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Eliashberg theory for spin fluctuation mediated superconductivity:
Application to bulk and monolayer FeSe
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We present a novel method for embedding spin and charge fluctuations in an anisotropic, multiband, and
full-bandwidth Eliashberg treatment of superconductivity. Our analytical framework, based on the random phase
approximation, allows for a self-consistent calculation of material-specific characteristics in the interacting, and
more specifically, the superconducting state. We apply this approach to bulk FeSe as a representative for the
iron-based superconductors and successfully solve for the superconducting transition temperature 7, the gap
symmetry, and the gap magnitude. We obtain 7. ~ 6 K, consistent with experiment (7, ~ 8 K), as well as
other quantities in good agreement with experimental observations, thus supporting spin fluctuations mediated
pairing in bulk FeSe. On the contrary, applying our approach to monolayer FeSe on SrTiO; we find that spin
fluctuations within the full Eliashberg framework give a d-wave gap with 7, < 11 K and therefore cannot provide
an explanation for a critical temperature as high as observed experimentally (7, = 70 K). Our results hence point
towards interfacial electron-phonon coupling as the dominant Cooper pairing mediator in this system.
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I. INTRODUCTION

Ever since the discovery of superconductivity in iron-based
compounds [1-4] an enormous effort has been made to under-
stand the prevailing mechanism responsible for Cooper pair-
ing in these materials, both experimentally and theoretically
(see Refs. [5-10] and references therein). For most members
of this family, the superconducting transition temperature is
rather small compared to the high-T,. cuprates, with a few
exceptions such as monolayer FeSe on SrTiO; (FeSe/STO).
There, the onset of superconductivity has been reported at
temperatures as large as 60—100 K [11-17], which is an order
of magnitude higher than in bulk FeSe (~8 K) [2,18]. For
many of the iron-based compounds there is consensus about
an underlying unconventional mechanism responsible for su-
perconductivity, although many theoretical investigations are
so far based on the linearized Bardeen-Cooper-Schrieffer
(BCS) equations at the Fermi level [5,19-23]. In this way the
superconducting gap symmetry can presumably be obtained
correctly, but other important experimental aspects, such as
T, or the gap magnitude, remain partially elusive depending
on the level of approximation, hampering hence also the
unambiguous identification of the pairing mechanism. Thus
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there is an extensive need for a microscopic theory directly
applicable to unconventional pairing, which can naturally
provide the experimentally accessible characteristics of the
system.

Superconductivity in bulk FeSe has been intensively stud-
ied since its discovery [2]. As one of the intriguing properties
of this material, a small nematic distortion of the tetragonal
unit cell at low temperatures has been observed [24] and
its role to the complex superconductivity has been much
discussed [25-31]. A second important feature of FeSe is that
there is no long range magnetic order at ambient pressure
[6,7] yet there are enhanced spin fluctuations observed that
signal a proximity to a magnetic phase transition [32-35].
A similar behavior is observed in several related Fe-based
superconductors [9,36-38] but the spin fluctuations with-
out local ordered moment are particularly strong in FeSe
[35]. The spin fluctuations in Fe-based bulk superconductors
have consequently been investigated theoretically with several
approaches [39-42]. A further hint for an unconventional
Cooper pairing mechanism comes from ab initio calculations
that predict a small effect of electron-phonon coupling in
bulk iron pnictides [43,44]. Moreover, the appearance of
superconductivity with an unusual s+ gap symmetry in the Fe-
based superconductors has drawn much theoretical attention
(see, e.g., Refs. [45-48]) and has in particular strengthened
the picture of a close connection between spin fluctuations
and superconductivity [5,49-53]. The most plausible scenario
for bulk FeSe is dominant spin-fluctuations mediated pairing
while nematicity in itself only modifies the magnetic fluctu-
ations and thereby modifies the superconductivity indirectly
[30,31].

The case of monolayer FeSe on STO is markedly different
from bulk FeSe. Due to substrate doping the Fermi surface
of FeSe/STO does not exhibit the same nesting properties
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as FeSe [13,14,16,54] and the gap symmetry is plain s-wave
instead of sy [55]. As a consequence, there has been an
intensive discussion for FeSe/STO recently about the role of
spin fluctuations and substrate phonons for the superconduct-
ing state [56,57]. On the one hand, it has been argued that
a high-energy interfacial phonon mode can give rise to an
enhanced coupling to FeSe electrons [16,58,59]. By imposing
this assumption in a multiband full-bandwidth Eliashberg for-
malism many experimentally measured quantities can indeed
be explained [60,61]. On the other hand, arguments have been
presented in favor of an unconventional, spin-fluctuations
mechanism [62-64], e.g., via an incipient band scenario [65]
or orbital selective modifications in quasiparticle weights [66].
However, these previous theories have so far been formulated
on the basis of approximations that are tailored to address
one specific aspect of the problem. For example, predictions
within the incipient band scenario were based on solving
isotropic two-band Eliashberg equations where only interband
coupling was assumed and the s+ symmetry of the gap was
imposed as the only self-consistent solution, which resulted
in a very high 7. In the case of the orbital selective scenario,
the focus was on explaining the momentum anisotropy of the
superconducting gap on the Fermi surface. This was achieved
through a combination of static random phase approximation
(RPA) and linearized BCS theory calculations [66]. Evidently,
to tackle the multiorbital spin-fluctuation problem at its full
capacity, there is a need for a more generally applicable
theoretical framework.

We develop here a full Eliashberg theory generalization of
the multiorbital Hubbard-type model and show that it provides
the amplitude, symmetry and momentum dependence of the
superconducting gap over multiple bands, the renormalization
of the electron mass and energy for all Brillouin zone (BZ)
momenta, electronic energies and temperatures and there-
fore also the superconducting 7,; all calculated on the same
footing. Our theory hence opens the door for treating both
phononic and electronic pairing mechanisms on the same
footing to settle the question about the dominant pairing
mediator.

In the following, we introduce a generic way of self-
consistently solving the anisotropic, full-bandwidth, and
multiband Eliashberg equations for spin and charge fluctu-
ations on an RPA level. Subsequently, we apply our mi-
croscopic theory to bulk FeSe as a representative example
for the iron-based superconductors. The only ingredient that
is needed to self-consistently solve for the critical temper-
ature, the gap magnitude and its associated symmetry, is a
tight-binding model reliably reproducing density functional
theory (DFT) calculations for the electronic dispersions [67].
In addition we examine the case of monolayer FeSe using
modified electronic energies [68], while neglecting any pos-
sible influence of the substrate phonon. Our results for this
material reveal a strong mismatch to experimental findings, in
particular, a computed 7, similar only to that of bulk FeSe.
This leads us to the conclusion that spin fluctuations play a
minor role in FeSe/STO only for temperatures characteristic
for superconductivity in the parent compound. We hence
attribute the high 7. to the characteristic interfacial electron-
phonon coupling as extensively studied in previous works
[16,58,60,61,69].

In the following, we introduce in Sec. II the methodol-
ogy used to compute spin and charge fluctuations mediated
superconductivity in a full Eliashberg framework. We then
directly apply the method to bulk FeSe and compute sev-
eral properties representative of its superconducting state. In
Sec. III, we apply the same methodology to monolayer FeSe
on STO. Finding that spin-fluctuations mediated pairing can
explain superconductivity in bulk FeSe but not in FeSe/STO,
we analyze deeper the origin of this result and compare to
simplified approaches within BCS theory. Our conclusions on
the plausible mechanisms for superconductivity in bulk FeSe
and FeSe/STO are given in Sec. IV.

II. METHODOLOGY

In this section, we present a recipe of how to embed spin
and charge fluctuations in a full-bandwidth, multiband and
anisotropic Eliashberg theory. As a representative example
for the iron-based superconductors we investigate bulk FeSe
and solve for the main characteristics of this system in the
superconducting state.

A. Electronic energies of bulk FeSe

The full system is modeled as H= ﬁo + ﬁim, where the
interacting part H,, is explained below in Sec. IIB. For
the noninteracting part, we consider a tight-binding model
as introduced in Ref. [67] that describes the electron band
energies for the five iron d orbitals

Ao =Y &pgll s Cugos (1)

kpgo

where we use k, (p, ¢) and o as labels for momentum, orbital
character, and spin, respectively. cipa (Ckpo) are electronic
creation (annihilation) operators and &,, describes the hop-
ping energies in orbital space. From the diagonalization of
H, we find the band dependent energies &, as shown in
Fig. 1(a), and retrieve the matrix elements aﬁn, which serve as
connection between band and orbital space. The tight-binding
model used here has tetragonal symmetry, hence we assume
that the influence of nematicity on the superconducting state
is to first order negligible (cf. Ref. [31]). This assumption is
to some extend justified because superconductivity does not
compete with orthorhombicity in FeSe, as has been shown via
hydrostatic pressure measurements [26]. Here we work in the
unfolded Brillouin zone corresponding to the one-FeSe unit
cell in real space. The mapping to the folded BZ is indicated
in Fig. 1(b) by cyan dashed lines and the corresponding high-
symmetry points. As explicitly shown in Fig. 1(c) the hole
band at I' has pure d,, orbital character, while d.; and d,, play
important roles on the remaining FS sheets.

With the just discussed dispersions &, and orbital weights
ay, we have the necessary tools at hand to calculate, within
linear-response theory, the bare susceptibility of the system
which is the same for both spin and charge channels. This
in turn will be used for the calculation of the RPA inter-
acting susceptibilities as we show in the next section. Note
that the basis vectors fulfill the orthonormality condition

p* p
Zp Ay, Oy = O
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FIG. 1. (a) Electronic bands &, of bulk FeSe along high-
symmetry lines of the unfolded Brillouin zone. [(b) and (c)] Fermi
surface of &, in the unfolded BZ. (b) Connection to the folded BZ,
drawn in cyan, and associated high-symmetry points. (c) Dominant
orbital character depicted by different colors on the FS pockets.

B. Linear response in the RPA approximation

The interaction part of our Hamiltonian is given by the
intrasite Hubbard-type terms [21,70,71]

1nl =U Zntsﬁ‘nzsi + - Z nlsnlt
i,8,15#s
PN

AP At
n+— Y etlelislis s @
tst;és

i,s,t;és,a

where Sj; is the spin operator for orbital index s at site i, com-
pare Refs. [22,50,72]. The occupation at site i with electrons
of orbital index s, for spin o, is A = Ejm C;s» Which can be
used to get fi; = Y fiso. Above we use U (V') as intraorbital
(interorbital) onsite interaction, J is the Hund’s rule coupling
and J’ the pair hopping energy. The interactions are related via
J'=J/2 and V' =U — 3J/4 —J', a choice consistent with
related works [21-23]. We start by calculating the imaginary
part of the bare susceptibilities for real frequency w

pq P* _q
Im([ (a)) =7 Z aknakn ak+qn’ak+qn
n,n' k
X [np(€kn) — nF(ngrqn’)]

X 8(Ektqn — Skn + ), 3

where we set T = 5 K to evaluate the Fermi-Dirac functions
nr(-), and keep this temperature from here on unless noted
otherwise. Here, the above orbital weight products are all real
numbers. In principle these can be complex as well. However,
their imaginary part should vanish under the k summation,
otherwise additional contributions to the susceptibility may
arise that would contradict causality. For example, the imag-
inary part of the bare susceptibility would be finite at zero

(mm) (0,0) (m,0) (m,m)

FIG. 2. Bare susceptibility of FeSe as calculated from Eqgs. (3)-
(6). (a) Dynamic bare susceptibility along high-symmetry lines and
frequencies. (b) Static bare susceptibility plotted in the first quadrant
of the BZ.

frequency. The cancellation of such imaginary part contribu-
tions is rather generic. We have numerically confirmed that
this is indeed the case in the work of Graser et al. [22] where
the orbital weights are complex numbers. As briefly discussed
in Appendix A, and shown in Fig. 17, the bare susceptibil-
ities are nearly constant with respect to T over the relevant
temperature interval, so we can expect that results discussed
from here on do not change with the temperature. The delta
function in Eq. (3) is treated by using an adaptive smearing
method [73], see Appendix A for details. The intraorbital sum

xg @) =

Zlm Xg(@)]™) )

is shown in Fig. 2(a) as function of momenta and frequencies.
It is apparent that the elementary excitations of our system
range to rather large frequencies, that introduce a scale inap-
propriate to our low-energy theory. As we show below and in
Sec. II D, in the interacting case the high-energy region gives
rise to the Stoner continuum, which generally suppresses
Cooper pair formation.

Next, we want to use the above results to obtain the real
part of the bare susceptibility, which can be done by using the
Kramers-Kronig relation for spectral functions,

Re((@lf) = 1P [

where P denotes the principal value. From here we define the
static bare susceptibility as

0 stat __ Z Re Xq (0) I’[’) (6)

Im([xq @), )

which, as in Eq. (4), is calculated from the intraorbital com-
ponents only.

In Fig. 2(b), we observe dominant peaks at q =X
(=(0, m)) when plotting x> in the first quadrant of the
BZ. This is easily explained by the relatively enhanced nest-
ing between electron and hole FS pockets, compare Fig. 1.
Similarly, hole-hole and electron-electron nesting features at
momenta slightly smaller than (7, ) give rise to the two
rings around M (=(r, 7)) in panel 2(b). We note that such
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a bare susceptibility as shown in Fig. 2 is rather generic
for the family of Fe-based superconductors, see for example
Refs. [22,66], and that qualitatively comparable results have
been obtained by DFT calculations, too [74].

