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Manipulation of magnetic ground states by effective control of competing magnetic interactions has led to the
finding of many exotic magnetic states. In this direction, the tetragonal Heusler compounds consisting of multiple
magnetic sublattices and crystal symmetry favoring chiral Dzyaloshinskii-Moriya interaction (DMI) provide an
ideal base to realize nontrivial magnetic structures. Here we present the observation of a large robust topological
Hall effect (THE) in the multisublattice Mn2−xPtIn Heusler magnets. The topological Hall resistivity, which
originates from the nonvanishing real space Berry curvature in the presence of nonzero scalar spin chirality,
systematically decreases with decreasing the magnitude of the canting angle of the magnetic moments at
different sublattices. With help of first-principle calculations, magnetic and neutron diffraction measurements, we
establish that the presence of a tunable noncoplanar magnetic structure arising from the competing Heisenberg
exchanges and chiral DMI from the D2d symmetry structure is responsible for the observed THE. The robustness
of the THE with respect to the degree of noncollinearity adds up a new degree of freedom for designing THE
based spintronic devices.
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I. INTRODUCTION

In recent times, the art of easy manipulation of non-
collinear magnetic structures over collinear ones has led to
a drastic shift of focus on research involving next genera-
tion spintronic devices. For instance, the topologically sta-
ble noncollinear magnetic objects, e.g., skyrmions, can be
engineered effectively at significantly lower current densi-
ties, thereby providing an efficient way to manipulate the
information stored in these logic/spintronic devices [1–4]. In
most of the cases, a basic requirement for the stabilization of
these noncollinear magnetic states is the presence of chiral
magnetic interaction, the Dzyaloshinskii-Moriya interaction
(DMI), that develops from the broken inversion symmetry
in a certain class of chiral magnets [5–9] and layered thin
films [10–12]. Owing to the presence of nontrivial topological
configurations, large topological Hall effect (THE) has been
reported in these systems [12–17]. The basis of the THE can
be associated with a nonvanishing scalar spin chirality (SSC)
χi jk = Si · (Sj × Sk ) that corresponds to the solid angle �

subtended by three spins Si, S j , and Sk on a unit sphere.
Although measurement of THE has been extensively used to
characterize topological magnetic objects, the manipulation of
THE for its direct use in spintronics is never demonstrated.

For the realization of THE, the system must exhibit a non-
vanishing scalar spin chirality, which can appear in magnetic
materials with noncollinear and noncoplanar spin structures
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[18–20]. However, the lack of chiral magnetic symmetry
can force a net vanishing THE in most of these systems.
Rare examples of nonzero SSC has been reported in systems
with special lattice structures such as pyrochlore, triangu-
lar lattices, etc., with distinctive type of spin configurations
[18,21,22]. Recent observation of THE in a perpendicularly
magnetized system with interfacial DMI corroborates the
importance of chiral magnetic interaction to achieve a nonzero
THE [23]. Along this direction, only limited experimental
findings are reported in recent literature. Our particular in-
terest is Mn based tetragonal Heusler materials well known
for their potential use in the field of spintronics [9,24–26].
In this family of materials, a flexible tuning of the magnetic
properties, such as magnetization, magnetic anisotropy, and
Curie temperature (TC), can be realized by tuning the sublat-
tice magnetic moments. In addition, the noncentrosymmetric
tetragonal Mn2Y Z compounds (where Y = Pt, Rh, Ir, and
Ni) crystallizing in the space group I4m2 are potential can-
didates to host DMI that can give chiral magnetic interaction
in the system [9,26–28]. To realize our goal, we select the
inverse tetragonal Heusler compound Mn2PtIn as a starting
compound that consists of two magnetic sublattices of Mn
atoms. Here we show that a tunable topological Hall effect
can be achieved depending upon the degree of noncollinearity
of the magnetic moments in the system.

