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We implement the Monte Carlo renormalization group approach in the continuous-time Monte Carlo
simulation of a quantum system. We demonstrate numerically the emergent isotropy between space and time at
large distances for the systems that exhibit Lorentz invariance at quantum criticality. This allows us to estimate
accurately the sound velocity for these quantum systems. Q-state Potts models in one and two space dimensions
are used to illustrate the method.
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I. INTRODUCTION

In recent years, continuous-time quantum Monte Carlo
(QMC) has become the standard to simulate sign-free lat-
tice quantum spin systems [1–4]. In continuous-time QMC,
one adopts a path-integral representation, in which the time
dimension is represented by a genuine continuous line of
length equal to the inverse temperature β, whereas the space
dimension is represented by a discrete lattice. For systems
that exhibit Lorentz invariance at criticality, the path integral
represents a statistical field theory, in which isotropy between
the time and space directions emerges at large distance. This
occurs in systems whose low-lying elementary energy excita-
tions depend linearly on the magnitude of the momentum of
the excitation:

E (k) − E0 = vs|k|. (1)

Here, E0 is the ground-state energy, and k is the momentum
of a low-lying energy eigenstate of energy E (k). The constant
of proportionality, vs, is called the sound velocity and is a
nonuniversal constant specific to a system. The sound velocity
is the scale factor connecting time and length scales of a
system. When Eq. (1) happens, the large-distance behavior of
a lattice spin system is described by a massless quantum field
theory, invariant under dilational coordinate transformations.
The invariance under dilational transformation underlies the
success of renormalization group (RG) theory [5] in treating
critical phenomena, as done in the real-space Monte Carlo
renormalization group (MCRG) approach [6], which is often
used to estimate critical couplings and exponents of spin sys-
tems. When implemented on a discrete lattice, the dilational
transformation is limited to integral scale factors. However,
nonintegral scale factors are desirable in many cases. For
example, anisotropic coarse graining can lead to a fixed-point
Hamiltonian isotropic in the space and time directions. Then,
the ratio of space and time lengths in the anisotropic coarse
graining is the sound velocity. The value of the sound velocity
is generally a real number, requiring that the coarse graining
along either the space or the time direction be continuous.
We show that this can be realized, within the MCRG frame-
work, for quantum spin models on a lattice by adopting a

continuous imaginary time path-integral representation. In
this way, Lorentz invariance is demonstrated numerically and
accurate estimates of the sound velocity are obtained. In
addition, continuous-time MCRG allows us to compute the
lattice version of the energy stress tensor of the underlying
field theory.

Conformal invariance is very powerful in two dimensions,
due to the infinite dimensionality of the local conformal alge-
bra [7]. Conformal field theory (CFT) yields finite-size scaling
predictions of physical observables, such as the energy [8,9]
and the entanglement entropy [10]. Sound velocity and the
energy-stress tensor are often parameters in these predictions.
Thus, assuming the validity of these predictions, the sound
velocity and the energy-stress tensor may be obtained by
fitting observables in a numerical simulation against the CFT
predictions. This has been carried out in many studies (e.g.,
Refs. [11,12]). With continuous-time MCRG, we determine
these quantities from their defining expressions, without re-
course to CFT results. This allows a much easier generaliza-
tion to three dimensions, where CFT predictions are less avail-
able. In this paper, we illustrate the idea of continuous-time
MCRG mostly with examples in two dimensions, showing
that already in two dimensions our approach leads to estimates
of the sound velocity that are more accurate than those ob-
tained with alternative methods, such as directly computing
the energy spectrum or fitting numerical observables against
CFT predictions. We also provide a three-dimensional (3D)
example, by reporting a calculation of the sound velocity for
the quantum Ising model in two space dimensions, a system
for which, to the best of our knowledge, the sound velocity
cannot be obtained with other means. A more detailed study
of systems in three dimensions is deferred to future works.