Within the RPA the spin and charge susceptibilities are
defined via Dyson equations,

@] =[x3@]2 + Y [xg @IS 1 [x 2 @)
)
[xg @] =[xq@)]5 = D [xg @] e @]
®)

with Stoner tensors U® for spin and U€ for charge. The
nonzero elements are given by

J J
Wi =vu, [US1% = > (U510 = i v,
Wik =y, (U1 = (U1 =2V’ ©)
3J
W=7 -V, W=7

We solve Eqgs. (7) and (8) by mapping all four-rank tensors
involved to usual (two-rank) matrices, for example [U5]0! —

[Us l; = = U5, This leads to matrix equations
25@) = 28)[1 - U532 (10)
28 (@) = 281+ 03] (11)

which allow us to directly identify the Stoner instabilities.
More explicitly, we define static susceptibilities, in analogy
to Eq. (6), as

S stat Z Re Xq (0) PP (12)

C stat __ § : Re

where the aforementioned mapping is inverted to retrieve back
the four-rank tensors corresponding to outcomes of Egs. (10)
and (11).

The requirement x4 > 0 and Xg'“"“ > 0Vq, i.e., staying
below the first Stoner instability, defines a finite region of
allowed values in (U, J) space. In Fig. 3(a), we plot the
resulting phase diagram, where the allowed region is drawn
in blue. For all remaining parts the Stoner criterion is violated
due to spin (cyan), charge (green) or spin and charge (yellow).
The gray border line around the blue area marks the critical
interactions (U, J), for which either of the denominator ma-
trices in Eq. (12) or (13) has an eigenvalue 0. At these interac-
tion strengths, the corresponding spin or charge susceptibility
diverges [75-77]. We test three different ratios for bulk FeSe,
each indicated by a solid line in Fig. 3(a): J = U/10 (gray
line) describes strongly localized electrons, J = U/2 (purple)
resembles a Hund-metal situation, and J = U/6 (red) is a
reasonable intermediate choice.

The RPA susceptibilities do not change appreciably with
(U, J). This can be explicitly seen in Fig. 3(b) where we show

xS O], (13)

(a) )(;\tdt <0,

O stat <0
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=
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FIG. 3. (a) Calculated phase diagram of allowed values for
(U, J) considering the Stoner criterion. The blue area denotes the
allowed phase space, all remaining parts are forbidden (reason ex-
plicitly written). The purple, red and gray lines refer to representative
ratios J = U /2, U/6, and U /10, which we consider here (see text).
(b) Static spin susceptibilities for increasing values of U along high-
symmetry lines of the BZ. The upper, middle and bottom panels show
our results for decreasing Hund’s rule coupling, with similar U/J
ratios and color code as in (a). (¢) Spin structure factor for bulk FeSe
as function of frequencies and momenta, calculated from Eqgs. (14)
and (16)at7T =5K,J =U/2,and U = 0.827 eV.

spin results for all three ratios and varying distance from the
border of the allowed region in panel (a), using similar color
code for U/J. In all three cases, we observe two peaks near
the X point. These have their origin in the bare susceptibility
[compare Fig. 2(b)] and are enhanced when approaching
the Stoner instability. From this behavior, one can directly
conclude that momenta around q = X give rise to the leading
instability and will approximately become delta-peaks in the
vicinity of the spin-border in (U, J) space. Further we find
increased susceptibilities with growing U, while a change in
J leads barely to noticeable modifications.

The changes in the RPA charge susceptibility are minor be-
cause we stay always well separated from the region Xg*s‘a‘ <
0, therefore, we do not show it explicitly. Here and in the
following we always use U > J, which is a choice generic to
Fe-based superconductors [40,41]. Since these materials are
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usually in close vicinity to a magnetically ordered state, it is
more reasonable to investigate U > J which drives the system
towards a spin-density wave instability ( X(f*s‘a‘ < 0), than the
choice U < J corresponding to a charge ordering instability
(Xg,stat < O)

In the following, we want to look at the frequency de-
pendence of Egs. (10) and (11). Let us therefore define the
dynamic spin and charge susceptibilities as

Zlm

DS
Zlm

Note, that these dynamical susceptibilities always pertain to
the imaginary parts in our notation. For J/ = U/2 and a rather
critical value of U = 0.827 eV, we plot in Fig. 3(c) the spin
structure factor

S dyl’l(w)

S@)]), (14)

C dyn(w)

S@)]7). (15)

S,dyn
Sq(w) = g @) (16)
q 1 — g—hw/ksT ’
calculated from Eq. (14).

We can compare the result of our calculations with the
outcome of DFT-dynamical mean field theory (DFT-DMFT)
calculations carried out in Ref. [41]. Although the two ap-
proaches are rather different, the main characteristics of Sq(w)
are actually similar. Starting with the maximum value of
Sq(w), which is 22 eV~! in Fig. 3(c) and 16 eV~ as obtained
in Ref. [41]. Note that our results are scalable with respect
to criticality, hence we could fine-tune U to achieve the
same maximum structure factor. Both our calculation and
that of Ref. [41] reveal an enhanced contribution at X for
small frequencies, as well as substantial values for Sq(w) at
(w,m) and (/2,7 /2) for larger w. There are differences
along the frequency axis that can be attributed partially to
deviating choices for 7 and U/J, but mainly stems from the
different ways how Sq(w) is calculated [41,78]. From the
above comparison we can conclude that our results for the spin
and charge susceptibilities show the correct main features.

C. Coupling via the spin and charge sectors

Before turning to the full Eliashberg problem we need
to calculate band dependent interaction kernels in Matsubara
space. To achieve this we first define

Ve @I =[30° @)U + 30 @UT a7
— 3778
Vi @)1 =[3U

— JUSXG@UC+3UT, a8)

Xe(@U® + 3US

where we distinguish between a kernel for electron mass and
energy dispersion renormalization (+) and the superconduct-
ing pairing (—), corresponding to diagonal and off-diagonal
elements of the Green’s function, respectively. Setting q =
k — k' and averaging over k we transform these kernels from
orbital into band space:

Vi @l =) Y i@ Ve @)a_gudi_g,- (19)
k stpg

Since we are interested in imaginary frequencies on the
Matsubara axis, we transform the result of Eq. (19) via the
Kramers-Kronig relation

1 00
[Vq(i)(iCIm)]nn’ = ;/P/

o W — lqm

Im ([V (@)]a),  (20)

where ¢,, = 2nTm is a bosonic frequency. In analogy to
Fig. 3(b), we want to understand the influence of U and J on
the interaction kernels. To this end, we define static intra- and
interband contributions as

. 1
VS.mtTa = E Z[Vq(_)(o)]nn’ (21)
. 1
y/sinter _ 3 Z[Vq(_)(o)]"”/’ (22)
n#n’

where the focus lies on the kernel of the superconducting
channel. For similar choices of (U, J) as in Fig. 3(b) (same
color code) we show the outcome of Egs. (21) and (22) in
Figs. 4(a) and 4(b), respectively.

As an overall trend one observes increasing kernel values
with growing U. In contrast to the spin susceptibilities plotted
in Sec. II B, this increase applies to values throughout the
whole BZ. While peaks at X are still dominant in all panels
of both figures, Vqs*imra grows large also at I with increasing J
and U. Furthermore, a non-negligible background develops as
we slowly approach the Stoner instability (the values shown
correspond to noncritical regions). This is caused by taking
the full Stoner continuum into account when transforming
from real to Matsubara frequencies and causes potential prob-
lems for Cooper pair formation due to, e.g., frustration effects,
see Sec. II D for details.

Next we focus on the Matsubara axis and define frequency
dependent counterparts to Egs. (21) and (22) via

. ) 1 .
Vi ign) = 3 ) Vg™ i)l (23)
n
. 1
d, . _ =)¢;
Vq inter (o) = 3 g& /[Vq Gqm) 1w - 24)

The results are drawn in Fig. 4, where panel (c) and (d)
corresponds to the intra- and interband terms, respectively.
In the first, second and third row of these two panels we
show respectively the pairs (q,J) = (X, U/2), (I', U/6), and
(M, U/10). The aforementioned influence of the Stoner con-
tinuum is reflected along ¢, in all panels. With growing
U the kernels are enhanced along the full frequency axis
resulting in slowly decaying tails, which in turn increases the
computational load of Eliashberg calculations significantly.
We further observe that a moderate Hund’s rule coupling of
J =U/6 can lead to attractive intraband kernels at q =T,
as seen in the central panel of Fig. 4(c). This sign change

VCl LI (ig,,) is lost as soon as U approaches the Stoner
1nstab111ty Such properties, i.e., the interplay of repulsive and
attractive couplings can have an important impact on Cooper
pair formation and the superconducting gap symmetry.

To resolve the aforementioned difficulty concerning the
Stoner continuum we introduce a frequency cutoff w¢, > 0 to
truncate the integration in Eq. (20). The Matsubara frequency
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FIG. 4. [(a) and (b)] Computed static kernels in the supercon-
ducting channel for growing values of U. In both panels, the upper,
middle and bottom graphs show the outcomes for J = U/2, U/6,
and U/10, respectively. (a) Intraband kernels from Eq. (21). (b) In-
terband kernels from Eq. (22). [(c) and (d)] Dynamic kernels as
function of bosonic Matsubara frequencies for different q points.
First row: q = X and J = U/2; second row: q =T" and J = U/6;
third row: ¢ = M and J = U/10. (c) Intraband kernels from Eq. (23).
(d) Interband kernels from Eq. (24).

dependent kernels we treat from here on are therefore
Weut d(,()
————Im ([V 2 (@)]aw)- (25)

—Wcut W = Idm

1
Ve ™ (i)l =—P

At this stage w., can be considered a variational parameter.
Its main effect is to controllably remove high energy parts
of the magnetic excitation spectrum, especially the incoherent
part which should be irrelevant to superconductivity. The need
for this cutoff will become clear later below. To make contact
between w.,; and the real-frequency dependence of kernels as
obtained from Eq. (19), we define

o 1

qu,mtrd(w) — 5 Z [m([Vq(_)(a))]nn)’ (26)

. I ¢

Vgt @) = 5 D I (Ve @)lr)- 27)
n#n'

Note that qu" is used for kernels as function of w, while qu"
in Egs. (23) and (24) are Matsubara frequency dependent.

To show possible consequences arising from the cutoff in
Eq. (25), we choose (U, J) = (0.8 eV, U/6) and plot Eq. (26)
in Fig. 5(a). At momenta/frequencies where V"™ (w) < 0
the charge contributions dominate, since they enter with neg-
ative sign in Eq. (18), and hence the kernel becomes attractive
in the superconducting channel. Wherever the spin dominates
over the charge content, the coupling is repulsive. For v <
0.5 eV, the spectrum is rather discrete, making it possible
to identify clear features at I' (attractive) and X (repulsive).
At larger frequencies substantial increases of V.&"" () are
observed throughout the full BZ, a similar feature as discussed
in connection with Fig. 4. Going to w ~ 3 eV, we see an
enhanced influence of charge fluctuations which make the
kernel attractive. A qualitatively similar picture is found in
Fig. 5(b) when considering the dynamic interband kernel.
These graphs indicate that taking the full Stoner continuum
into account is not favorable for unconventional superconduc-
tivity. Intuitively this becomes clear in the light of FS nesting,
which becomes combined with an incoherent background at
all q.

In Fig. 5(c), we use different cutoffs for Eq. (25) and show
in panel (i) ((ii)) the resulting static intra- (inter) band kernels.
From the lower graph we learn that the incoherent background
can be directly controlled via decreasing wc,;, which makes
sense having in mind the discrete nature at low frequencies
of V" () and V™" () in panels (a) and (b). Similarly
interesting, the kernels in (i) show a sign change at I' with
increasing cutoff. Concerning the superconducting gap, see
Sec. IID, this can lead to different tendencies concerning
the favored gap symmetry since small w, leads to attractive
intraband coupling on the FS pockets; the limit w¢,; — 0o on
the other hand induces a sign change on individual FS sheets,
which overall can lead to a different momentum structure
of the order parameter. We consider the former situation as
more physical, since we employ a low-energy theory, hence
any large frequency effects should not drastically change the
qualitative picture of our results.

As another direct consequence of w.,; we note the changes
along Matsubara frequencies in Fig. 5(d), where we show the
dynamic intra- [(i)] and interband [(ii)] kernels found from
Egs. (23) and (24). Plotting our results at ¢ = I", we observe
in panel (c)(i) again the sign change with increasing cutoff,
as already discussed. Additionally the tails for small wq,; are
decaying much faster with g,,, which makes the computations
more efficient.

D. The superconducting state

We are now in the position to address the self-consistent
Eliashberg problem for spin-fluctuation mediated pairing. The
equations governing the superconducting state resemble to
a large degree the well-established formalism for electron-
phonon mediated superconductivity, see, e.g., Ref. [20], or the
recent spin-fluctuations implementation [79]. We define the
electron Green'’s function in Nambu space in terms of the elec-
tronic mass renormalization Zy,(iw,,), the chemical potential
renormalization [k, (iw,,), and order parameter @y, (iw,,), all
given in Matsubara space with fermionic frequencies w,, =
7T (2m + 1). Taking into account the infinite Feynman series
of the first-order electron-magnon scattering diagrams for the
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FIG. 5. Influence of the truncation parameter w,, used in Eq. (25) on intra- and interband kernels, with U = 0.8 eV and J = U//6. (a) Real
frequency dependence of \zd’i“"a as obtained from Eq. (26), along high-symmetry points. (b) Same as (a) for qu'i“‘e‘. [(c) and (d)] Matsubara
frequency kernels for various choices of w.,, using identical color codes. Rows (i) [(ii)] refer to intra- (inter) band terms. (c) Static kernels
from Egs. (21) and (22). (d) Matsubara frequency dependent dynamic kernels as obtained from Eqgs. (23) and (24).

electronic self-energy, we obtain the following set of coupled
and self-consistent equations:

T wm’Zk’n’ (iwm/)
Zyen (i) =1 - V(+) i N —————
n(ion) =1+ — 3 1V (igmm)]

L— Owyw (iwn)
(28)
. . 'n’ + lﬂk’n’(iwm’)
r n m) — — T V(+) m—m’ nn’gk— 5
k(i) D Wq i)l =5 =
kK'm'n’
(29)
. . Py (iwpy )
Prnion) = — Tk%[vq‘ >(zqm_m/)]mfm, (30)
Own(iwm) = w5, Zg, (i) + [Exn + Thn (i) + b, (i0m) -
31

The gap function is found via Ax,(iw,) =
Gkn(iwm)/Zxn (iwy,), the zero-frequency component of which
is accessible in experiment.

