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Structural distortion and collinear-to-helical magnetism transition in rutile-type FeO2
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The recent discovery of FeO2 under high pressures has aroused great interest. With the fully anisotropic
density-functional theory+U method, we present a predictive study of structural and magnetic transitions of
rutile-type FeO2 after reproducing the experimental spiral wave vector in isostructural β-MnO2. A second-order
structural distortion (tetragonal to orthorhombic) involving octahedral rotation occurs at a critical pressure of
3 ∼ 4 GPa. From a global search in the Brillouin zone, the ground-state spin order of rutile-type FeO2 is found to
be collinear below 22 GPa and transforms to a helix at higher pressures. The phases remain insulating throughout
the whole pressure range, with a change from an indirect gap in the high-spin state to a direct gap in the low-spin
state. Our work extends the fundamental understanding of iron oxides and provides schemes that treat strongly
correlated magnetic systems in a proper and effective way.
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I. INTRODUCTION

Strongly correlated transition-metal oxides (TMOs) are
known for the entanglement of charge, orbital, and spin
degrees of freedom in d electrons [1,2]. Governed by a
certain crystal symmetry which belongs to one of the 230
space groups, lattice may also come into play in the form of
electron-phonon interactions [1]. Dynamical stability imposes
a strong limit on structures that can be possibly crystallized
into for a given stoichiometry [3]. Generally the thermody-
namic ground states among them construct phase diagrams
as a function of external conditions. However, due to re-
tarded dynamics, metastable phases can be experimentally
achieved under ambient conditions, such as γ -Fe2O3 and
anatase-TiO2 [4–6]. For strongly correlated systems, elec-
tronic and magnetic phase transitions further complicate the
phase diagrams [1], making the theoretical prediction a big
challenge.

Rutile-type compounds (space group: P42/mnm) with the
simple MO2 stoichiometry are one of the best-known groups
of TMOs. For instance, rutile TiO2 is a wide-band-gap (3.1
eV) semiconductor [7,8] which has been studied extensively
as a photocatalyst [9,10]. CrO2, one of the prototypical half-
metallic ferromagnet with Tc = 392 ∼ 396 K, finds appli-
cation in magnetic recording media and spintronic devices
[11,12]. Even more interestingly, upon cooling, the metallic
rutile-type VO2 undergoes a phase transition at 340 K and
becomes a monoclinic insulator (M1 phase). This Peierls-
assisted Mott transition makes VO2 a promising phase-change
material [13], which has motivated masses of theoretical and
experimental research.

The rutile framework seems to fail for iron oxides. Actually
it is only in recent years that the FeO2 stoichiometry has
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come to light, ever since the discovery of a very stable pyrite
phase (space group: Pa3̄) at high pressure (76 GPa) and high
temperature (1800 K) by Hu et al. [14]. Most of later works
further elucidated the structural details and properties of this
new phase [15–19], while the possibilities of being stabilized
in other symmetries under different pressures were also un-
raveled [17,18]. Density-functional theory (DFT) calculations
by Lu et al. [17] show that in the pressure range of 30 ∼
40 GPa, the enthalpies of phases in P42/mnm, Pbcn, and
P2/m symmetries are all comparable with that of pyrite-type
FeO2. X-ray diffraction spectra identify the metastable rutile
phase in P42/mnm and α-PbO2-type structure in Pbcn upon
decompression to 41 and 31 GPa, coexisting with the pyrite
phase [17].

Because the rutile phase has a considerable energetic ad-
vantage over the others in the low-pressure regime, a single
phase with novel properties is expected in the recovered
specimen. Although it is predicted to be a ferromagnetic
half metal at 31 and 41 GPa [17], no experimental results
have been reported yet. Magnetism in strongly correlated
systems is of extreme complexity and should be addressed
with discretion. For example, rutile-type β-MnO2 takes on
a helical magnetic order below TN = 92 K [20,21], whereas
early DFT+U calculations predicted a ferromagnetic ground
state due to the negligence of full anisotropy in Coulomb
and exchange interactions [22]. On the other hand, electron
correlation and lattice distortion might also play essential
roles in the pressure-driven phase transitions, analogous to
the temperature-driven metal-insulator transition (MIT) in
VO2 [13]. Thus, a systematic study of the pressure-dependent
phase diagram is necessary for rutile-type FeO2.