The paper is organized as follows. In Sec. II, we use a
diagrammatic expansion to obtain the path-integral represen-
tation of the partition function of the Q-state Potts model,
the system that we use here as an example to illustrate the
methodology. In Sec. III, we coarse-grain the time direc-
tion and explain the MCRG procedure. In Sec. IV, we use
continuous-time MCRG to compute the sound velocity. In
Sec. V, we interpret the coarse graining along the time direc-
tion as a continuous coordinate transformation and discuss its
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connection with the energy-stress tensor. In Sec. VI, we report
our conclusions.

II. THE CONTINUOUS-TIME MONTE CARLO

For concreteness, we illustrate the method with the Q-state
Potts model having Hamiltonian [13]

ĤQ = −
∑
〈i, j〉

Q−1∑
k=0

�̂k
i �̂

Q−k
j − g

Ld∑
i=1

Q−1∑
k=1

M̂k
i , (2)

where the system is in a d-dimensional hypercubic lattice
with length L. i and j label different lattice sites, and 〈i, j〉
denotes a nearest-neighbor bond. The operators �̂i and M̂i

act on the Q states of the local Hilbert space at site i, which
we label by |0〉i, . . . , |s〉i, . . . , |Q − 1〉i. In this local basis, the
�̂i is a diagonal matrix such that �̂i|s〉i = ωs|s〉i, where ω =
ei2π/Q and s = 0, . . . , Q − 1. M̂i performs a cyclic permuta-
tion, |0〉i → |Q − 1〉i, |1〉i → |0〉i, . . . , |Q − 1〉i → |Q − 2〉i,
and acts as a transverse field. When d = 1, this model is

self-dual and a quantum phase transition occurs at the critical
coupling gc = 1 for all Q [13]. When Q � 4, the transition is
continuous and is described by a CFT [11,14]. When Q > 4,
the transition is first order and has a finite latent heat at gc [14].

To derive a path-integral representation of the system par-
tition function Z = Tr(e−βĤQ ), one takes

Ĥ0 = −
∑
〈i, j〉

Q−1∑
k=0

�̂k
i �̂

Q−k
j , Ĥ1 = −g

Ld∑
i=1

Q−1∑
k=1

M̂k
i , (3)

and considers the partition function in the interaction picture,

Z = Tr

[
exp(−βĤ0)T̂

{
exp

(
−

∫ β

0
Ĥ1(τ ) dτ

)}]
, (4)

where T̂ is the time-ordering operator in imaginary time τ ,
and Ĥ1(τ ) = eτ Ĥ0 Ĥ1e−τ Ĥ0 is the Ĥ1, in the interaction picture.
Equation (4) can be written as a diagrammatic expansion in
the following way:

Z =
∑

σ

∞∑
n=0

(−1)n

n!
〈σ|e−βĤ0 T̂

∫ β

0
Ĥ1(τn)dτn · · ·

∫ β

0
Ĥ1(τ1)dτ1|σ〉

=
∑

σ

∞∑
n=0

gn
∫ β

0
dτn

∫ τn

0
dτn−1 · · ·

∫ τ2

0
dτ1〈σ|e−(β−τn )Ĥ0

Ld∑
i=1

Q−1∑
k=1

M̂k
i e−(τn−τn−1 )Ĥ0 · · · e−τ1Ĥ0 |σ〉

=
∑

σ

∞∑
n=0

gn
∑
i1···in

∫ β

0
dτn

∫ τn

0
dτn−1 · · ·

∫ τ2

0
dτ1〈σ|e−(β−τn )Ĥ0

Q−1∑
k=1

M̂k
in e−(τn−τn−1 )Ĥ0 · · ·

Q−1∑
k=1

M̂k
i1 e−τ1Ĥ0 |σ〉. (5)

Here the states |σ〉 = ⊗i|σ 〉i form a basis in the Hilbert space.
Each index i1, . . . , in runs from 1 to Ld . Ĥ0 is diagonal in the
|σ〉 basis: Ĥ0|σ〉 = Q