The above equations do not differ from the respective coun-
terparts in an electron-phonon description of the interacting
state, except for the sign of the interaction kernel in the pairing
channel. The charge and spin part of the coupling in Eq. (30)
enter as attractive and repulsive, respectively [80,81]. Note
that all functions in Egs. (28)—(31) are explicitly momentum,
Matsubara frequency, and band dependent. Within our five-
band model, this gives rise to 15 coupled self-consistent
Eliashberg equations in total.

The above-presented Eliashberg equations are solved
self-consistently without any further approximation, see
Appendix A for details. We note that our treatment allows to
directly access not only the superconducting pairing ampli-
tude and sign, but also the electron renormalization functions
Zk n(iwy) and T ,(iwy,). In earlier attempts towards spin and
charge fluctuations mediated superconductivity the problem
was significantly simplified to linearized Eliashberg theory,
which can be conveniently expressed as an eigenvalue prob-
lem for the interaction strength [22,46]. As the name suggests,
in such treatment the superconducting gap function, Eq. (30),
is only kept to linear order, while often no information about
the electronic mass and chemical potential renormalizations
can be directly obtained, i.e., Eqs. (28) and (29) are neglected

[23,71,82-84]. In works where the calculation of electron
renormalization functions was attempted, it was, however, not
done on equal footing with the superconducting gap [85,86].
In our work we do not make use of such drastic approxima-
tions and hence are closer to a more realistic description of the
interacting state. The full mathematical modeling presented in
this work has been implemented in the Uppsala Superconduc-
tivity code (UPPSC) [60,61,79,87-89].

We now consider all three U/J ratios highlighted in
Fig. 3(a) and perform a variation in U and w¢y. For each
configuration, we test several symmetries for initializing the
order parameters to make sure that we capture all possible
solutions. Interestingly, our calculations show that a suffi-
ciently large Hund’s rule coupling is needed for finding ¢ # 0,
i.e., not a single nonzero gap is found for J = U/10 and
U/6. Contrarily, we find that self-consistent solutions are
possible when choosing J = U/2. In Fig. 6, we plot the
maximum zero-frequency gap in (U, we,t) space, keeping
J = U/2 fixed. The vertical border drawn in white represents
the first Stoner instability. Self-consistent solutions are found
only in a very confined region of the phase space, pointing

max A, (0)
(meV)
Superconducting

solutions .

0.5
0

0.65 0.7 0.75 0.8 0.85
U (eV)

FIG. 6. Self-consistently calculated superconducting gap at zero
frequency with J = U/2. We show the maximum among all bands
and momenta as function of U and w,. The border drawn in white
indicates the onset of magnetic order. The nonzero gap solutions are
highlighted by the white ellipse.
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FIG. 7. (a) Self-consistently computed maximum superconduct-
ing gap as function of temperature, shown for cutoffs w., = 0.42
(blue) and 0.66 (eV) (red), both calculated for / = U/2 and U =
0.827 eV. The respective critical temperatures are indicated by
dashed lines. (b) Result for the superconducting order parameter
projected on the FS, obtained for U = 0.827 eV, J =U/2, @y =
042eV,and T =5K.

towards two characteristic cutoffs that we identify as 0.42 and
0.66 eV. This corresponds to an energy range where nothing
(0.42 eV) or only a very small fraction (at 0.66 eV) of the
Stoner continuum is included when calculating the Matsubara
frequency dependent kernels. We therefore see here explicitly
what is already discussed in Sec. II C, namely, that including
the Stoner continuum does not allow for a self-consistently
obtained superconducting state. This is due to frustration
effects [23], caused by an incoherent distribution of the kernel
among nearly all possible exchange wave vectors in the BZ. It
is also worth noting that lowering w., too much again leads
to disappearance of superconducting solutions.

Next we perform a temperature variation for the afore-
mentioned two cutoffs to obtain the corresponding transi-
tion temperatures. Following the evolution of maximal zero
frequency gaps in Fig. 7(a), we find 7. >~ 5.6 K for the
cutoff w., = 0.66 eV (drawn in red), that is closer to the
onset of the Stoner continuum. A slightly larger value of
T. ~ 6 K is possible for o, = 0.42 eV, represented by the
blue solid curve in the same graph. As guide for the eye the
onset of superconductivity is marked in both cases by dashed
lines with respective color code. These results resemble the
experimental value of ~8 K remarkably well [2].

We conclude the discussion of bulk FeSe by turning to the
gap symmetry, choosing (U, J) as before, w.,, = 0.42 eV and
T =5 K. Having access to the fully momentum dependent
zero-frequency component A, (0), we project our results on
the FS, drawn in Fig. 7(b). As directly evidenced, there is
a sign change between electron and hole pockets without
any FS nodes. Since the sign on each individual pocket is
constant we obtain a global s1 symmetry. Further we note
that maxy, Ak, (0) # |ming, Ak, (0)|, which suggests an addi-
tional pure s-wave component. Hence, our result for the gap
symmetry of superconducting bulk FeSe is s1 + s, matching

experimental findings [18]. We find this particular symmetry
of Ak, as the only converged solution for all the parameter
space explored for bulk FeSe. Concerning the magnitude of
our calculated superconducting gap we deviate only very
slightly from measured values of A ~ 1.67 meV [18,90]. The
difference to our result of A ~ 1.4 meV directly explains
the small mismatch in the calculated critical temperature.
From our self-consistent results we furthermore observe that
superconducting gap values as found experimentally are not
primarily related to nematicity [26,31]. Although our FS
obeys C; symmetry, the main features measured in the nematic
(orthorhombic) state are reproduced reliably.

We conclude this part by referring again to Appendix A,
where several further aspects of our calculations are dis-
cussed. These details concern the mathematical and numerical
steps in all sections presented so far.

III. MONOLAYER FeSe ON SrTiO3

Having introduced our method in Sec. II, we now want
to apply it to FeSe/STO, imposing that spin fluctuations are
the only relevant ingredient for the superconducting state
in this system. Any influence of the interfacial phonon that
presumably plays an important role for superconductivity
[16,58,60,61] is hence neglected here. After describing some
characteristic properties of FeSe/STO within our framework
in Sec. IIT A, we directly go to the discussion of our self-
consistent results for the superconducting state, in Sec. III B.
We continue in Sec. III C by examining the effect of changes
in our tight-binding model on the superconducting properties.
We compare our results to predictions of BCS theory in
Sec. III D and conclude by commenting on how our solutions
scale with respect to the proximity to antiferromagnetic criti-
cality in Sec. IITE.

A. Basic properties of FeSe/SrTiO;

The electronic energies are given by a tight-binding model
that we take from Ref. [68]. We show the corresponding
energy bands along high-symmetry lines in Fig. 8(a). The
lattice distortion arising from the deposition of monolayer
FeSe on the substrate is explicitly taken into account [68].
In addition, the hopping parameters are modified in order to
move the hole bands present in bulk FeSe to below the Fermi
level [60]. The FS, plotted with its orbital content in Fig. 8(b),
consists of two electron pockets, which are dominated by d,,
character. Compared to experiment the FS sheets are slightly
smaller [91], this aspect is further addressed in Sec. III C.

With these energy dispersions we calculate the real and
imaginary parts of the bare susceptibility, Egs. (5) and (3),
which serve as input for obtaining the static and dynamic
bare susceptibilities of Egs. (6) and (4), respectively. From
Fig. 8(d), we observe that Xfl"“a‘ is peaked near ¢ = M, which
is the wave vector connecting the FS pockets. Compared to
Fig. 2(b), we no longer have pronounced contributions at X
since the hole bands can no longer be statically connected
to the electron sheets at the FS. A small ring around I' is
found due to small wave-vectors connecting states within the
electron pockets. Turning to the dynamic susceptibility, shown
in Fig. 8(c), confirms the aforementioned picture clearly,
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FIG. 8. Important characteristics of monolayer FeSe on STO within our tight-binding approach, using the band dispersions derived in
Ref. [68]. (a) Electronic dispersions along high-symmetry lines of the BZ. (b) Fermi surface pockets colored by the dominant orbital weights.
(c) Dynamic susceptibility as function of frequency, plotted along high-symmetry lines. (d) Static bare susceptibility as calculated from Eq. (6),
shown in the first quadrant. (¢) Phase diagram in (U, J) space indicating the onset of charge or magnetic order. The parameter space allowed
by the Stoner criterion is drawn in blue. A violation of the Stoner criterion due to charge, spin or charge and spin is indicated in green, cyan,
and yellow colors. Three representative U/J ratios are drawn in purple (J = U/2), red (U/6), and gray (U/10) lines as guide for the eye.
(f) Dynamic spin susceptibility calculated from Eq. (14), using the result of Eq. (10) as input. U = 1.5802 eV and J = U/10 are chosen,

which are rather close to the first Stoner instability.

namely, that the leading excitations are located at M. Small

and distinct branches can be seen at small frequencies as more

explicitly shown in Fig. 18(a) in Appendix B; for w > 0.6 eV,

a continuum of nonnegligible contributions occurs throughout

the BZ. The only exception to this is q ~ I', where a minimal
0.dyn . .

Xq ~ is found for all frequencies.

Inserting the bare susceptibilities into Eqgs. (10) and (11),
we perform a variation in (U, J) to find the onset of charge
and magnetic order. The blue region in Fig. 8(e) represents
allowed choices for the Hubbard U and the Hund’s rule J
coupling. Contrarily, the green, yellow and cyan parts of the
diagram correspond to a violation of the Stoner criterion
due to qu*“a‘ <0, qu’sm <0 and Xg’sm <0, or Xg*smt <0,
respectively. We show in the same panel three ratios con-
sidered in the following: J = U/2 (purple), U/6 (red), and
U/10 (gray). When comparing this phase diagram with bulk
FeSe, Fig. 3(a), remarkable similarities are observed. Since
the bandwidths of both tight-binding models are comparable,
the scales of U and J do not differ much. Further, the overall
shapes are very alike, except for a small piece of allowed
phase space missing in Fig. 8(e) in the limit J < U.

From discussions in the previous section we know that a
nonzero solution for the superconducting gap is to be expected
close to magnetic order. We hence show the dynamic spin
susceptibility Eq. (14) in Fig. 8(f) for a rather critical pair
U,J)=(1.5802 eV,U/10). A zoom into the low-energy
region is presented in Fig. 18(b) in Appendix B. At frequen-
cies of approximately 0.6 eV, the Stoner continuum begins,
introducing contributions for all momenta sufficiently away
from T". For smaller v we find enhanced susceptibilities at
X, which partially represent the connection of FS electron
pockets with hole bands below the Fermi level, made pos-
sible by a relatively small energy exchange. This aspect is
treated in more detail in Sec. III C. Comparing Fig. 8(f) with
the dynamic bare susceptibility in panel (c) we identify the

leading instabilities at w ~ 0.8 eV and @ ~ 0.1 eV, both
around q = M.

The appearance of a Stoner continuum is reflected in
interaction kernels similarly as discussed in Sec. IIC. We
calculate full frequency, momentum and orbital-dependent
couplings from Eqs. (17) and (18), which are then used as
input for Eq. (25), additionally as function of w¢,. Keeping
parameters (U, J) = (1.5802 eV, U/10) as in Fig. 8(f), we
show the outcomes at momenta I', M, and X in Figs. 9(a)—
9(c) for several cutoffs. From panel (a), we observe a similar
behavior as in bulk FeSe: for w.y sufficiently small, i.e., below
the onset of the Stoner continuum, small-q couplings are
attractive in the superconducting channel for Matsubara fre-
quencies close to zero. As soon as the cutoff gets larger than a
threshold of roughly 0.8 eV, V(f;‘l‘l‘ra becomes repulsive for all
Gm, thus favoring a sign change on the FS pockets. Combined
with dominant contributions at q = M, see Fig. 9(b), such a
configuration could still lead to a nonvanishing gap, possibly
with unconventional symmetry, but we did not find it in any
of our calculations. From these considerations one can, even
without solving the Eliashberg equations, qualitatively predict
that a nonvanishing order parameter is likely to be found only
when one excludes the Stoner continuum; as shown in the
next subsection this is indeed what we observe. In the above
discussion, we omit showing explicitly the interband kernels,
since these do not provide further insights.

B. Spin-fluctuations mediated pairing

We solve the coupled set of Eliashberg equations (28)—(30)
for the three ratios U/J as indicated in Fig. 8(e). Varying
U and w.y, compare Sec. IID, we are able to find the
available phase space for a nonvanishing order parameter.
The self-consistently calculated maximum superconducting
gap is shown in Figs. 10(a)-10(c) for J = U/10,U/6, and
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FIG. 9. Matsubara frequency dependent intraband kernels for
various w.y, each as function of ¢,, where we choose U =
1.5802 eV and J = U/10. (a)—(c) show the kernels at the high-
symmetry momenta q = I', M, and X, respectively.