II. RESULTS AND DISCUSSION

Calculations for different structural and magnetic config-
urations of the proposed Mn2−xPtIn systems were carried
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FIG. 1. First-principle calculation of magnetic structures for Mn2−xPtIn. Total energy (with reference to Eθ=180◦ ) versus canting angle θ of
the Mn moment in (a) Mn2PtIn, (b) Mn1.5PtIn, and (c) MnPtIn. The alignment of magnetic moment of each Mn atom in different magnetic
sublattices are shown in the inset of the respective figures. In case of Mn2PtIn (space group I4m2), Mn occupies two positions: Mn2b (magenta
balls) and Mn2d (blue balls). For Mn1.5PtIn (space group I42m) and MnPtIn (space group I42m) the Mn sits at Mn2a (violet balls), Mn2b

(magenta balls), Mn4d (blue balls), and Mn8i (red balls). For all cases In and Pt atoms are represented by green and yellow balls, respectively.

out to find out the energetically most favorable crystal and
magnetic configurations. In case of the parent Mn2PtIn, a
minimum energy state was found for the tetragonal space
group I4m2. We have performed fixed-direction magnetic
calculations using the noncollinear module of the Vienna ab
initio simulation package (VASP). From the total energy as
a function of canting angle of Mn moments between the
alternate layers [Fig. 1(a)], it is found that Mn2PtIn ex-
hibits a noncollinear magnetic state characterized by canting
angle of 180◦ ± 40◦. A maximum energy scale of about
0.35 eV/formula unit (f.u.) is the energy difference between
the two collinear configurations—the ferromagnetic (FM)
(θ = 0◦) and the ferrimagnetic (FiM) (θ = 180◦). The most
significant exchange coupling is between the Mn atoms in
the neighboring planes, i.e., between the Mn at 2b and 2d
positions. The nearest neighbor exchange coupling aligns the
Mn moments of the neighboring planes ferrimagnetically. The
next nearest neighbor coupling between the Mn atoms sitting
in 2d position (Mn-Pt planes) is also significantly large and it
also tries to align the Mn moments antiferromagnetically. The
competition between these two interactions results in an ef-
fective canting of the Mn moments at the 2d position. In case
of Mn1.5PtIn the most stable structural configuration was ob-
tained by utilizing the experimental lattice parameters with the
space group I42m. Mn1.5PtIn exhibits a noncollinear magnetic
order characterized by canting angle of 180◦ ± 15◦ [Fig. 1(b)]
and a total uncompensated moment of about 1.13 μB/f.u. In
case of MnPtIn, calculations were performed both for I4m2
and I42m space groups. In both cases, there can be several
possible structural configurations depending on the Mn site
occupancy. Irrespective of whatever magnetic configuration
we start the calculation, it always stabilizes to a collinear
magnetic arrangement for both space groups [Fig. 1(c)]. A net
cancellation of individual moments is achieved in the case of
I4m2, whereas a small uncompensated magnetic moment of
0.21 μB/f.u. is found for I42m space group.

Our experimental studies show that the parent Mn2PtIn
crystallizes in an inverse Heusler tetragonal phase with space

group I4m2 [29]. Mn2−xPtIn with x = 0.2 to 0.4 exhibit
mixed structural phases due to composition dependent struc-
tural transition from the space group I4m2 to I42m. Samples
with x = 0.5 to 1.0 crystallize in the space group I42m with
a small fraction of MnPt phase for x = 0.9 and 1.0 [29].
The isothermal magnetization M(H ) loops measured at 2 K
for different Mn2−xPtIn samples are plotted in Fig. 2(a).
The saturation magnetization initially increases for x = 0
to 0.3 before decreasing systematically with decreasing Mn
concentration. As suggested by our theoretical calculations, a
fully compensated magnetic state can be found for MnPtIn
that exhibit a linear kind of hysteresis loop. The variation
of saturation magnetization with the Mn concentration for

FIG. 2. (a) Field dependence of magnetization loops measured
at 2 K for Mn2−xPtIn. The inset shows compositional dependent
magnetization at a field of 5 T. (b) Temperature dependence of
magnetization M(T ) measured in zero field cooled (ZFC, open
symbols) and field cooled (FC, closed symbols) modes in an applied
field of 0.1 T for Mn2−xPtIn. The M(T ) data for x = 0.9 and 1.0 are
multiplied by a factor of 3 and 30, respectively, for a clear view.
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FIG. 3. Field dependence of Hall resistivity (ρyx) measured at
different temperatures for (a)–(f) Mn2PtIn, (g) Mn1.5PtIn, and (h)
Mn1.2PtIn. The open and closed symbols represent experimental
data with field sweep in +H → −H and −H → +H , respectively.
The solid lines corresponds to the total calculated Hall resistivity
as described in the main text. (i) Field dependence of the real
component of AC susceptibility, χ ′(H ) measured at 5 K.

x = 0.0 to 1.0 is plotted in the inset of Fig. 2(a). The temper-
ature dependence of the magnetization for the Mn2−xPtIn are
shown in Fig. 2(b). As it can be seen, the Curie temperature
(TC) systematically decreases with decreasing Mn concentra-
tion.