∑
〈i, j〉 δσi,σ j |σ〉 ≡ h0(σ)|σ〉. Equation (5)

suggests the following Monte Carlo (MC) scheme to sample
the partition function. For each i = 1, . . . , Ld and each τ ∈
[0, β], a Potts spin, σi(τ ), ranging from zero to Q − 1, is
assigned to a MC configuration. As the state |σ〉 is propagated
in imaginary time, spin flips can happen at any lattice site
and at any time. Let τl and il denote the lth flip time and
its associated lattice site. Here l could be equal to 1, 2, . . . ,

or n. In addition, let τ−
l and τ+

l respectively denote the time
immediately before and after the flip time τl . If a spin flip
occurs at τl on site il , σil (τ

−
l ) will be made to switch to any

σil (τ
+
l ) different from σil (τ

−
l ) by the action of

∑Q−1
k=1 M̂k

il .
In Eq. (5), the earliest spin flip occurs at τ1 on site i1; the
second one occurs at τ2 on site i2, etc. The total number
of spin flips, n, contributes a weight gn to the sampling of
the diagrammatic expansion. In addition, the weight includes
factors equal to e−(τl+1−τl )h0(σ(τ+

l )) between two consecutive
spin flips at τl and τl+1. Finally, the periodicity of the trace
requires σ(β ) = σ(0), which in turn implies that n should be
even. Thus, MC sampling does not have a sign problem even
if g is negative.

The partition function in Eq. (5) is given by a sum of
terms (diagrams) that entail summation over discrete variables
and integration over continuous ones. The contribution of the
different terms, which are associated to the weights detailed

above, is evaluated stochastically with a MC algorithm that
follows the protocols discussed in Refs. [1–3]. For the Q-state
Potts model, diagrammatic MC can use a continuous-time
cluster algorithm [2], based on the Wolff algorithm [15],
which significantly reduces equilibration time. We use both
local and cluster MC algorithms in the following.

III. THE MCRG PROCEDURE

Equation (5) indicates that the thermodynamics of a d-
dimensional quantum Potts model is described by a statistical
field theory in d + 1 dimensions, where on each lattice site
i there is a world line of length β described by the function
σi(τ ). We can coarse-grain this world line by placing P
lattice points along the time direction through the majority
rule. That is, we partition the world line into P intervals:
[0, P

β
], [ P

β
,

2β

P ], . . . , [ (P−1)β
P , β]. In each MC configuration, to

each interval, we assign the Potts spin which appears most
often on that interval. By discretizing time in this way we
represent each world line with P discrete Potts spins and
we end up with a (d + 1)-dimensional hypercubic lattice that
hosts PLd Potts spin. Each MC snapshot corresponds to a
configuration of those spins. The probability distribution of
the spin configurations on the discrete lattice is not known
explicitly, but can be sampled by coarse-graining the config-
urations generated in the diagrammatic MC simulation [2].
We can then perform MCRG on the (d + 1)-dimensional
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hypercubic lattice. We designate the nth RG iteration with
a subscript (n), where n = 0, 1, 2, . . .. In the zeroth iteration
the spin configuration, σ (0), is the one obtained from coarse-
graining the time direction of diagrammatic MC. The proba-
bility distribution of σ (0) is described by the (unknown) lattice
Hamiltonian H (0). The subsequent levels of coarse graining
are generated by successive block spin RG transformations
and are characterized by spin configurations σ (n) and Hamil-
tonians H (n).

In all of the above coarse-graining transformations we
use short-ranged coupling terms Sα (σ) to parametrize the
probability distribution P(σ) of the spin configurations σ:

P(σ ) ∝ e−H (σ ), where H (σ ) = −
∑

α

KαSα (σ), (6)

with coupling constants Kα . The terms Sα (σ) include nearest-
neighbor (NN), next-nearest-neighbor (NNN), smallest pla-
quette (�), etc., interactions.