U /2, respectively. For two cutoff frequencies 0.21 eV (blue)
and 0.45 eV (red) we plot max Ag,(0) as function of U
in the inset of panel (a) using J = U/10. Our results show
that the maximal gap possible at 7 = 5 K is ~5.9 meV for
Wy = 0.69 eV and J = U/2. Close to the Stoner instability
we find superconductivity in all three panels of Fig. 10, where
maximal values of Ay,(0) at critical U are of the order of
3-6 meV.

As a function of wg, there are three domelike regions
allowing for a finite gap. Such behavior points towards dis-

()

max Ay,

(meV)

EE— )
(==} —_ [V w = ot

1.2 1.4 14 151 1.1
U (eV)

FIG. 10. Computed maximum superconducting gap as function
of U and w.y. Results are shown for (a) J = U/10, (b) U/6, and
(c) U/2. The inset shows the maximum gap as function of U for two
specific frequencies, we, = 0.21 (blue line) and 0.45 eV (red line),
computed for J = U/10.

tinct branches in [V*)(®)],,, which can be constructive or
destructive for Cooper pairing. Without the need of plotting
these kernels we can understand the underlying mechanism
already on the level of the dynamic spin susceptibility, see
Fig. 8(f), using U = 1.5802 eV and J = U/10 as example.
Note that a direct comparison of frequency values is not
appropriate, since the w scale in general is shifted to smaller
frequencies when going from susceptibilities to interaction
kernels. Clearly, the small-w contribution at M in Fig. 8(f)
is responsible for the first dome of panel 10(a). For growing
cutoff the pairing is suppressed due to substantial contribu-
tions that extends to large parts of the BZ, see Fig. 8(f) at w ~
0.6 eV. At the high-frequency end we find that the leading
instability at M, in competition with the Stoner continuum, is
responsible for the last region (at largest w.,) of nonzero gap.
The intermediate frequency regime is less easily understood,
since it lies directly within the onset of the Stoner continuum.

When we compare the three panels of Fig. 10, we discern
that an increase in Hund’s rule coupling leads to a smaller
phase space, as well as enhanced gap values. For J = U/2,
we find that the phase diagram is similar to that observed in
bulk FeSe, see Fig. 6. Although the gap sizes are different,
the characteristic frequencies at which a nonzero solution is
possible, seem to be almost the same. Besides a small region
with A # 0 near wc, ~ 0.6 eV, we find the most relevant
frequency cutoff at around 0.45 eV. This agreement might be
explained by similar choices of (U, J) and the fact that both
tight-binding models are derived from Ref. [67].

As we show in the inset of Fig. 10(a) the gap size increases
approximately linear with U going towards its critical value.
We observe similar trends for the other choices of Hund’s rule
coupling (not shown). The behavior of A close to criticality
is further discussed in Sec. III D. Focusing now on panels (a)
and (c) of Fig. 10, i.e., on choices J/ = U/10 and J = U/2,
we choose three representative cutoffs for both. Choosing the
respective value of U very close to the Stoner instability, we
calculate the temperature dependence of the maximum gap
and show the results in Figs. 11(a) and 11(b).

The largest critical temperature for J = U/10, panel (a), is
found for wey, = 0.45 eV as T, = 10.6 K (A/T, = 4). Both
other cutoffs lead to smaller values of 7. = 9 K (A/T. ~ 3.6)
and 6.2 K (A/T, = 6), as seen from the blue and yellow
curves. Results for / = U/2 do not change much in this
respect: The maximal critical temperature is found for the in-
termediate w.,, = 0.54 eV, and is again 7, = 10.6 K (A/T, =~
5.6). From Fig. 11, we also learn that a change in cutoff can
lead to changes in the ratio of A = limy_,omax Ak, (0) over T,
which is usually taken as a measure of how strongly coupled
superconductivity is in a system. This can for example be seen
in panel (b) when comparing the yellow and the red lines. At
T =5 K, the former shows a larger gap size, although the T,
is higher for the latter, hence the gap over T, ratioat T — 0 K
can not be expected to be the same. We note that a precise
limit of zero temperature can not be calculated here due to the
associated computational costs.

Next we examine the FS momentum dependence and hence
the symmetry of Ag,(0), which is a direct result from our
self-consistent calculations. To achieve this, we calculate the
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FIG. 11. [(a) and (b)] Computed maximum superconducting gap
as function of temperature. Values of 7. are indicated by dashed
lines. (a) Taking (U, J) = (1.5802 eV, U/10) we show results for
W = 0.21 eV (blue), 0.45 eV (red) and 0.72 eV (yellow line).
(b) With (U,J) = (1.16 eV, U/2) we plot the maximum gap for
Weye = 0.12 eV in blue, 0.54 eV in red and 0.69 eV in yellow
color. (c) Superconducting gap projected on the renormalized FS for
J=U/10,U = 1.5802 eV and w.,, = 0.45eV atT =5K.

renormalized FS as

T _ Skn + 1—‘kn(O) _
kn = T 20 0, (32)

which does not noticeably deviate from the bare electron
pockets. The band-dependent superconducting gap is pro-
jected onto En in Fig. 11(c), where we choose U = 1.5802 eV
and J =U/10 at T =5 K. As is easily observed the gap
follows d-wave symmetry, which is similarly true for all
solutions presented for FeSe/STO in this work. Although this
particular symmetry has been proposed for monolayer FeSe
on STO [92], the magnitude of Ay, at the Fermi level as
found here is not sufficiently large to account for experimental
findings [91,93].

From the specifics of the interaction kernels discussed in
connection to Fig. 9, it is worth doing a simplified treatment
to explain our calculated gap symmetry. For simplicity, we
might consider Zg,(iw,,) = 1 and 'k, (iw,,) = 0 and focus on
the order parameter only. ¢, and [Vq(’)]nn, are both largest at
the zeroth frequency, hence we omit the dependence on the
Matsubara axis. In this sense, we can write Eq. (30) as

¢k’ n
®k’ -

Gn ~ =T Y [V I 33)
k'n’

Since we are interested in FS properties, and only a single
band in our dispersion crosses the Fermi level, we can remove
the band index and the associated sum on the right-hand side.

As a drastic simplification we may write the potential as sum
of delta peaks at the high-symmetry points, such that

t~ =T (VDs(q)+V™s(q— M)
k!

x) Pr
+ V7(q—-X)—, (34)

O
where VM%) i5 the approximate kernel size at the respective
momentum. We directly can neglect the contribution at X,
since no FS points can be connected by this reciprocal space

vector. Evaluating the sum over k’ leads to

b ~ TIVO| e _pyon e o)
Ok, Oke—m

where we use the sign change of V(;i:{ltra, as discussed in

Sec. IITA, and set V" = —|V{|. From here it is easy to
see that ¢y, is maximal if ¢,y = —¢x., which is just the
symmetry observed in Fig. 11(c).

From the results presented in this section one can conclude
that spin fluctuation mediated pairing cannot be the prevail-
ing mechanism in monolayer FeSe on STO. The onset of
superconductivity as found here does not compare well with
experimentally obtained values of T, ~ 60-100 K [11,12,17],
and the maximum calculated superconducting gap is also
too small [91,93]. A possible counter argument could be,
however, that the specifics of our tight-binding model are not
accurately resembling the experimentally observed situation.
We therefore check below the influence of the electronic
dispersions on our results.

C. Influence of the tight-binding model
and role of incipient pairing

Now we want to examine the influence of two specific as-
pects within the tight-binding model used for the calculation.
On the one hand we dope the system by means of a global
chemical potential, &, — &k, — # with u = 140 meV. This
significantly increases the size of our electronic FS pockets,
while placing the hole bands at rather deep energies, which are
not confirmed by experiment, see Ref. [16] and Appendix C.
In addition, we want to explore the role that the distance
between electron bands at X and hole bands at M plays in
the superconducting state. This is achieved by an artificial
nonrigid shift of only the hole bands by §u = —48 meV.
For further details on the modified energies see Appendix C.
In Fig. 12, we show the maximum superconducting gap as
function of U and w.y. The upper row panels (a)—(c) are ob-
tained by using &, — w, while the lower ones (d)—(f) represent
&xn — S The columns correspond to different choices of the
Hund’s rule coupling: (a) and (d) are for J = U/ 10, (b) and (e)
for J = U/6, and (c) and (f) for J/ = U/2. Note that we do not
show the full frequency range of Fig. 10, since in the current
simulations we always find a vanishing gap for we,e > 1 V.

Starting from results for &, — u, we see a slight en-
hancement of allowed phase space for a self-consistent so-
lution in the superconducting state, compare Fig. 10. The
scales along U are slightly different now due to a change in
boundaries regarding the first Stoner instability. This aspect
is explicitly discussed in Appendix C. As in the case of our
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(d),J =U/61n (b) and (e), and J = U/2 in (c) and (f).
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original dispersion, an increase in Hund’s rule coupling leads
to larger superconducting gaps near the onset of magnetic
order, see especially Fig. 12(c). The largest values possible
for a rigidly shifted dispersion with increased FS pockets
is about 7 meV. This particular configuration (U, J, Wy ) =
(1.16 eV,U/2,0.42 eV) leads to a critical temperature of
T. ~ 8.3 K, which is the maximal value found in all the
parameter space explored. Compared to Fig. 10, these obser-
vations point clearly towards an enhanced ratio A/7T, ~ 9.8,
which can not be expected to be compatible with experi-
ment. Generally we observe that the enhancement in the FS
size leads to increased superconducting gaps, which can be
explained by the larger DOS at the Fermi level, but not to
higher critical temperatures. The FS pocket sizes are very well
comparable to the experimentally observed situation, although
the resulting upper (lower) position of the hole (electron)
bands are not [16]. However, we still observe that spin fluc-
tuations are not sufficient to give the correct characteristics of
FeSe/STO.

When examining a decrease in distance between the bot-
tom of the electron band at X and the top of hole bands at
M we do not find any superconductivity for J = U/10 in
Fig. 12(d). Further, the available phase space for J = U/6
[panel (e)] and J = U/2 [panel (f)] is significantly smaller
than in corresponding graphs of Fig. 10. The maximum gap
possible for using a nonrigid shift of i occurs at J = U/6
and is around 8 meV. We can explain these results by a
qualitative comparison to bulk FeSe. Although the hole bands
at M do not cross the Fermi level for &, — S, the associated

coupling to electron pockets is significantly enhanced through
an exchange momentum q = X. For the bulk material we
find a hole band also at I', which in the current case is still
too far away from the Fermi level to contribute significantly,
compare Fig. 8(a). From above arguments it follows that
the leading instability for the nonrigidly shifted dispersion is
still at @ = M, favoring a sign change between FS pockets,
and hence the d-wave solution as observed in Fig. 11(c).
Combining this with an enhanced coupling at X there might
be a need of changing sign on the incipient hole band pockets,
introducing a node. As apparent, such a solution is hard to
accomplish, which means we need to choose U very close
to its critical value, such that the relative significance of cou-
plings at X is suppressed. This qualitative argument explains
why self-consistent solutions for the superconducting state are
found only very close to magnetic order in panels Figs. 12(e)
and 12(f), while the gap size for these confined regions is
enhanced, in comparison to Fig. 10, to a maximum of almost
8 meV. For dispersion &, —du and J = U/6 we calculate
the largest critical temperature as 7. ~ 11.4 K by choosing
(U, wen) = (2.48,0.18) eV, which is a slight enhancement
when compared to results obtained for our actual dispersion,
though by far not large enough to account for experimental
values. We note that this particular value is rather artificial
in any case, since corresponding positions of the hole bands
are far from angular resolved photoemission spectroscopy
(ARPES) measurements [16], see also Appendix C.

It has been proposed that the just-discussed incipient band
coupling can provide an explanation for the high critical
temperature in FeSe/STO, imposing an unconventional pair-
ing mechanism [65]. Our calculations presented in this work
point, however, towards the opposite direction, i.e., that incipi-
ent interaction leads to a decrease in the phase space available
for superconductivity, while mainly increasing the gap size
and hence the A /T, ratio. This discrepancy can be attributed
to neglected intraband interactions in Ref. [65], which in
our framework provide the dominant contributions, compare
Fig. 9, since FS points can be connected mainly viaq ~ I' and
q ~ M. Moreover, here we do not constrain the symmetry of
the superconducting order parameter [65], instead we obtain
it from the self-consistent calculation.

To further examine the relevance of incipient pairing
within our theory, we now remove all hole bands in the
electron dispersions and couplings artificially on the level
of Matsubara kernels from Eq. (25). With only the elec-
tron bands (for simplicity referred to as &) left we per-
form our self-consistent Eliashberg calculations and fol-
low the maximum superconducting gap with temperature,
see Fig. 13. We use (U, J) = (1.5802 eV, U/10) and run the
simulations for our dispersion &, (dashed) and the reduced
&, (solid). Two characteristic cutoff frequencies wey = 0.21
and 0.45 eV are shown in blue and red colors, respectively.
The onset of superconductivity is marked via dotted (dashed-
dotted) straight lines for &, (&,).