Our theoretical calculations and experimental studies sug-
gest the presence of a tunable noncollinear magnetic state
in the present system. To explore the effect of this non-
collinearity, we have carried out a detailed Hall resistivity
(ρyx) measurement for Mn2PtIn as plotted in Figs. 3(a)–3(f).
It is noteworthy to mention here that an asymmetric behavior
of ρyx at T = 5 K mainly arises due to small longitudinal
magnetoresistance contribution at this temperature, whereas
no such effect is found for T � 50 K. The total Hall resistivity
in a system can be written as ρyx = ρN + ρAH + ρT

yx, where
ρN , ρAH , and ρT

yx are normal, anomalous, and topological Hall
resistivities, respectively. The normal Hall resistivity which is
linearly proportional to the magnetic field can be expressed
as ρN = R0H , where R0 is the normal Hall coefficient and
H is the magnetic field. In a FM/FiM system, the intrinsic
contribution to the anomalous Hall effect can be illustrated as
ρAH = bρ2

xxM, where b is a constant, ρxx is the longitudinal
resistivity, and M is the magnetization. As can be seen from
the experimental Hall resistivity data, at higher fields ρyx

almost saturates with fields. So it can be assumed that the

high field data only consists of the normal and anomalous
Hall components. Therefore, ρyx at high fields can be written
as ρyx = R0H + bρ2

xxM. The calculated Hall resistivity curves
for different samples and temperatures sans topological Hall
resistivity are plotted as solid lines in Figs. 3(a)–3(h). In
the case of Mn2PtIn, a significant difference between the
experimental and calculated Hall resistivity data can be found
for temperatures up to 100 K [Figs. 3(a)–3(c)], where the ρyx

data exhibit a negative hysteresis loop. This suggests that for
a temperature range of 5 to 100 K, the additional scattering of
the conduction electrons takes place opposite to that of normal
and anomalous Hall contribution. For T � 150 K, the exper-
imental ρyx data exhibit a positive hysteresis loop as shown
in the inset of Figs. 3(d) and 3(f). We also observe a reason-
able difference between the experimental and calculated Hall
resistivity data for Mn1.5PtIn as shown in Fig. 3(g), whereas
both curves match well for Mn1.2PtIn, signifying the absence
of any additional component of ρyx for this sample [Fig. 3(h)].

To further understand the source of the observed anomaly
in the Hall data, we have performed field dependent AC-
susceptibility measurements at 5 K for all the three samples
[Fig. 3(i)]. The χ ′(H ) curves do not exhibit any kind of
anomaly up to a field of ±5 T. It can be mentioned here that
all skyrmion hosting bulk materials display dip/kink kind of
features in the AC-susceptibility measurements [7,26,30–32].
In addition, the first derivative of magnetization with respect
to field for the M(H ) loops also do not exhibit any unusual
behavior [29]. Therefore, it is very unlikely that the present
samples possess any kind of skyrmionic phase.

The calculated ρyx (= ρN + ρAH ) was subtracted from the
experimental total Hall resistivity to obtain the topological
Hall ρT

yx. For Mn2PtIn, it is found that for T � 100 K, the
maximum value of ρT

yx lies in the first and the third quadrants,
whereas the maxima lies in the second and fourth quadrants
for T � 150 K [Fig. 4(a)]. A large ρT

yx of about 1 μ� cm can
be found at 5 K in Mn2PtIn. The ρT

yx drastically decreases
to about 0.3 μ� cm in the case of Mn1.5PtIn before van-
ishing for Mn1.2PtIn, as depicted in the inset of Fig. 4(a).
Most importantly, ρT

yx displays a strong correlation with the
magnitude of canting angle in the system. To understand the
change in sign of the ρT

yx above 150 K for Mn2PtIn, we have
plotted a maximum value of ρT

yx taken from the field sweep
−H → +H at different temperatures [Fig. 4(b)]. The origin
of the change in sign of the ρT

yx can be attributed to the
existence of a spin-reorientation-like transition at 150 K as
can be visualized in ZFC and FC M(T ) curves shown earlier
in Fig. 2(b). In the case of Mn1.5PtIn, the maximum value
of ρT

yx monotonically decreases with temperature, whereas it
remains almost close to zero at all temperatures for Mn1.2PtIn.
It is important to mention here that the M(T ) data for both
Mn1.5PtIn and Mn1.2PtIn do not exhibit any kind of anomaly
[see Fig. 2(b)].