On the hypercubic lattice, a dilation transformation with
scale factor b is realized through a block spin transformation
by a conditional probability, T (μ|σ), of the renormalized
spin μ given unrenormalized spins σ. For example, in the
majority-rule coarse graining that we use, σ is partitioned into
hypercubic blocks with side b. When there is a unique spin
σmax that appears the most often in the block, the renormalized
spin μ for that block is assigned to σmax with probability 1.
When p σ -spins tie for the most appearances in the block, μ is
assigned to one of these p spins with probability 1

p . Assuming
the lattice is large enough, the spin configurations may be
iteratively coarse-grained n times, from σ (0) to σ (n), giving rise
to a renormalized Hamiltonian at the nth RG level:

H (n)(σ (n) ) ≡ − ln
∑
σ (0)

T (n)(σ (n)|σ (0) )e−H (0) (σ (0) )

= −
∑

α

K (n)
α Sα (σ (n) ), (7)

where T (n)(σ (n)|σ (0) ) is the conditional probability of σ (n)

given σ (0). T (n)(σ (n)|σ (0) ) implements coarse graining from
σ (0) to σ (n), realizing a dilation transformation with scale
factor bn. It is obtained by iterating the single-level coarse
graining n times:

T (n)(σ (n)|σ (0) )

=
∑
σ (n−1)

· · ·
∑
σ (1)

T (σ (n)|σ (n−1)) · · · T (σ (1)|σ (0) ). (8)

In principle, an infinite number of coupling terms Sα (σ (n) )
is required to exactly parametrize H (n). In practice, this is
not possible, and we only use a few coupling terms, such
as those listed in Table I. Given a set of coupling terms,
we use the variational Monte Carlo renormalization group
(VMCRG) approach [16] to compute the corresponding cou-
pling constants K (n)

α . The VMCRG approach allows us to
compute the renormalized coupling constants in a way that
greatly alleviates the critical slowing down and has very little
finite-size effect [17]. Its implementation details are explained
in Refs. [16–18]. Here, by finite-size effect, we mean the
effect of different system size, L, with the same RG level,
n. Our result, however, necessarily depends on what n one

TABLE I. The couplings used for d = 1 TFIM. Note that when
α = 2 and 3, the couplings are themselves isotropic between space
and time.

α Coupling term

1, x Nearest-neighbor product along the time direction
1, y Nearest-neighbor product along the space direction
2 Second-neighbor product
3 Product of spins in the smallest plaquette
4, x Third-neighbor product along the time direction
4, y Thid-neighbor product along the space direction

uses to approach the fixed-point Hamiltonian. Using only
a finite number of coupling terms in the Hamiltonian in
Eq. (6) introduces a truncation errors. However, because the
truncation scheme respects isotropy, i.e., the truncation of an
isotropic Hamiltonian is still isotropic, we can estimate the
sound velocity without truncation errors.

IV. THE SOUND VELOCITY

The sound velocity vs is an important property of a
quantum system whose low-lying excited states show linear
momentum dispersion. In particular, this quantity is required
to compare the predictions from CFT with observables of
a lattice model. When d = 1, one can compute the sound
velocity with finite-size scaling of the ground-state energy
or entanglement entropy, assuming validity of the CFT pre-
diction [8–10], or one can directly compute the excitation
spectrum of the system. The latter calculation can be done
by exact diagonalization of the system Hamiltonian, which
is limited to small lattice sizes, or it can be done with
density matrix renormalization group (DMRG) techniques
[19], which introduce truncation errors due to finite bond
dimension. When d > 1, neither method works reliably, and
one has to resort to QMC. In fact, the sound velocity has been
calculated with continuous-time QMC by looking for a scale
factor vs such that the correlation function C(x, vsτ ) becomes
isotropic along the time and space directions at large distances
[20,21]. In the following, we use directly RG to compute the
sound velocity and show that the VMCRG approach can deal
with rather large lattice sizes, up to at least L = 256, leading
to very accurate estimates of the sound velocity.

To compute the sound velocity, we perform a dilation
transformation with b = 2 using the majority rule. In the
VMCRG calculation, we take couplings along space and time
directions to be independent, as the system is necessarily
anisotropic between space and time. However, in the presence
of Lorentz invariance, isotropy between space and time is
recovered at large distances up to a scale factor vs. One can
thus vary P

β
until the couplings along the space direction and

those along the time direction become equal for a large n. The
P
β

so determined is the sound velocity, vs.

