the width of the DW 2w. In the following we consider
two possible cases.

A. V (x) has a minimum at the DW

Consider first the case when the potential V (x) has a sharp
minimum at the DW, for example, at x̃ = 0 where x̃ = x − L.
Since we are interested in a qualitative picture, we approxi-
mate the dependence V (x) near the DW with a rectangular po-
tential well: V (x) = V0 − V0θ (w − |x̃|). Then, neglecting the
right-hand side in Eq. (81) and using the matching conditions
at x = ±w [ f (x) and ∂x f (x) are continuous], we can write a
solution in the form

f (x) = Cin cos(KSx̃), |x̃| < w, (84)

f (x) = Cout

{
exp(−Kout (x̃ − w)), x̃ > w

exp(−Kout (x̃ + w)), x̃ < −w
, (85)

where KS = ξ−2
S (Tc) and Kout = (V0/dS) − ξ−2

S (Tc). The in-
tegration constants Cin and Cout are related to each other.
In the limiting cases of small and large λ ≡

√
V0w2/dS, we

have for Tc and Cin, Cout: (a) λ � 1; Cout ≈ Cin and Tc ≈
TcB(1 − V0ξ

2
S0/dS); and (b) λ � 1; Cout ≈ Cin/λ

2 and Tc ≈
TcB(1 − (πξS0/w)2).

Thus, if the depairing potential V (x) has a dip at the DW’s,
superconductivity is nucleated at the DW’s. This happens in
the following DW configurations: BDW(y), NDW(x)

y , NDW(x)
z

(the potentials are shown in Fig. 7). The opposite case is
realized for the magnetization profiles: NDW(z), BDW(z),
NDW(y) (see also Fig. 7 for the respecting potentials) and is
considered in the next section.

For simplicity, we neglect the width w in comparison with
L. The solution outside the DW has the form

f (x) = Cout cos(KSx ), |x| < L (86)

The critical temperature Tc is found from the matching con-
dition [∂x f ]x=±L = V (x) f (x)|x=±L. The constant C = Cout is
not zero provided that the condition

θc tan(θc) = λ (87)

is fulfilled, where θc = L/ξS(Tc). Equation (81) yields for the
critical temperature Tc: (a) Tc/TcB = 1 − λ(ξS0/L)2 for λ � 1
and (b) Tc/TcB = 1 − λ(πξS0/2L)2 for λ � 1. The constant C
is found analogously to the case considered in Ref. [51]

C2 = T − Tc

TcB − Tc
r(θL ) (88)

with

r(θL ) = 〈cos2(KSx)〉
〈cos4(KSx)〉

= 2θL + sin(2θL )

(3/2)θL + sin(2θL ) + (1/8) sin(4θL )
, (89)

where 〈. . .〉 = ∫ L
0 dx(. . . ) and θL = KSL. For θL � 1, the

coefficient r is equal to r = 4/3.
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B. V (x) has a minimum at the center of the domain

We assume that the potential V (x) in Eq. (81) has the form

V (x) = V0

∑
n

δ(x − 2nL). (90)

First, we linearize Eq. (81) and find the minimum “energy” E
of the Schrödinger like equation in the interval x ∈ −L, L

−∂2
x̃x̃ f + V0δ(x̃) f (0) = Ẽ f , (91)

where x̃ = x/ξS0, Ẽ = E (ξS0/dS) = 1 − T/TcB. A periodic
solution f (x̃) = f (x̃ + 2L/ξS0) can be represented in the form

f (x̃) =
{

a cos(qx̃) + b sin(qx̃), 0 < x̃ < L/ξS0

ā cos(qx̃) + b̄ sin(qx̃), −L/ξS0 < x̃ < 0
, (92)

where q2 = E . The function f (x̃) has to fulfill the matching
conditions

[ f ] = 0, [∂x̃ f ] = V (x̃) f (0),

f (L) = f (−L), ∂x̃ f (x̃)|x = L = ∂x̃ f (x̃)|x = −L. (93)

The solution (92) exists if the condition

θ tan(θ ) = v ≡ V L/2 (94)

is satisfied where θ = qL. The coefficients a and b are coupled
by the relations: a = ā, b = −b̄ = Va/2q. From Eq. (94), we
find the critical temperature

Tc/TcB =
{

1 − (vξS0/L)2, v � 1
1 − (πξS0/2L)2, v � 1

. (95)

If L/ξS0 > 2/π , superconductivity is suppressed completely.

VI. CONCLUSION

To conclude, in this manuscript we calculated the magnetic
stray field Hstr and Meissner current jS in a superconductors S
created by various nonhomogeneous magnetic texture in a F
film incorporated in an S/F/S system. The total current in the

system is assumed to be zero. Two types of topological struc-
tures were considered: isolated chiral magnetic skyrmions
and periodic flat domain walls of Bloch (BDW) or Néel-
type (NDW). Considering a two-dimensional two-component
magnetization M(r⊥), we investigated six different magnetic
DW textures as well as magnetic Sk of Bloch and Néel-
type. Each of these different magnetic textures possesses a
particular spatial dependence of the stray field Hstr(r⊥, z) and
the induced Meissner current jS(r⊥, z). The most apparent
difference appears between the Bloch- and the Néel-type mag-
netic structures. While the Neel-type structure yields a strong
asymmetry jS(r⊥, z) 
= jS(r⊥,−z), the Bloch-type remains
always symmetric w.r.t z component. For certain parameter,
this asymmetry can be strong enough to cause a sign change
of the Meissner current for r⊥ within the DW region or within
the Sk radius r⊥. Note that a similar sign change can be
obtained in S/F or S/F/S systems that feature a proximity
effect [35–37].

The Meissner current jS is connected to the vector potential
A via jS = cλ−2

L A/4π which enters the Ginzburg-Landau
equation and acts as a depairing factor V (r⊥) = 2πA2

0(r⊥)
where A0 is the vector potential in absence of superconduc-
tivity. This factor determines the critical temperature of the
superconducting transition in bulk superconductors [49] and
in S/F heterostructures [27,41,46] and the superconductivity
emerges first at places where A0 has a minimum. As can be
seen in Fig. 7 the locations of the minima or maxima of V ∝
A2

0 depends on the type of DW’s. For magnetic skyrmions, the
depairing potential V (r⊥) has its minimum in the center of the
Sk. However, it can exhibit an additional local minimum for
finite r⊥ within the radius of a Néel Sk which is not present for
Bloch-type skyrmions. Thus, by measuring the location of the
superconducting nucleation like it was done previously [31],
one can determine the type of the DW or distinguish between
Bloch- and Néel-type skyrmions.
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