For cutoff w.,; = 0.21 eV, we find a decrease of T, from
9.0 K to 7.6 K due to neglecting the hole bands, while the
critical temperature goes from 10.6 K to 8.8 K for frequency
weut = 0.45 eV. Hence we find that in both cases almost
85% of the pairing stems from the electron bands only. This
in turn reveals that the role of hole bands is rather minor
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FIG. 13. Computed closing of the maximum superconducting
gap with temperature for J = U/10 and U = 1.5802 eV. Solid
(dashed) lines are found from &, (&,,) dispersions. For the blue and
red curves, we use cutoffs we,, = 0.21 and 0.45 eV, respectively.

in monolayer FeSe, compared to its bulk parent compound.
From the results in Fig. 13 and the discussion about changing
the dispersion via a nonrigid §« we can safely conclude that
the incipient band scenario put forward in Ref. [65] does not
lead to a satisfactory enhancement of 7. to values near the
experimentally observed ones in a full bandwidth Eliashberg
theory for spin fluctuations.

D. Simplified calculations

We now want to compare our results to computationally
less demanding and more effective theories, as they are rather
commonly employed [19,22,23]. For this purpose we use
the zero-frequency kernel V,;"' = [V{7(0)],,, and start with a
linearized BCS equation at the Fermi surface. By decoupling
Ak, = Agk, with gk a global symmetry form factor, we solve
for the coupling via [19,22]

Znn Cy v 95C/ uk,g q gk’
Q2 Y, I, Ses

Mgkl = — (36)

In Eq. (36), we integrate over FS sheets C, and
test form factors g € {i, cos(ky) + cos(ky), cos(k,) —
cos(ky), cos(ky)cos(ky), sin(k,)sin(k,)}. Among the gy, the
prevailing symmetry is determined by the largest coupling.
We test this setup for all cutoffs shown in Fig. 10 with an
enlarged range for U towards smaller values, and with all
three ratios of U/J as in panels (a)-(c) of this figure. Our
results reveal that the leading A has exclusively d-wave
symmetry, which implies that our self-consistent result in
Fig. 11(c) is governed by FS contributions. Since on this
level of approximation any value A > 0 leads to a finite
T. [20], solutions are found for all U and w.y, which
generally overestimates largely the available phase space
allowing for superconductivity. In addition, we find hardly
any dependence on w.y, Which is easily explained by the
fact that this approximation neglects the frequencies and all
momenta away from the Fermi level.

A less drastic approximation can be made by neglecting
only the Matsubara frequency components but keeping the full
momentum dependence. The self-consistent BCS equation for
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FIG. 14. Solution for the maximum superconducting gap from
BCS Eq. (37), calculated at T = 5 K. (a) J = U/10, (b) U/6, and
(c) U/2. (Inset) Maximum gap as function of U for two cutoff
frequencies, w.,; = 0.5 (blue curve) and 2.0 eV (red curve), using
J =U/10.

the superconducting gap is then found as

/ Ak’n’ Ek’n’
Agp = — v tanh , 37
k Z 4 D an <2T) 37)

with Ey, = ./ Ain + Elfn [20]. We solve the above equation at
T =5 K as function of U and w.y. Results for the maximum
superconducting gap in case of / = U/10,J = U/6, and J =
U/2 are shown in panels (a)-(c) of Fig. 14. The inset of
(a) shows the dependence of max Ak, on U = 10J for two
frequency cutoffs we, = 0.5 eV in blue and wy = 2.0 eV
in red. Comparing these results to Fig. 10 immediately
reveals a large increase of the superconducting gap sizes in
all three panels. Close to the Stoner instability A reaches
values as large as few hundred meV’s, which is by no means
compatible with experiment. Such a large enhancement is
not particularly surprising given that BCS theory has no
quantitative use beyond the very weak-coupling limit where
the mass renormalization is negligible. In addition the onset of
superconductivity occurs at smaller U, while the dependence
on weyt, as observed in Fig. 10, is almost completely lost. As
the inset of Fig. 14(a) clearly shows, the gap diverges for U
close to the Stoner instability. This behavior translates into
almost arbitrary gap magnitudes and corresponding critical
temperatures, which is clearly a deficiency of BCS theory. In
the following Sec. III E, we discuss the aspects of criticality in
U within both, BCS and Eliashberg treatments, and explicitly
show how the aforementioned problem is cured when solving
the full set of Egs. (28)—(30).

Our calculations in the current section reveal that spin-
fluctuation mediated pairing is drastically overestimated
within theories as BCS that neglect any frequency dependence
[62,65,66]. This holds true for the gap magnitude (and hence
T.) and the available phase space with respect to the choice of
w, J).
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FIG. 15. Calculated and fitted scalings for (U,J)=
(1.5802 eV,U/10) and @, =0.45 eV. (a) Maximum static
interaction kernel at ¢ = M as function of U. The actual values
are shown by the solid red curve, the fit by the blue dashed line
using Eq. (40). (b) Orange dotted (black solid) curve shows the left
(right) hand side of Eq. (39). (c) Increase of the superconducting
gap as function of U in the BCS framework. Red solid line:
self-consistently calculated results. Blue dashed line: Fit obtained by
using (a) and the scaling Ay, o V. Orange dotted curve: graphical
solution of (b) scaled appropriately.

E. An upper bound for the gap magnitude

The inset of Fig. 10 shows an approximately linear de-
crease of the superconducting gap as function of U, ob-
tained from our Eliashberg formalism. Contrarily we find
approximately a 1/U trend when solving the BCS equation in
Sec. III D, compare with the inset of Fig. 14(a). Below we use
some qualitative arguments to reproduce these trends, which
in case of the Eliashberg theory allows us to give a realistic
estimation of the maximally possible gap size in FeSe/STO
within our unconventional theory presented here.

Let us start from the BCS Eq. (37). If we confine ourselves
to the FS we can set &, = 0, hence Ey, = Ay,. Since in the
unfolded BZ only a single band is crossing the Fermi level we
omit the band index » and get

1 Aw
Ak, ~ —EZVqtanh(z;F). (38)
;.

The leading instability occurs at q = M, so we write Vq =
Vé(q — M) with V a function of the intraorbital coupling only.
Using the sign change among FS pockets Ag,_y = —Ak,
yields

1% Ak,
Ay, ~ -5 tanh ( T ) = F(Ak), (39)

which can be solved graphically as function of V =V (U),
see Fig. 15(b). There we show the left and right hand side
of Eq. (39) in dotted orange and solid black, respectively, for
U =1.5802eV,J =U/10, and w., = 0.45 eV, focusing on
a low-energy region of A. The crossing points indicate valid
solutions, which are shown in panel (c) as the dotted orange
curve. The actual values drawn in solid red are reproduced
quite accurately, indicating that we have the correct functional
dependencies.

As an alternative one can start from an estimate of the
scaling for V(U) by considering the spin susceptibility in
Eq. (10). Close to the Stoner instability )“((f (0) grows as
1/(U — U), with leading contributions at q = M. Inserting
this in Eq. (18) and neglecting all but the first contribution,
which represents the coupling via the spin degree of freedom,
gives ascaling V oc U? /(U — U). We fit the zero-frequency
maximum kernel for the superconducting channel by

U2
~ Ucrit —-U

and find Ut = 1.594 eV. If Ay, is sufficiently large we can
neglect the hyperbolic tangent in Eq. (39), and hence the
gap grows as Ay, oc V oc U2/(UMt — U). This approach is
depicted by blue dashed lines in Figs. 15(a) and 15(c). In panel
(a), we compare our actual data (red, solid) for the maximum
static Matsubara kernels with the fitted form of Eq. (40)
in blue and dashed, leading to an accurate agreement. This
particular functional form serves as input for the comparison
in panel (c), using similar color code. As expected the scaling
is very accurate for critical U — U™, while less precise for
smaller U.

From the above discussions we learn that the scaling of the
interaction kernel is directly translated to the order parameter,
leading to a 1/U divergence of the superconducting gap as
U — U in the BCS approximation. Such a behavior does
not correspond to the actual physical situation and is an arti-
fact of a too simplistic modeling. Below we show that such a
divergence does not occur in our Eliashberg formalism due to
the explicit inclusion of the electronic mass renormalization.

We use similar assumptions as before, i.e., we confine Mat-
subara frequency indices to m = m’ = 0 and k at the Fermi
level. The latter condition within Eliashberg theory translates
as &k, + ['k,(0) = 0, hence we only consider Egs. (28) and
(30). Let us assume for the moment that 7 > T, then ¢, = 0
and

1% (40)

1 1
Zg. ~ 1+ —— Va=—- 41
ke +7T2TkZ,qZk'F (41)
F

Taking the kernel again as V4 = V8(q — M), together with
Zie—m = Zx, leads to Zy, ~ 1+ V/7?TZ,.. The solution to
this second order polynomial is given by

1 1 \%
I ~ 5+ 7+ =5 42)
2 4 m2T

Next, we assume that the mass renormalization does not
change significantly when going to the superconducting
state. The order parameter can then be simplified as ¢y, =

[TV — nZTzzﬁF, where we use similar arguments that led to

Eqgs. (39) and (42). Finally, the superconducting gap function
then reads

a7, (43)

In Fig. 16, we present the solutions to fitting our actual
data to the simplified dependencies of Eqs. (42) and (43).
Panel (a) shows the maximum mass renormalization on the FS
as function of intraorbital coupling, where self-consistently

014502-14



ELIASHBERG THEORY FOR SPIN FLUCTUATION ...

PHYSICAL REVIEW B 102, 014502 (2020)

(a) (b)

N
b

Data

max Zy,
—_
o

=
i~

FIG. 16. Extremal values of Z, and Ay, close to the Stoner
instability, obtained at 7 =5 K,J = U/10 and w., = 0.45 eV.
(a) Maximum mass renormalization as function of U. The red solid
line shows the actual data, the blue dotted curve is our fitting result
from Eq. (42). (b) Maximum superconducting gap with the same
color code as (a). The fitting is done via Eq. (43)

obtained results from the Eliashberg equations are drawn in
solid red lines and the fit via Eq. (42) in dotted blue lines.
Close to the instability we retrieve the actual data very accu-
rately, confirming the proposed fitting function. Note that Z,

diverges as 1/+/U®it — U, In graph (b) of the same figure, we
model the maximum superconducting gap on the Fermi level
via Eq. (43) by the dotted blue curve, while our actual results
are again given by solid red lines. The onset of magnetic order
is indicated as gray dashed border, where the corresponding
U is found from Eq. (10), yielding a value slightly smaller
than the fitted U, Since, in contrast to the BCS situation,
Ax, does not diverge close to the border we can extract
the maximally possible gap by imposing U = 1.5805 eV
precisely at the instability. The upper bound obtained in this
way is maxy Ay, = 3.585 meV, which is close to results
already found in Fig. 11(a) due to a rather critical choice of
U therein.

From these results we learn two important aspects: First,
the Eliashberg formalism employed in this work removes
the unphysical divergence of the superconducting gap (and
hence T.) as function of U. This is due to a mild divergence
of the mass renormalization, which counteracts the scaling of
the interaction kernel, such that A grows only linear with U
in the instability region close to magnetic order. On the other
hand, we can consider our results for the superconducting
gap, and hence the transition temperatures, of Fig. 11 as
upper bounds already, since all values of U employed for
associated calculations have been chosen very close to the
Stoner instability.

IV. DISCUSSION AND CONCLUSIONS

Before formulating our conclusions it is appropriate to
discuss possible limitations of the here-developed formalism.

First, to start with, there is the influence that the employed
tight-binding energy bands could have. For example, the
tight-binding models used here do not account for spin-orbit
coupling. Nonetheless, we have taken care to simulate the
influences due to changes in the near-Fermi energy bands
of FeSe/STO in Sec. IIIC and did not find an apprecia-
ble change in the superconductivity characteristics. We have

furthermore performed our simulations in the unfolded, in-
stead of the folded BZ due to computational performance,
but changes due to this aspect are presumably small as well.
In addition, we do not take into account the coexistence of
superconductivity and nematicity in bulk FeSe because the
correlation between these two phases has been shown to be
small [26,31]. It is to be expected that the results presented
here will not change significantly due to a nematic reduction
of C4 to C, symmetry in the tight-binding description. In
such a setup, we would find all results from our Eliashberg
calculations to be similarly C, symmetric. Further, the leading
contribution of the interaction kernels will presumably still
occur at q = X, which is responsible for the sign change
of the superconducting gap function between electron and
hole pockets. We are therefore confident that our electronic
energies obeying C; symmetry produce reliable results even
without the inclusion of a nematic distortion.

Second, in the theory presented in Sec. II, we introduce
a frequency cutoff to truncate the real-frequency dependent
kernels when transforming into Matsubara space. This partic-
ular cutoff is one of the key ingredients to find self-consistent
solutions in the superconducting state. With this procedure,
we are able to controllably remove the Stoner continuumlike
incoherent end of the magnetic spectrum and the concomitant
high energy diverging tendencies which are not relevant to the
low-energy superconducting phenomena. Ideally, these high-
energy degrees of freedom should be integrated out and used
to renormalize the remaining interactions, in a manner similar
to the well-known treatment of the Coulomb interaction in
the electron-phonon problem that leads to the low-energy
Coulomb pseudopotential w* [20]. Such a procedure would
however increase considerably the already high complexity
and computational cost of the here- proposed framework
and is therefore out of the scope of the present work. The
influence of such corrections to our method is expected to
be rather minor since our results for bulk FeSe are very ac-
curate already. By enabling the systematic numerical solution
of the Eliashberg equations over a broad energy range, our
method provides a way of mapping out the relevant parts of
the spin-fluctuation spectrum that are important to the pairing
and therefore provides new insights to electronic mechanisms
of superconductivity.

Third, as a further step closer to the definite answer to the
superconductivity mediating mechanisms in bulk FeSe and
FeSe/STO, Eliashberg theory calculations, wherein both spin
fluctuations and electron-phonon coupling are treated on the
same footing are required. Nonetheless, a clear hint towards
the outcome of such an investigation is provided in this
work, together with studies [16,58,60,61] of phonon-mediated
superconductivity in FeSe/STO. The evidence collected in the
latter studies speaks clearly in favor of interfacial electron-
phonon coupling as dominant contribution to the supercon-
ducting gap, and hence its high T..