A. Q = 2: The Ising model

When Q = 2, ĤQ=2 coincides up to an additive constant
with the Hamiltonian of the transverse-field Ising model
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TABLE II. The renormalized constants for the d = 1 TFIM. For
each n, L = P = 8 × 2n. VMCRG is done with 4000 variational
steps. During each variational step, the MC sampling is done on
16 cores in parallel, where each core does MC sampling of 20 000
Wolff steps. The optimization step is μ = 0.001. The number in the
parentheses is the uncertainty on the last digit.

(a) P
β

= 2.0031299

n K (n)
1,x K (n)

1,y K (n)
4,x K (n)

4,y

0 0.46708(6) 0.30104(7) −0.0360(1) 0.0179(1)
1 0.3593(1) 0.32367(5) −0.01224(3) −0.0027(1)
2 0.34310(5) 0.33548(4) −0.01065(5) −0.0089(1)
3 0.3411(2) 0.33906(8) −0.0109(1) −0.0106(1)
4 0.3411(3) 0.3401(1) −0.0111(2) −0.0112(2)
5 0.3411(2) 0.3402(1) −0.0112(1) −0.0114(2)

(b) P
β

= 2

n K (n)
1,x K (n)

1,y K (n)
4,x K (n)

4,y

0 0.46681(5) 0.30126(8) −0.0362(1) 0.0180(1)
1 0.3590(1) 0.3242(1) −0.0123(1) −0.0027(1)
2 0.3430(1) 0.33586(6) −0.01074(5) −0.0088(1)
3 0.3407(2) 0.3394(3) −0.0110(1) −0.0106(1)
4 0.3408(3) 0.3406(2) −0.0112(2) −0.0110(2)
5 0.3410(3) 0.3408(2) −0.0112(1) −0.0112(1)

(c) P
β

= 1.99688

n K1,x K1,y K4,x K4,y

0 0.46579(6) 0.30175(7) −0.0361(1) 0.0179(1)
1 0.3584(1) 0.3245(1) −0.0124(1) −0.0026(1)
2 0.3423(1) 0.3366(1) −0.0107(1) −0.0088(1)
3 0.3405(2) 0.3398(2) −0.0110(1) −0.0105(1)
4 0.3404(2) 0.3409(2) −0.0113(2) −0.0110(2)
5 0.3402(3) 0.3409(2) −0.0113(2) −0.0111(2)

(TFIM),

ĤIsing = −
∑
〈i, j〉

σ̂ z
i σ̂ z

j − g
Ld∑
i=1

σ̂ x
i , (9)

where σ̂ z,x
i are the Pauli matrices at site i. We carry out the

discussion using the terminology of the Ising model; i.e.,
instead of Potts spin σ = 0, 1, we speak of Ising spin σ =
−1, 1.

The sound velocity for the one-dimensional TFIM is
known exactly from its fermionic solution, and is vs = 2 [22]:

E (k) = 2
√

1 − 2gc cos k + g2
c = 2|k| + o(|k|), (10)

where gc = 1. Note that sometimes the Ising Hamiltonian is
written with spin operators Ŝ = 1

2 σ̂ , in which case vs would
be 1

2 . The K (n)s calculated with VMCRG for the d = 1 TFIM,
simulated at gc, are presented in Table II, for the coupling
terms listed in Table I. We present the data for all the RG
iterations from n = 0 to 5 to illustrate the method. As clearly
seen, the convergence to isotropy occurs with increasing n
when P

β
= vs. Note that the relative magnitude of K (n)

1,x and

K (n)
1,y switches when P

β
crosses 2.0. This gives an estimation of

vs in the interval (1.997, 2.003), to be compared, for example,
with the DMRG result of 2.04 found in Ref. [23].

TABLE III. The renormalized constants for the d = 2 TFIM.
L = P = 128. K (4)

1,x and K (4)
1,yz are respectively the renormalized

nearest-neighbor spin constants along the time and space directions
at n = 4.