Finally, to experimentally verify the existence of non-
collinear magnetic structure in the present system, we have
performed powder neutron diffraction (ND) experiment on
Mn1.5PtIn. The ND patterns taken in the temperature range
of 1.5 to 300 K at different 2θ values are depicted in Fig. 5(a).
The temperature dependent ND patterns show an increase
in the scattering intensity below the ordering temperature at

014449-3



BIMALESH GIRI et al. PHYSICAL REVIEW B 102, 014449 (2020)

FIG. 4. (a) Topological Hall resistivity (ρT
yx) calculated at dif-

ferent temperatures for Mn2PtIn. The open and closed symbols
represent experimental data with field sweep in +H → −H and
−H → +H , respectively. The inset shows calculated ρT

yx at 5 K
for Mn1.5PtIn (filled circles) and Mn1.2PtIn (filled stars) in μ� cm.
(b) Maximum value of ρT

yx as a function of temperatures (solid
symbols) taken from the field dependent ρT

yx data.

the nuclear Bragg peaks (101), (200), and (004), suggest-
ing a commensurate magnetic structure. This can be clearly
seen from the temperature variation of normalized intensi-
ties which decrease significantly with increasing temperature,
suggesting the presence of contribution from both in-plane
and out-of-plane magnetic components [Fig. 5(b)]. Since
Mn1.5PtIn exhibits a TC of about 240 K, the ND pattern at
300 K is used for the nuclear refinement by utilizing the
previously determined space group I42m (SG No. 121) and
related structural parameters [Fig. 5(c), upper panel]. Fur-
thermore, we obtained the magnetic propagation vector k =
(0, 0, 0) with best agreement factors by using the k-search
program included in Fullprof-suite package. The Rietveld
refinement of 1.5 K ND data convincingly demonstrates the
presence of magnetic contribution in Mn1.5PtIn [Fig. 5(c),
lower panel]. The temperature dependence of absolute values
of the magnetic moments for Mn sitting at different sublattices
are shown in Fig. 5(d). The Mn sitting at 2b, 4d , and 8i display
almost equal magnitudes of magnetic moments with similar
temperature dependence. The Mn moments at 2a, 2b, and 4d
exhibit a complete in-plane orientation, whereas 8i Mn atoms
possess both in-plane and out-of-plane magnetic components.
A smaller magnitude of 2a Mn moment is due to the fact
that the 2a site is comparatively less occupied in the present
sample. More details about the analysis of ND data can be
found from the Supplemental Material [29].

Our theoretical calculation and experimental results have
convincingly established the presence of noncoplanar mag-
netic state in the present system. For a better understanding of
the present THE that originates from the nonvanishing scalar
spin chirality, we have considered one Mn spin (S1) in the
Mn-In plane (plane 1) and two Mn spins (S2 and S3) from two
different Mn-Pt planes (planes 2 and 3) as shown in Fig. 6(a).
For simplicity, first we consider the components of the canted
spins S2 and S3 lie in y-z plane. The magnetic moment of Mn

FIG. 5. (a) Neutron diffraction patterns for Mn1.5PtIn measured
at different temperatures. For a clear view of the major magnetic
reflections the patterns are shown in the 2θ range of 22 to 50 deg.
(b) Temperature variation of normalized integrated intensity for the
three major magnetic reflections (101), (200), and (004). (c) Rietveld
refinement of the neutron diffraction patterns at 300 and 1.5 K for
Mn1.5PtIn. (d) Temperature dependence of net magnetic moment of
site-specific Mn atoms at different sublattices as depicted by different
symbols.

atoms sitting in planes 1, 2, and 3 can be described by S1 =
Z1 k, S2 = Y2 j − Z2 k, S3 = −Y2 j − Z2 k, respectively.
Here Y2 is the component of the Mn moment in the y direction
and Z1 and Z2 are that of z direction. i, j, k are the unit
vectors. For the said configuration the scalar spin chirality
can be calculated as χ123 = S1 · (S2 × S3) = 0. However, the
competing antiferromagnetic interactions along with the chi-
ral DMI in the system and/or the external magnetic field
can tilt the in-plane component of the S2 and S3 in any
direction in the ab plane. Hence, with a small x component δ,
S2 = δi + Y2j − Z2k and S3 = δi − Y2j − Z2k. As a result,
we can achieve a nonvanishing S1 · (S2 × S3) = −2Y2Z1δ