Summarizing, we have presented a full Eliashberg treat-
ment of spin-fluctuations mediated superconductivity with
broad applicability. While our results for bulk and monolayer
FeSe are representative for a wide spectrum in the class
of iron-based superconductors, the here-presented Eliashberg
formalism provides a way of examining the influence of
magnetic fluctuations in arbitrary materials, with and without
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superconductivity. With a faithful tight-binding model for
bulk FeSe as the only input needed for our treatment, we
achieve for FeSe good agreement with known experimental
quantities in the superconducting state: our maximum gap is
1.4 meV, compared to measurements that yield 1.67 meV
[18]. The self-consistently computed gap symmetry of s + s
type is also obtained correctly. Further, we find a critical
temperature of 6 K, which compares well to the measured
T. ~ 8 K [2]. As the outcomes presented are consistent with
the main characteristics of superconductivity in this material,
we are confident that our microscopic treatment captures the
important physics and thus provides strong support for spin-
fluctuations mediated superconductivity in bulk FeSe.

Applying the same methodology to monolayer FeSe on
STO, we find a clear discrepancy between computed results
for the superconducting state and well established experi-
mental facts as e.g. the critical temperature. Although the
tight-binding model we use for our main findings might
deviate to some degree from reality, we have explicitly tested
the influence of changing the FS size and distance between
electron and hole bands. For the former situation, i.e., a rigid
shift in the electronic dispersions, the maximum gap size is
increased to ~7 meV. Changing the electron-hole distance
on the other hand leads to even ~8 meV, which is not far
from experimental values. The critical temperature, however,
does not noticeably increase and stays at the order of 10 K.
Our results further indicate that band incipiency has little
effect on 7; and therefore, solely spin fluctuation in combi-
nation with band incipiency cannot explain superconductivity
in FeSe/STO. As we showed, the T, value computed with
full-bandwidth Eliashberg theory is notably lower than that
predicted by BCS theories based on spin fluctuations, due
to approximations involved in the latter. We have explicitly
shown that within Eliashberg theory there exists an upper limit
to the obtained T, as U — U™, in contrast to BCS theory
calculations where the gap values and critical temperatures
can be almost arbitrarily increased by choosing U close to
U*t of the antiferromagnetic transition. This emphasizes an
important quantitative limitation of the RPA-BCS approach
one should be aware of when comparing with experiments.
Overall, our results lead us to surmise that superconductivity
due to spin and charge fluctuations could be possible in
FeSe/STO, but only at temperatures slightly larger than the
T. ~ 8 K of bulk FeSe. Consequently, we conclude that a
spin-fluctuation mechanism alone cannot explain the observed
high 7, and that another, dominant pairing mechanism such as
interfacial electron-phonon coupling must be responsible.

In a broader context, there are many systems within the
family of Fe-based superconductors, for which an application
of the here-presented Eliashberg theory could shine light onto
the explanation of the superconducting state. One example
is the high-7;. superconductor Sr,VOsFeAs, a bulk material
consisting of alternating layers of Sr, VO3 and FeAs [94]. It
has been found that the FS of this material is distinct from
that of other Fe-based superconductors, and that FS nesting
arguments in favor of spin-fluctuations mediated supercon-
ductivity do not apply [95]. However, while further studies
have provided evidence for a magnetic origin of the 7, ~ 37K
[96,97], it was found that interfacial electron-phonon coupling
gives rise to enhanced forward scattering, resulting in replica

bands observable via quasiparticle interference [98]. Due to
an apparently great similarity to FeSe/STO, we speculate
therefore that the driving force behind the large critical tem-
perature in Sr,VOsFeAs could similarly be electron-phonon
interactions. Another example is the doping of potassium onto
three monolayers of FeSe on STO, which leads to a change of
the FS and a corresponding increase of 7, to over 40 K [99],
which suggests, too, an influence of the interfacial electron-
phonon interaction. A definite answer can, however, only be
given by studying both mechanisms (ideally) on equal footing.
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APPENDIX A: COMPUTATIONAL ASPECTS

We start by briefly motivating the functional form of
Eq. (3). As was shown, e.g., in Ref. [22], the bare suscepti-
bility can be written as

s P*_q 1%
[Xo(w)]pq _ _ Z Aenn akJrqn’akJrqn’
4 st ék-&-qn/ - Skn +w+ie

n,n' Kk
X [ng(&kn) — 15 Ekrqn)], (A1)
where & > 0 is considered to be small. We now Wan+t
to apply the Sokhotsi-Plemelj theorem f(x)/(x + ie) ‘=5
—im f(x)8(x) + P[f(x)/x], where P denotes the principal

value. We are interested in the imaginary part of the result
only, so we can write

Im([xg (@)

=7 ) 8krqn — Ekn + ©)

n,n' kK

X i, @ Oy s g 118 (Bicn) — 1E(Ekqn)], (A2)
which coincides with Eq. (3) when considering that the Fermi-
Dirac function is real. As mentioned in the main text, the
above is based on the condition that any potential contribution
from the imaginary part of the orbital weight product cancels
after taking the k-sum. The here presented formulation of our
theory applies to such a generic situation.

The tight-binding models employed in this work are taken
from Refs. [67,68] and give rise to matrix elements obeying
ap €R for all p,k, and n, hence a,  =al . As a con-
sequence, some numerical calculations can be made more
efficient and an analytical analysis becomes easier.

When calculating the imaginary part of the bare suscepti-
bility we confine ourselves to the irreducible part of the BZ
in momentum q, since the result must respect the tetragonal
symmetry of the electronic dispersion. This includes, but is
not restricted to, inversion symmetry:

Im([xg(@]) = Im([x2g@]). (A3)
Due to the matrix elements being real, we can immediately
write the orbital symmetries

Im([xg(@)]}) = Im([xg @] ;)

= Im([xg@)]) =Im([xg@],,). A4
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Combining Eqgs. (A3) and (A4) leads to further simplifications
on the frequency axis,

Im([xq(@)]}})

— t q p K
= —7T E akn,akn,ak+qnak+qn
n,n' k

X [ngkn ) — 15 (Sk+qn)18 (Ekt-qn

— P s t q
=7 z : ak’nak’nak’+qn/ ak’+qn’
n,n' K’

- Ekn’ + CL))

X [nF(Ek’n) - nF(Ek’-‘rqn’)]S(Sk’+qn’_§k’n - (,())
—Im([xg(-)]).

where we used k = k' — q in the first step and replaced
k' — k in the second step. This expression simply means
that the system’s linear response respects causality. We hence
calculate the imaginary susceptibilities only for v < 0.

The delta function in Eq. (3) is approximated by a Gaus-
sian, where we make use of an adaptive smearing method
to obtain reasonable broadenings [73]. Written explicitly, we
approximate

(AS5)

1
irar = G+ 0) = = oG —batoPWE | (AG)
k
with the broadening matrix
d
Wie=a - o (Girar — &kn)| Ak (A7)

that adapts to the electronic velocities. The parameter o can be
chosen close to unity and Ak is the spacing of the momentum
grid [73].

As stated in the main text, the real bare susceptibility is
found by using a Kramers-Kronig relation. The integration
bounds of 00, see Eq. (5), are truncated as follows:

Re(lg@]l) = 27 [ 5 ()
w a)
+2p [ (@l
odd in o’
1 o0
— 7 [ S m(gl)

d
:—P/ @do m([x2@)]"). (A8)

All momentum and orbital symmetries valid for the imagi-
nary part translate directly to the real part. The cutoff C > 0
must be chosen such that no high-frequency information is
lost. Since the delta function in Eq. (3) peaks at frequencies
® = &y — &g We keep all contributions by choosing C >
2 maxy , |&kn|. Note that C is not in any way related to the
truncation parameter wcy, which we extensively use in the
main text.

Let us now turn to characteristic properties of the bare
susceptibility. The real part in Eq. (5) can be rewritten

1 L
— ——FeSe/STO
N ——Bulk FeSe
5 0.5
<
0 1 1 1 1
20 40 60 80 100

T(K)

FIG. 17. Temperature dependence of x, for FeSe/STO (blue
line) and bulk FeSe (red line). The dispersions used are as introduced
in the main text, from Refs. [68] and [67], respectively.

analytically by inserting Eq. (3):

Re([xq(@]y)
= _Z akna{():ai+qn/ak+qn [nF(skn)
n,n' k
— 1 (g )IP / 5 (Exrqn — kn + @)

Y nF@an)—nF(ékn)
kn®kn “k+qn’ k+qn %—k+ ” _gkn +C()+l5

n,n' k
(A9)

Such a form is used e.g. in Ref. [22]. It is well known that for
q — 0 and vanishing frequencies the susceptibility is equal
to the density of states at the Fermi level, provided that also
T — 0. It can be shown from Eq. (A9) that we recover this
limit. Considering Xo*s‘a‘ from Eq. (6), we find

Ostat‘l_’o E:E: E:
Xq 5 akn akn akn’ akn

s n,n'k

1 (&) — nE(€xn)
x

Ekn’ - Skn +i8
_ 1 Z lim nE (k) — nF(E'kn) ‘ (A10)
nw—n ’i:kn’ - Ekn + i6

At zero temperature, one gets xo = 2)(8*“‘“ — Y N,(0),
where N, (0) is the band-resolved density of states at the Fermi
level [22]. Note that we do not use aﬁn € R in the above
calculation, i.e., the result holds for general tight-binding
models.

We plot xo as function of temperature in Fig. 17 for both
bulk FeSe (red line) and the monolayer case (blue line).
No significant changes for temperatures 7 € [5, 100] K are
observed for both electronic dispersions. We hence assume
that thermal broadening effects do not noticeably alter the bare
susceptibility found from Egs. (3) and (5). Therefore, taking
T =5 K, we calculate the susceptibility only once for given
electron energies and use the result also for larger tempera-
tures. A distinction with respect to T enters therefore when
transforming the interaction kernels from real to Matsubara
frequencies, Eq. (25).

For RPA susceptibilities, we keep only the imaginary parts
from solutions to Egs. (7) and (8), since the real parts are
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not needed for subsequent calculations. The momentum and
frequency symmetries are similar to the imaginary bare sus-
ceptibility. Mapping the four-rank tensors to simple matrices,
as mentioned in the main text, is a two- step procedure, which
we explain here briefly by using [US]? as an example. First,
the orbital indices within the tensors must be rearranged
according to [US1% — [US]/. Note that this transformation
is nontrivial since it does not fall into any orbital symmetry of
the bare susceptibility or the Stoner tensors, compare Egs. (9)
and (A4). The second step is the actual mapping, which is not
uniquely defined. In our implementation, we use

VG, j)e[1.L2]: U5 =W, (Al1)
where L, is the number of orbitals and
g=1Ti/L,], p=1+G—1) modL,,
t=1T[j/L,], s=14+(—1) modL,. (A12)

Note that this mapping is unidirectional, i.e., from knowing
P, g, s,t one cannot solve for the associated i, j analytically.
One can, however, at any time convert the matrices back to
four-rank tensors numerically, so the mapping can be consid-
ered invertible.

For implementing Egs. (17) and (18), we employ again
the tensor-matrix mapping as discussed above. The Coulomb
terms are present only for [V~ ()], since this is the ker-
nel used for off-diagonal Green s function elements. As is
common practice we assume the Coulomb interaction to be
taken into account in the tight-binding model, which is why
no additional terms appear in the coupling used for diagonal
elements of the Green’s function. In real-frequency space the
terms US/2 and UC/2 in Eq. (18) are needed for double
counting. As we show below, no such contributions enter the
Matsubara space calculation. Inserting the Coulomb terms
into Eq. (19) and using a, € R gives

1
f* S % N Cqt
5 E § knakn[U +U ]psak qn’ak qr’
k stpg

1
- t s S Citg
=3 E E A, U +U ] ak qn,ak an
k stpg

(A13)

In Eq. (20), we need to explicitly take the imaginary part of
the above, which is identically zero; hence the Coulomb terms
do not enter into the kernels used for the Eliashberg equations.

The integral in Eq. (20) is treated similarly as in Eq. (A8).
We take only the negative frequency axis into account and set
the lower integration bound to —C < —2 maxy , |&kal:

Re([V, ™ (igm)luw)

=— iqm “ /

B P/ <w2 + qm w? + qr2n>1m([vq (w)]nn )
0

- ‘7’ / do—s—— Im([V‘ﬂ(w)]nn ). (A14)

When calculating Eq. (25) we replace C by the truncation
cutoff w, in the above.