P
β

K (4)
1,x K (4)

1,yz

3.42246 0.1603(3) 0.1597(2)
3.40426 0.1594(3) 0.1602(2)

For the d = 2 TFIM, we look for the value of P/β where
switching of the renormalized constants in space and time
occurs at large n. The comparison is only done for the
nearest-neighbor coupling, which has the smallest statistical
uncertainty. Thus, we present in the tables only the nearest-
neighbor coupling constants that correspond to the last RG
iteration. The K (n)s calculated by VMCRG for the d = 2
TFIM, simulated at g = gc = 3.04438 [2], are reported in
Table III. They lead to an estimate of the sound velocity in
the interval (3.40, 3.42).

B. Q = 3 and 4

When d = 1, and Q = 3 or 4, the Potts model experiences
a continuous phase transition at gc = 1, exhibiting confor-
mal invariance [14]. A sound velocity is thus well defined
at criticality. The spin variable is σ = 0 or 1, and we use
coupling terms listed in Table IV. We report the calculated
renormalized constants K (n)s in Tables V and VI. The sound
velocity is determined with the nearest-neighbor coupling at
the last RG iteration.

This estimates vs in the interval (2.594, 2.600) for Q = 3,
and (3.137, 3.146) for Q = 4, to be compared with the ana-
lytical result vs = π when Q = 4 [24]. For comparison, fitting
the finite-size behavior of the critical free energy against the
CFT prediction [8,9] leads to vs = 2.598 for Q = 3 and vs =
3.156 for Q = 4 [11]. Fitting the finite-size behavior of the
critical entanglement entropy against the CFT prediction [10]
leads to vs = 2.513 for Q = 3 and vs = 2.765 for Q = 4 [12].

We observe that the (approximate) space-time isotropy
occurs before the fixed-point Hamiltonian is reached. For ex-
ample, in the Q = 4 Potts model, it is known that a logarithmic
scaling operator is present around the fixed-point Hamilto-
nian, which makes the approach to the fixed-point Hamilto-
nian very slow. This is indeed what one sees in Table VI.
However, as along as this scaling operator is isotropic, one
expects that the slow approach to the fixed-point Hamiltonian
should not affect the convergence to isotropy. This is also

TABLE IV. The couplings used for the d = 1, Q = 3 and 4 Potts
model. Note that when α = 2, the coupling is itself isotropic between
space and time.

α Coupling term

1, x δσiσ j for first neighbor i, j along the time direction
1, y δσiσ j for first neighbor i, j along the space direction
2 δσiσ j for second neighbor i, j
3, x δσiσ j for third neighbor i, j along the time direction
3, y δσiσ j for third neighbor i, j along the space direction
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TABLE V. The renormalized constants for the d = 1, Q = 3
Potts model. For each n, L = P = 8 × 2n. When n = 0–3, the simu-
lations are done with Metropolis local updates with 1000 variational
steps. When n = 0, 1, 2, each variational step uses 100 sweeps of MC
averaging in parallel on eight cores. When n = 3, each variational
step uses 500 sweeps. For n = 4 and 5, the simulation details are the
same as in Table II.

(a) P
β

= 2.5995

n K (n)
1,x K (n)

1,y K (n)
3,x K (n)

3,y

0 1.068(2) 0.6701(4) −0.0651(6) 0.0343(9)
1 0.8158(4) 0.7323(5) −0.0267(1) −0.0076(4)
2 0.766(1) 0.749(2) −0.0260(8) −0.022(1)
3 0.754(1) 0.750(1) −0.025(1) −0.025(1)
4 0.7477(4) 0.7468(4) −0.0255(6) −0.0251(6)
5 0.7452(2) 0.7446(2) −0.0252(4) −0.0250(4)

(b) P
β

= 2.5942

n K (n)
1,x K (n)

1,y K (n)
3,x K (n)

3,y

0 1.067(2) 0.6714(5) −0.0653(5) 0.0350(8)
1 0.8150(4) 0.7350(5) −0.0278(2) −0.0079(5)
2 0.765(1) 0.751(2) −0.0252(7) −0.022(1)
3 0.752(1) 0.750(1) −0.025(1) −0.024(1)
4 0.7469(4) 0.7479(5) −0.0250(6) −0.0248(3)
5 0.7441(3) 0.7456(3) −0.0253(4) −0.0251(2)

what one sees. The sound velocity can therefore be obtained
with fewer RG iterations than required for computing, say, the
critical exponents of the model.