that can give rise to the observed topological Hall effect. As
schematically depicted in Fig. 6(b), any three noncoplanar
spins Si, Sj, and Sk can subtend a solid angle �, thereby
resulting in a nonzero scalar spin chirality with a fictitious
magnetic field as shown by blue arrow. In the absence of
any fixed chirality, this magnetic field will act in all possible
directions, resulting in a net vanishing THE. However, the D2d
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FIG. 6. (a) Unit cell for Mn2PtIn representing Mn moments at
different lattice planes. Mn-In and Mn-Pt lattice planes are shown in
light magenta color marked by 1 and light blue color marked by 2
and 3, respectively. Solid angle sustained by three moments S1, S2,
and S3 is shown in dark yellow color. (b) Upper panel: Solid angle �

subtended by three noncoplanar spins Si, Sj, Sk that gives a fictitious
magnetic field in both upward and downward direction (blue arrows)
in the absence of any chiral DMI. Lower panel: Fixed chirality in the
presence of DMI.

symmetry of the present materials ensures a chiral magnetic
state, thereby a nonvanishing THE in the system. At very high
magnetic fields the Zeeman energy can easily overcome the
chiral DMI energy, suppressing the chirality as well as the
THE.

Our assertion of large topological Hall resistivity at low
temperatures as a result of finite scalar spin chirality instead
of any skyrmion phase is supported by several facts. (i)
We do not observe any kind of kink/peak behavior in the
AC-susceptibility measurements as discussed earlier. (ii) The
isostructural Heusler compounds Mn1.4Pt0.9Pd0.1Sn [9] and
Mn2Rh0.9Ir0.1Sn [33] found to exhibit antiskyrmion phase
with an antiskyrmion size of about 150 and 200 nm, respec-
tively. Since the magnitude of THE is inversely proportional
to the skyrmion size (density), it is expected that the anti-
skyrmion phase in these systems will result in topological
Hall resistivity in the order of 1 n� cm or less. (iii) It can
be clearly seen that Mn2PtIn displays a spin-reorientation
transition around 150 K. The previous studies on similar
systems show the existence of antiskyrmion phase, if any, only
above the spin-reorientation transition [9,32].

The noncoplanar spin structure with finite scalar spin
chirality as a source of THE has been recently observed
in FM systems [23], as well as in antiferromagnetic sys-
tems (AFM) [34]. Although THE arises in systems hosting
skyrmions/antiskyrmions or comprised of noncoplanar spin
structures, a very basic difference lies in the length scale

of the periodicity associated with their magnetic structure.
A crossover between a long periodic magnetic structure to
a comparatively shorter scale noncoplanar magnetic state is
about interplay between the energy contributions from various
energy terms [35]. In the case of the present systems under
study, it might be possible to stabilize a incommensurately
modulated helical/cycloid ground state with a modulation
period up to a few hundred. These helix/cycloid can transform
into skyrmions/antiskyrmions under the external magnetic
field and in turn can cause very small THE due to the large size
of the skyrmions. In a recent study, Kumar et al. have assigned
the low temperature THE in some of their samples to the pres-
ence of antiskyrmions, although these samples display a large
canting angle below the spin-reorientation transition [36].
However, the THE is only found when there is a large canting
angle, indicating its probable origin from the nonvanishing
scalar spin chirality coming from the noncoplanar magnetic
state. This scenario is supported by the nonexistence of any
THE in the well-established antiskyrmion phase, probably due
to the large size of the antiskyrmions in these materials.

III. CONCLUSION

In summary, our theoretical calculations as well as ex-
perimental findings convincingly establish the presence of
noncollinear magnetic ground states, resulting in a robust
THE. We show a controlled tuning of the topological Hall
effect by modifying the canted magnetic state in the system.
The magnitude of the spin canting achieved by tuning the
Mn composition is associated with a small change in lat-
tice parameters that eventually controls various fundamental
parameters such as the exchange interactions, the DMI, and
the magnetocrystalline anisotropy (MCA). Hence, the com-
petition among these parameters determines the underlying
magnetic texture of the present system. Therefore, the THE
in the present case can be controlled electrically by inducing
strain in the system. Hence, the present study on realization
of tunable THE possesses a great potential in all electrical
switching based memory application. A very recent study
on electrical control of an anomalous Hall state corroborates
the importance of the present study that can motivate further
research in this direction [37].
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