The kernels in Matsubara space are even in g,, and, as all
quantities considered in this work except the matrix elements,
tetragonal in q. Additionally, Re([V ™ (igy)],, ) is invariant

nn’

under exchanging the band indices, which is a symmetry
directly translated from the real-frequency kernel. Below we
show that the latter is invariant under exchanging n <> n':

[VE (@) = ZZakn Ay Ve @) ay_g,ai g,

stpq

— (£) rq .t
ZZak qnak qn V ()] Ay gy

stpq

Px _q*rys(£)
= E E Wy Oy V ()15 ak/+q,,/ak,+qn/,

K stpg

(A15)

where we used a; € R and k =k’ + q. Due to inversion

symmetry of [V, (i)(w)] and [V(i)(a))]bt , we can write

E § q%* p*ryy(x)
Ay akn V (C())] st ak qn’ ak qn’’

k stpg

V(@) =

(A16)

where we also rename k' to k. Reshuffling the orbital dummy
indices then gives

Vo) n =YY dirainlViE (@)1l at_ o

k stpg
=V (@)

The Eliashberg Egs. (28)—-(30) are solved iteratively with
a convergence criterion of 10~ as threshold for the maximal
absolute change in all three functions. Always taking more
than 2000 points on the Matsubara axis we are confident to
be converged in the number of frequencies. Note that a much
larger number is partially employed (and needed), depending
on the cutoff used for calculating the interaction kernels, see
Secs. IIC and IIT A. In the calculations presented we adjust
the number of frequencies as required depending on w¢y;. For
increasing the numerical performance, we employ a Fourier
convolution scheme in momenta and frequencies. Since the
BZ symmetry of the order parameter is a priori not known
one needs to be careful with the initialization before starting
the iterative loop. If the initial guess does not obey the favored
symmetry the algorithm might not converge or give a zero
solution. For all results presented in the main text, we tested
several alternative form factors as initial guess and did not
find any nonzero solutions different from the ones presented.
This shows that the symmetries discussed in the main text are
the only possible scenarios for the gap within the associated
setups.

(A17)

APPENDIX B: SUSCEPTIBILITIES OF FeSe/STO

In Fig. 8, panels (c) and (f), of the main text we show
the dynamic bare and spin susceptibilities respectively. As
is apparent from this graph, dominant contributions of both
quantities appear at wave vector q = M. Due to the magni-
tudes of xff WM and X{f‘dy“ in close vicinity of this momentum,
the low-frequency region is not resolved very clearly. For this
purpose we replot both functions in Fig. 18, zoomed into the
low-energy regime and with modified contrast. In this way the
distinct branches below the onset of the Stoner continuum are
better visible.
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S,dyn
q

(ev™)

Xg.dyu (b)
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FIG. 18. Zoom into the low-energy region for susceptibilities
of FeSe/STO. (a) Dynamic bare susceptibility as calculated from
Eq. (4). (b) Spin susceptibility computed from Eq. (14) as function
of frequencies and momenta.

APPENDIX C: MODIFYING THE DISPERSION
FOR FeSe/STO

In Sec. Il C, we show effects on our results for FeSe/STO
when changing either the size of the FS pockets or the distance
between hole and electron bands. The former is achieved by
introducing a rigid chemical potential w, such that &, —
&xn — 1. This operation commutes with all constituents of the
Hamiltonian, hence the matrix elements are not affected. On
the other hand, when shifting only the hole bands by a non-
rigid 8 we need to recalculate aj, . Consider the initial kinetic
term Hy, which is diagonalized as Hy = aka' ora'Hya = €.
For simplicity we omit the momentum dependence here and
write the eigenvalues and eigenvectors in matrix notation.
Now we add a selective shift on both sides, which only affects
the hole bands:

ALY A i . i
aTHoa—(sM(” 0):5—&@(" 0). (C1)

In Eq. (C1), we take the band ordering such that first all hole
bands, and then all electron bands are listed. This is indicated
by subscripts & and e, denoting the respective subspaces. On
the right hand side we get a modified dispersion &', which
are the eigenvalues of a Hamiltonian H(; # Hy. To find the
corresponding eigenvectors we calculate the new Hamiltonian
as

ﬂé = I_}O —_ &SIL(Ih A )&T == &lé/ad— ) (C2)

which leads to the modified eigenvectors &'.

To summarize, we realize a relative shift of the hole bands
by diagonalizing H, which gives the matrix elements a. These
are used to calculate ﬁé from Eq. (C2), which again needs to
be made diagonal to have access to the desired dispersion &’
and the associated a'.

U (eV)

FIG. 19. (a) Electronic energies along high-symmetry lines of
the unfolded BZ. The initial dispersions &g, as used in Sec. III B
are shown as solid black curves. Shifting the bands rigidly to lower
energies by 1 = 140 meV results in the red dotted lines. The dashed
purple lines show the effect of bringing the hole bands closer to the
Fermi level by 64 = —48 meV. (b) Phase diagram of allowed values
for U and J, replotted from Fig. 8(e). The red dotted (purple dashed)
boundaries correspond to artificial modifications of the electronic
dispersions, as indicated in (a).

The discussions in Sec. IIIC are made for energies as
plotted in Fig. 19(a). Starting from the initial &, shown in
solid black, we modify in two different ways. The influence
of the FS pocket size is studied by rigidly shifting the energies
as &k, — WU, shown in dotted red, with ¢ = 140 meV. To study
changes with the distance between electron and hole bands
we use 0 = —48 meV, shown in dashed purple. We choose
these two modifications of the tight-binding model, since the
effects we want to study are perfectly decoupled in this way.

Both rigid and nonrigid shifts produce changes in the bare
susceptibilities due to the evaluation of Fermi-Dirac functions
in Eq. (3). This in turn leads to altered boundaries in the
(U, J) phase diagram, as we sketch in Fig. 19(b). As seen
from the red and dotted curves, a rigid shift by u introduces
slight changes in the boundary for magnetic order, but the
effect is rather minor. Contrarily, bringing electron and hole
bands closer together allows for significantly larger values of
U and J as can be seen from the purple dashed lines. When
performing our self-consistent calculations in (U, @) space,
Fig. 12, we adjust our parameter choices according to the
changed boundaries of Fig. 19(b).

[1] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am.
Chem. Soc. 130, 3296 (2008).

[2] E-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P. M.
Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, and M.-K.
‘Wu, Proc. Natl. Acad. Sci. USA 105, 14262 (2008).

[3] M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101,
107006 (2008).

[4] S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. L.
Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov,
G. Wortmann, and C. Felser, Nat. Mater. 8, 630 (2009).

[5] I. I. Mazin and J. Schmalian, Physica C 469, 614 (2009).

[6] D. C. Johnston, Adv. Phys. 59, 803 (2010).

[7] G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).

[8] F. Wang and D.-H. Lee, Science 332, 200 (2011).

014502-19


https://doi.org/10.1021/ja800073m
https://doi.org/10.1073/pnas.0807325105
https://doi.org/10.1103/PhysRevLett.101.107006
https://doi.org/10.1038/nmat2491
https://doi.org/10.1016/j.physc.2009.03.019
https://doi.org/10.1080/00018732.2010.513480
https://doi.org/10.1103/RevModPhys.83.1589
https://doi.org/10.1126/science.1200182

SCHRODI, APERIS, AND OPPENEER

PHYSICAL REVIEW B 102, 014502 (2020)

[9] P. Dai, Rev. Mod. Phys. 87, 855 (2015).

[10] Q. Si, R. Yu, and E. Abrahams, Nat. Rev. Mater. 1, 16017
(2016).

[11] W. Qing-Yan, L. Zhi, Z. Wen-Hao, Z. Zuo-Cheng, Z. Jin-Song,
L. Wei, D. Hao, O. Yun-Bo, D. Peng, C. Kai, W. Jing, S. Can-Li,
H. Ke, J. Jin-Feng, J. Shuai-Hua, W. Ya-Yu, W. Li-Li, C. Xi, M.
Xu-Cun, and X. Qi-Kun, Chin. Phys. Lett. 29, 037402 (2012).

[12] D. Liu, W. Zhang, D. Mou, J. He, Y.-B. Ou, Q.-Y. Wang, Z. Li,
L. Wang, L. Zhao, S. He, Y. Peng, X. Liu, C. Chen, L. Yu, G.
Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, J. Hu, X. Chen, X. Ma,
Q. Xue, and X. Zhou, Nat. Commun. 3, 931 (2012).

[13] S. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y.-B.
Ou, Q.-Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L.
Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X.
Ma, Q. Xue, and X. J. Zhou, Nat. Mater. 12, 605 (2013).

[14] S. Tan, Y. Zhang, M. Xia, Z. Ye, F. Chen, X. Xie, R. Peng, D.
Xu, Q. Fan, H. Xu, J. Jiang, T. Zhang, X. Lai, T. Xiang, J. Hu,
B. Xie, and D. Feng, Nat. Mater. 12, 634 (2013).

[15] R. Peng, X. P. Shen, X. Xie, H. C. Xu, S. Y. Tan, M. Xia, T.
Zhang, H. Y. Cao, X. G. Gong, J. P. Hu, B. P. Xie, and D. L.
Feng, Phys. Rev. Lett. 112, 107001 (2014).

[16] J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y.-T. Cui,
W. Li, M. Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu,
T. P. Devereaux, D.-H. Lee, and Z.-X. Shen, Nature 515, 245
(2014).

[17] J.-F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue,
Y. Liu, and J.-F. Jia, Nat. Mater. 14, 285 (2015).

[18] L. Jiao, C.-L. Huang, S. RoBler, C. Koz, U. K. RoBler, U.
Schwarz, and S. Wirth, Sci. Rep. 7, 44024 (2017).

[19] D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34, 8190
(1986).

[20] J. P. Carbotte and F. Marsiglio, in The Physics of Superconduc-
tors: Vol. I. Conventional and High-Tc Superconductors, edited
by K. H. Bennemann and J. B. Ketterson (Springer, Berlin,
Heidelberg, 2003), pp. 233-345.

[21] K. Kubo, Phys. Rev. B 75, 224509 (2007).

[22] S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino,
New J. Phys. 11, 025016 (2009).

[23] A. F. Kemper, T. A. Maier, S. Graser, H.-P. Cheng, P. J.
Hirschfeld, and D. J. Scalapino, New J. Phys. 12, 073030
(2010).

[24] S. Margadonna, Y. Takabayashi, M. T. McDonald, K.
Kasperkiewicz, Y. Mizuguchi, Y. Takano, A. N. Fitch, E.
Suarde, and K. Prassides, Chem. Commun. 43, 5607 (2008).

[25] R. M. Fernandes, A. V. Chubukov, J. Knolle, I. Eremin, and
J. Schmalian, Phys. Rev. B 85, 024534 (2012).

[26] A. E. Bohmer, F. Hardy, F. Eilers, D. Ernst, P. Adelmann,
P. Schweiss, T. Wolf, and C. Meingast, Phys. Rev. B 87,
180505(R) (2013).

[27] R. M. Fernandes, A. V. Chubukov, and J. Schmalian, Nat. Phys.
10, 97 (2014).

[28] H.-H. Kuo, J.-H. Chu, J. C. Palmstrom, S. A. Kivelson, and I. R.
Fisher, Science 352, 958 (2016).

[29] A. V. Chubukov, M. Khodas, and R. M. Fernandes, Phys. Rev.
X 6, 041045 (2016).

[30] A. E. Bohmer and A. Kreisel, J. Phys.: Condens. Matter 30,
023001 (2018).

[31] S.-H. Baek, J. Mok, J. S. Kim, S. Aswartham, I. Morozov, D.
Chareev, T. Urata, K. Tanigaki, Y. Tanabe, B. Biichner, and
D. V. Efremov, njp Quant. Mater. 5, 8 (2020).

[32] T. Imai, K. Ahilan, F. L. Ning, T. M. McQueen, and R. J. Cava,
Phys. Rev. Lett. 102, 177005 (2009).

[33] M. C. Rahn, R. A. Ewings, S. J. Sedlmaier, S. J. Clarke, and
A. T. Boothroyd, Phys. Rev. B 91, 180501(R) (2015).

[34] Q. Wang, Y. Shen, B. Pan, Y. Hao, M. Ma, F. Zhou, P. Steffens,
K. Schmalzl, T. R. Forrest, M. Abdel-Hafiez, D. A. Chareev,
A. N. Vasiliev, P. Bourges, Y. Sidis, H. Cao, and J. Zhao,
Nat. Mater. 15, 159 (2016).

[35] Q. Wang, Y. Shen, B. Pan, X. Zhang, K. Ikeuchi, K. Iida, A. D.
Christianson, H. C. Walker, D. T. Adroja, M. Abdel-Hafiez,
X. Chen, D. A. Chareev, A. N. Vasiliev, and J. Zhao, Nat.
Commun. 7, 12182 (2016).

[36] C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. R. II, J. L.
Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and
P. Dai, Nature 453, 899 (2008).

[37] A. D. Christianson, M. D. Lumsden, S. E. Nagler, G. J.
MacDougall, M. A. McGuire, A. S. Sefat, R. Jin, B. C. Sales,
and D. Mandrus, Phys. Rev. Lett. 103, 087002 (2009).

[38] M. D. Lumsden, A. D. Christianson, D. Parshall, M. B. Stone,
S. E. Nagler, G. J. MacDougall, H. A. Mook, K. Lokshin, T.
Egami, D. L. Abernathy, E. A. Goremychkin, R. Osborn, M. A.
McGuire, A. S. Sefat, R. Jin, B. C. Sales, and D. Mandrus,
Phys. Rev. Lett. 102, 107005 (2009).

[39] Z. P. Yin, K. Haule, and G. Kotliar, Nat. Phys. 7, 294 (2011).

[40] Z. P. Yin, K. Haule, and G. Kotliar, Nat. Mater. 10, 932 (2011).

[41] Z. P. Yin, K. Haule, and G. Kotliar, Nat. Phys. 10, 845 (2014).

[42] D. D. Scherer, A. C. Jacko, C. Friedrich, E. Sasioglu, S. Bliigel,
R. Valenti, and B. M. Andersen, Phys. Rev. B 95, 094504
(2017).

[43] L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev. Lett.
101, 026403 (2008).

[44] Y. Nomura, K. Nakamura, and R. Arita, Phys. Rev. Lett. 112,
027002 (2014).

[45] 1. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys.
Rev. Lett. 101, 057003 (2008).

[46] K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani,
and H. Aoki, Phys. Rev. Lett. 101, 087004 (2008).

[47] C. Platt, R. Thomale, and W. Hanke, Phys. Rev. B 84, 235121
(2011).