V. THE ENERGY-STRESS TENSOR

As one changes the parameter P
β

in the zeroth RG itera-
tion, one also changes the fixed-point Hamiltonian reached

TABLE VI. The renormalized constants for the d = 1, Q = 4
Potts model. For each n, L = P = 8 × 2n. The simulation details are
the same as in Table V.

(a) P
β

= 3.146

n K (n)
1,x K (n)

1,y K (n)
3,x K (n)

3,y

0 1.171(2) 0.7188(5) −0.0615(4) 0.033(1)
1 0.872(2) 0.777(1) −0.027(1) −0.0084(4)
2 0.801(1) 0.781(2) −0.024(1) −0.021(1)
3 0.770(1) 0.765(1) −0.023(1) −0.023(1)
4 0.7519(5) 0.7498(4) −0.0225(2) −0.0225(2)
5 0.7374(3) 0.7355(5) −0.0217(3) −0.0215(3)

(b) P
β

= 3.137

n K (n)
1,x K (n)

1,y K (n)
3,x K (n)

3,y

0 1.167(2) 0.7206(4) −0.0612(4) 0.033(2)
1 0.872(2) 0.779(1) −0.0255(9) −0.0081(4)
2 0.800(1) 0.782(2) −0.022(1) −0.019(1)
3 0.769(1) 0.765(1) −0.022(1) −0.024(1)
4 0.7500(4) 0.7508(3) −0.0226(2) −0.0221(2)
5 0.7355(3) 0.7372(3) −0.0217(4) −0.0216(4)

by the RG procedure, as shown, for example, in Table I.
Since dilational transformations are isotropic, there is a line
of fixed-point Hamiltonians reflecting the different extent of
anisotropy in the system [25]. A change of P

β
generates a

movement along this line of fixed-point Hamiltonians. In
fact, fixing P, the change β → β + δβ induces a coordinate
transformation: x0 → x′

0 = (1 − δβ

β
)x0, x1 → x′

1 = x1, where
x0 and x1 are time and space coordinates, respectively. Here
we have taken the coordinate transformation to be passive;
i.e., x = (x0, x1) and x′ = (x′

0, x′
1) denote the number of lattice

spacings needed to describe the same physical length, before
and after the transformation. Thus, a time dilation generates
a change in the system Hamiltonian. In field theory, the
response of the system Hamiltonian to a generic coordinate
transformation, xμ → x′μ = xμ + εμ(x), is described by the
energy-stress tensor, T μν , defined by

δH = − 1

(2π )D−1

∫
∂εμ

∂xν

TμνdDx, (11)

where D is the space-time dimension of the system. As β is
conjugate to Ĥ in the action, we identify T00 as the energy
operator in the path integral.

To appreciate the novelty brought by VMCRG in this
context, let us consider, for example, the two-dimensional
classical Ising model with the Hamiltonian

HIsing(σ) = −K0

∑
〈i, j〉0

σiσ j − K1

∑
〈i, j〉1

σiσ j, (12)

where 〈i, j〉0 and 〈i, j〉1 are nearest-neighbor spins along
the x0 and x1 directions, respectively. The system is
isotropic and critical when K0 = K1 = Kc = arcsinh(1)/2 =
0.4407 . . . [26]. An infinitesimal change in the coupling con-
stant, K0 = Kc − δJ and K1 = Kc + δJ , turns on anisotropy
yet the system still maintains its criticality. That is, the devia-
tion from the isotropic Hamiltonian,

δH (σ ) =
∑
m,n

Am,n(σ)δJ

≡
∑
m,n

(σm,nσm+1,n − σm,nσm,n+1)δJ, (13)

generates a length scale transformation x0 → x′
0 = (1 − δλ)x0

and x1 → x′
1 = (1 + δλ)x1, where δλ = 1

γ
δJ with an un-

known proportionality constant γ . Continuous-time VMCRG
provides a way to determine γ directly, and in that sense, it is
a ruler of anisotropy.

To determine γ , we invoke the universality of the fixed-
point Hamiltonians. Let H∗(μ) be the fixed-point Hamiltonian
that VMCRG eventually reaches, starting from the critical
d = 1 TFIM with P

β
= vs and from the critical isotropic

d = 2 classical Ising model. In practice, we approximate
H∗(μ) with H (n)(μ) for some large n. For the TFIM, the
change in the action βĤ → (β + δβ )Ĥ generates a change in

the fixed-point Hamiltonian δH (n)(μ) = −∑
α

∂K (n)
α

∂β
Sα (μ)δβ

with an anisotropy of the extent δ( x1
x0

) = x′
1

x′
0
− x1

x0
= δβ

β
x1
x0

. For
the classical d = 2 Ising model, the change in the unrenor-
malized Hamiltonian HIsing → HIsing + ∑

m,n Am,nδJ gener-
ates a change in the fixed-point Hamiltonian δH (n)(μ) =
−∑

α

∂K (n)
α

∂J Sα (μ)δJ , with an anisotropy of the extent δ( x1
x0

) =

014456-5
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2δλ x1
x0

. The δH (n)(μ) for the TFIM and for the d = 2 classical
Ising model should be multiples of each other, because the line
of fixed-point Hamiltonians is universal. In particular, when
they are equal, the anisotropies that they represent should
coincide. This means that

γ = δJ

δλ
= 2

β ∂K (n)
α /∂β

∂K (n)
α /∂J

(14)

for all α. The Jacobians of the RG transformation, ∂K (n)
α

∂J and
∂K (n)

α

∂β
, can be readily computed with VMCRG [16], where the

first Jacobian is calculated for the TFIM, and the second one
for the classical Ising model. For the operator A(σ ) defined
in Eq. (13), γ is analytically known and is

√
2

2 = 0.7071 . . ..
A VMCRG calculation using Eq. (14) with n = 4 gives γ =
0.708 ± 0.001, so the ruler works.

With the coordinate transformation x0 → x′
0 = (1 − δλ)x0

and x1 → x′
1 = (1 + δλ)x1, a part of the energy-stress tensor

can now be read off from Eq. (11):∑
m,n

Am,n(σ)δJ = δH (σ )

= − 1

2π

∫
(−δλT00 + δλT11)d2x. (15)

We take the lattice spacing to be 1, and
∑

m,n is equivalent to∫
d2x. This gives

γ A = 1

π
(T + T̄ ), (16)

where, in two dimensions, T and T̄ are respectively the
holomorphic and the antiholomorphic components of the
energy-stress tensor, and are defined as T = 1

4 (T00 − 2iT01 −
T11) and T̄ = 1

4 (T00 + 2iT01 − T11). While the argument is
developed for the Ising model, it also generalizes to other
two-dimensional systems.

A consequence of Eq. (16) is that one obtains a prediction
of the finite-size dependence of 〈A〉, due to CFT. For example,
if one simulates a critical system infinitely long along the x0

direction but periodic of size L along x1, CFT predicts that
〈T 〉 = 〈T̄ 〉 = −( 2π

L )2 c
24 , and thus 〈A〉 = − 1

γπ
( 2π

L )2 c
12 , where

c is the central charge of the underlying CFT. This prediction
on A has been verified in Ref. [27].

VI. CONCLUSION

In this paper, we have shown how to perform MCRG
with continuous-time Monte Carlo simulations, and demon-
strated that space-time isotropy is explicitly recovered at large
distances. This yields a practical method to determine the
sound velocity and the energy-stress tensor from their defining
expressions. This should allow generalizations to systems in
three dimensions, which could be studied in the future.
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