[48] A. Aperis, P. Kotetes, G. Varelogiannis, and P. M. Oppeneer,
Phys. Rev. B 83, 092505 (2011).

[49] H. Ikeda, R. Arita, and J. Kunes$, Phys. Rev. B 82, 024508
(2010).

[50] D. J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012).

[51] F. Essenberger, P. Buczek, A. Ernst, L. Sandratskii, and E. K. U.
Gross, Phys. Rev. B 86, 060412(R) (2012).

[52] J. Lischner, T. Bazhirov, A. H. MacDonald, M. L. Cohen, and
S. G. Louie, Phys. Rev. B 91, 020502(R) (2015).

[53] F. Essenberger, A. Sanna, P. Buczek, A. Ernst, L. Sandratskii,
and E. K. U. Gross, Phys. Rev. B 94, 014503 (2016).

[54] S. N. Rebec, T. Jia, C. Zhang, M. Hashimoto, D.-H. Lu, R. G.
Moore, and Z.-X. Shen, Phys. Rev. Lett. 118, 067002 (2017).

[55] Q. Fan, W. H. Zhang, X. Liu, Y. J. Yan, M. Q. Ren, R. Peng,
H. C. Xu, B. P. Xie, J. P. Hu, T. Zhang, and D. L. Feng, Nat.
Phys. 11, 946 (2015).

[56] D. Huang and J. E. Hoffman, Ann. Rev. Condens. Matter Phys.
8,311 (2017).

[57] M. V. Sadovskii, Phys. Usp. 59, 947 (2016).

[58] L. Rademaker, Y. Wang, T. Berlijn, and S. Johnston, New J.
Phys. 18, 022001 (2016).

014502-20


https://doi.org/10.1103/RevModPhys.87.855
https://doi.org/10.1038/natrevmats.2016.17
https://doi.org/10.1088/0256-307X/29/3/037402
https://doi.org/10.1038/ncomms1946
https://doi.org/10.1038/nmat3648
https://doi.org/10.1038/nmat3654
https://doi.org/10.1103/PhysRevLett.112.107001
https://doi.org/10.1038/nature13894
https://doi.org/10.1038/nmat4153
https://doi.org/10.1038/srep44024
https://doi.org/10.1103/PhysRevB.34.8190
https://doi.org/10.1103/PhysRevB.75.224509
https://doi.org/10.1088/1367-2630/11/2/025016
https://doi.org/10.1088/1367-2630/12/7/073030
https://doi.org/10.1039/b813076k
https://doi.org/10.1103/PhysRevB.85.024534
https://doi.org/10.1103/PhysRevB.87.180505
https://doi.org/10.1038/nphys2877
https://doi.org/10.1126/science.aab0103
https://doi.org/10.1103/PhysRevX.6.041045
https://doi.org/10.1088/1361-648X/aa9caa
https://doi.org/10.1038/s41535-020-0211-y
https://doi.org/10.1103/PhysRevLett.102.177005
https://doi.org/10.1103/PhysRevB.91.180501
https://doi.org/10.1038/nmat4492
https://doi.org/10.1038/ncomms12182
https://doi.org/10.1038/nature07057
https://doi.org/10.1103/PhysRevLett.103.087002
https://doi.org/10.1103/PhysRevLett.102.107005
https://doi.org/10.1038/nphys1923
https://doi.org/10.1038/nmat3120
https://doi.org/10.1038/nphys3116
https://doi.org/10.1103/PhysRevB.95.094504
https://doi.org/10.1103/PhysRevLett.101.026403
https://doi.org/10.1103/PhysRevLett.112.027002
https://doi.org/10.1103/PhysRevLett.101.057003
https://doi.org/10.1103/PhysRevLett.101.087004
https://doi.org/10.1103/PhysRevB.84.235121
https://doi.org/10.1103/PhysRevB.83.092505
https://doi.org/10.1103/PhysRevB.82.024508
https://doi.org/10.1103/RevModPhys.84.1383
https://doi.org/10.1103/PhysRevB.86.060412
https://doi.org/10.1103/PhysRevB.91.020502
https://doi.org/10.1103/PhysRevB.94.014503
https://doi.org/10.1103/PhysRevLett.118.067002
https://doi.org/10.1038/nphys3450
https://doi.org/10.1146/annurev-conmatphys-031016-025242
https://doi.org/10.3367/UFNe.2016.06.037825
https://doi.org/10.1088/1367-2630/18/2/022001

ELIASHBERG THEORY FOR SPIN FLUCTUATION ...

PHYSICAL REVIEW B 102, 014502 (2020)

[59] Q. Song, T. L. Yu, X. Lou, B. P. Xie, H. C. Xu, C. H. P. Wen,
Q. Yao, S. Y. Zhang, X. T. Zhu, J. D. Guo, R. Peng, and D. L.
Feng, Nat. Commun. 10, 758 (2019).

[60] A. Aperis and P. M. Oppeneer, Phys. Rev. B 97, 060501(R)
(2018).

[61] F. Schrodi, A. Aperis, and P. M. Oppeneer, Phys. Rev. B 98,
094509 (2018).

[62] Y. Gao, Y. Yu, T. Zhou, H. Huang, and Q.-H. Wang, Phys. Rev.
B 96, 014515 (2017).

[63] T. Shishidou, D. F. Agterberg, and M. Weinert, Commun. Phys.
1, 8 (2018).

[64] J. Jandke, F. Yang, P. Hlobil, T. Engelhardt, D. Rau, K. Zakeri,
C. Gao, J. Schmalian, and W. Wulfhekel, Phys. Rev. B 100,
020503 (2019).

[65] A. Linscheid, S. Maiti, Y. Wang, S. Johnston, and P. J.
Hirschfeld, Phys. Rev. Lett. 117, 077003 (2016).

[66] A. Kreisel, B. M. Andersen, P. O. Sprau, A. Kostin, J. C. S.
Davis, and P. J. Hirschfeld, Phys. Rev. B 95, 174504(R)
(2017).

[67] H. Eschrig and K. Koepernik, Phys. Rev. B 80, 104503
(2009).

[68] N. Hao and J. Hu, Phys. Rev. X 4, 031053 (2014).

[69] C. Zhang, Z. Liu, Z. Chen, Y. Xie, R. He, S. Tang, J. He, W. Li,
T. Jia, S. N. Rebec, E. Y. Ma, H. Yan, M. Hashimoto, D. Lu,
S.-K. Mo, Y. Hikita, R. G. Moore, H. Y. Hwang, D. Lee, and
Z. Shen, Nat. Commun. 8, 14468 (2017).

[70] A. M. Oles, Phys. Rev. B 28, 327 (1983).

[71] T. Takimoto, T. Hotta, and K. Ueda, Phys. Rev. B 69, 104504
(2004).

[72] K. Kuroki, H. Usui, S. Onari, R. Arita, and H. Aoki, Phys. Rev.
B 79, 224511 (2009).

[73] J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Phys. Rev. B
75, 195121 (2007).

[74] C. Heil, H. Sormann, L. Boeri, M. Aichhorn, and W. von der
Linden, Phys. Rev. B 90, 115143 (2014).

[75] E. Liu, C.-C. Liu, K. Wu, F. Yang, and Y. Yao, Phys. Rev. Lett.
111, 066804 (2013).

[76] X. Wu, F. Yang, C. Le, H. Fan, and J. Hu, Phys. Rev. B 92,
104511 (2015).

[77] C.-C. Liu, L.-D. Zhang, W.-Q. Chen, and F. Yang, Phys. Rev.
Lett. 121, 217001 (2018).

[78] K. Haule, C.-H. Yee, and K. Kim, Phys. Rev. B 81, 195107
(2010).

[79] J. Bekaert, A. Aperis, B. Partoens, P. M. Oppeneer, and M. V.
Milosevi¢, Phys. Rev. B 97, 014503 (2018).

[80] A. J. Millis, S. Sachdev, and C. M. Varma, Phys. Rev. B 37,
4975 (1988).

[81] P. J. Williams, Ph.D. thesis, McMaster University, Canada,
1990.

[82] K. Yada and H. Kontani, J. Phys. Soc. Jpn. 74, 2161
(2005).

[83] M. Mochizuki, Y. Yanase, and M. Ogata, Phys. Rev. Lett. 94,
147005 (2005).

[84] M. Mochizuki, Y. Yanase, and M. Ogata, J. Phys. Soc. Jpn. 74,
1670 (2005).

[85] H. Ikeda, R. Arita, and J. Kune$, Phys. Rev. B 81, 054502
(2010).

[86] Z.-J. Yao, J.-X. Li, and Z. D. Wang, New J. Phys. 11, 025009
(2009).

[87] The Uppsala Superconductivity (UppSC) code provides a
package to self-consistently solve the anisotropic, multiband,
and full-bandwidth Eliashberg equations for frequency-even
and -odd superconductivity mediated by phonons or spin-
fluctuations on the basis of ab initio calculated input.

[88] A. Aperis, P. Maldonado, and P. M. Oppeneer, Phys. Rev. B 92,
054516 (2015).

[89] E. Schrodi, A. Aperis, and P. M. Oppeneer, Phys. Rev. B 99,
184508 (2019).

[90] P. O. Sprau, A. Kostin, A. Kreisel, A. E. Bohmer, V. Taufour,
P. C. Canfield, S. Mukherjee, P. J. Hirschfeld, B. M. Andersen,
and J. C. S. Davis, Science 357, 75 (2017).

[91] Y. Zhang, J. J. Lee, R. G. Moore, W. Li, M. Yi, M. Hashimoto,
D. H. Lu, T. P. Devereaux, D.-H. Lee, and Z.-X. Shen, Phys.
Rev. Lett. 117, 117001 (2016).

[92] Z. Ge, C. Yan, H. Zhang, D. Agterberg, M. Weinert, and L. Li,
Nano Lett. 19, 2497 (2019).

[93] C. Tang, C. Liu, G. Zhou, F. Li, H. Ding, Z. Li, D. Zhang, Z. L1,
C. Song, S. Ji, K. He, L. Wang, X. Ma, and Q.-K. Xue, Phys.
Rev. B 93, 020507(R) (2016).

[94] X. Zhu, F. Han, G. Mu, P. Cheng, B. Shen, B. Zeng, and H.-H.
Wen, Phys. Rev. B 79, 220512(R) (2009).

[95] K.-W. Lee and W. E. Pickett, Europhys. Lett. 89, 57008
(2010).

[96] 1. I. Mazin, Phys. Rev. B 81, 020507(R) (2010).

[97] S. Choi, H. J. Choi, J. M. Ok, Y. Lee, W.-J. Jang, A. T. Lee,
Y. Kuk, S. B. Lee, A. J. Heinrich, S.-W. Cheong, Y. Bang, S.
Johnston, J. S. Kim, and J. Lee, Phys. Rev. Lett. 119, 227001
(2017).

[98] S. Choi, S. Johnston, W.-J. Jang, K. Koepernik, K. Nakatsukasa,
J. M. Ok, H.-J. Lee, H. W. Choi, A. T. Lee, A. Akbari, Y. K.
Semertzidis, Y. Bang, J. S. Kim, and J. Lee, Phys. Rev. Lett.
119, 107003 (2017).

[99] Y. Miyata, K. Nakayama, K. Sugawara, T. Sato, and T.
Takahashi, Nat. Mater. 14, 775 (2015).

014502-21


https://doi.org/10.1038/s41467-019-08560-z
https://doi.org/10.1103/PhysRevB.97.060501
https://doi.org/10.1103/PhysRevB.98.094509
https://doi.org/10.1103/PhysRevB.96.014515
https://doi.org/10.1038/s42005-018-0006-7
https://doi.org/10.1103/PhysRevB.100.020503
https://doi.org/10.1103/PhysRevLett.117.077003
https://doi.org/10.1103/PhysRevB.95.174504
https://doi.org/10.1103/PhysRevB.80.104503
https://doi.org/10.1103/PhysRevX.4.031053
https://doi.org/10.1038/ncomms14468
https://doi.org/10.1103/PhysRevB.28.327
https://doi.org/10.1103/PhysRevB.69.104504
https://doi.org/10.1103/PhysRevB.79.224511
https://doi.org/10.1103/PhysRevB.75.195121
https://doi.org/10.1103/PhysRevB.90.115143
https://doi.org/10.1103/PhysRevLett.111.066804
https://doi.org/10.1103/PhysRevB.92.104511
https://doi.org/10.1103/PhysRevLett.121.217001
https://doi.org/10.1103/PhysRevB.81.195107
https://doi.org/10.1103/PhysRevB.97.014503
https://doi.org/10.1103/PhysRevB.37.4975
https://doi.org/10.1143/JPSJ.74.2161
https://doi.org/10.1103/PhysRevLett.94.147005
https://doi.org/10.1143/JPSJ.74.1670
https://doi.org/10.1103/PhysRevB.81.054502
https://doi.org/10.1088/1367-2630/11/2/025009
https://doi.org/10.1103/PhysRevB.92.054516
https://doi.org/10.1103/PhysRevB.99.184508
https://doi.org/10.1126/science.aal1575
https://doi.org/10.1103/PhysRevLett.117.117001
https://doi.org/10.1021/acs.nanolett.9b00135
https://doi.org/10.1103/PhysRevB.93.020507
https://doi.org/10.1103/PhysRevB.79.220512
https://doi.org/10.1209/0295-5075/89/57008
https://doi.org/10.1103/PhysRevB.81.020507
https://doi.org/10.1103/PhysRevLett.119.227001
https://doi.org/10.1103/PhysRevLett.119.107003
https://doi.org/10.1038/nmat4302