In this work, starting from a predictive study on the
spin order of β-MnO2, we carefully explore the magnetic
ground states of rutile-type FeO2 with varying pressure.
The related phase transitions and physical properties are
discussed.
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II. COMPUTATIONAL METHODS

We employ the DFT+U approach introduced by Liecht-
enstein et al. [23] with the Perdew-Burke-Ernzerhof [24]
exchange-correlation functional and projected augmented-
wave [25] potentials as implemented in the Vienna Ab initio
Simulation Package (VASP) [26,27]. Instead of using Ueff =
U–J as simplified by Dudarev [28], Liechtenstein’s scheme
offers a fully anisotropic treatment of the Coulomb and ex-
change matrices by taking reasonable U and J values dis-
tinctly. It has proved necessary for the description of complex
magnetic and electronic structures of strongly correlated sys-
tems such as binary manganese oxides [29,30]. Our calcula-
tions adopt U = 2.8 eV, J = 1.2 eV for β-MnO2, which was
found to capture the helical magnetism [29], and U = 5 eV,
J = 0.8 eV for rutile-type FeO2 as in the previous work [15].
The cutoff energy for plane waves is 500 eV throughout the
calculations, with the convergence criteria being 10−6 eV for
electronic self-consistent runs and 0.005 eV/Å for ionic steps.
The Brillouin-zone integrals are evaluated using special k
points generated by the Monkhorst-Pack scheme [31].

The primitive cell is adopted for spin-spiral calculations
by virtue of the generalized Bloch theorem [32]. Firstly, full
and volume-fixed relaxations are carried out to search for
the ground states at ambient pressure and high pressures,
respectively. After finding the structural and magnetic ground
states in different pressure regimes, the energy-volume rela-
tions are computed with fixed spin orders and then fitted by
the Birch-Murnaghan equation of state (EOS) [33]. With two
pressure-induced phase transitions identified, the evolution of
electronic properties and lattice stability is studied using re-
optimized magnetic supercells. For pressures of 0 and 20 GPa
(31 GPa), the supercells consist of two (three) primitive cells
in the c direction, with an intrinsically collinear (noncollinear)
spin order. The bond valence sums [34] are estimated to ex-
amine the oxidation states in ambient FeO2. Elastic constants
are obtained with the universal linear-independent coupling
strains (ULICS) method [35] and phonon dispersions are gen-
erated with the finite displacement method as implemented in
the PHONOPY code [36].

III. MAGNETIC GROUND STATE OF β-MnO2

Before dealing with FeO2, we revisit the β-MnO2 system
with the generalized Bloch-wave scheme. Previously, the heli-
cal magnetic order has only been approached using a magnetic
supercell which is constructed according to the experimental
configuration [29]. However, it is unclear if this spin helix can
be directly predicted by theoretical calculations.

Spin spirals may be conveniently modeled using a general-
ization of the Bloch condition [32]:[
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k (r + R)

ψ
↓
k (r + R)

]
= eik·R

(
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)[
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where q is the spiral propagation wave vector typically con-
fined in the first Brillouin zone and R is a lattice vector
in real space. This strategy has been applied to the fcc γ -
Fe system, well reproducing the experimental wave vector
of 2π/a× (0.1, 0, 1.0) in the Cartesian coordinate system
[37–39]. Equation (1) alternatively yields the following dis-

tribution of magnetization density:

Mx(r + R) = Mx(r)cos(2πq·R) − My(r)sin(2πq·R),

My(r + R) = Mx(r)sin(2πq·R)+My(r)cos(2πq·R),

Mz(r + R) = Mz(r). (2)

As a result, q dictates the phase difference between mag-
netic moments related by R, corresponding to a relative ro-
tation about the z axis by a degree of 2πq·R. In the rutile
primitive cell, the Cartesian axes x, y, z are brought parallel
to three lattice bases a, b, c, respectively. Given a vanishing z
component, spins lie and rotate in the c-plane. Figures 1(a)–
1(d) show some examples of the allowed spiral states with
q = (0, 0, 0) and (0, 0, 0.5) in reciprocal bases a∗, b∗, c∗. As
can be easily checked, the red and yellow spins separated by
a full lattice vector c are crossed at an angle of γ = 2πq·c.
In contrast, the angle α between red and blue spins is not
explicitly constrained by q because they are not separated by
a lattice vector. Consequently, two nondegenerate states are
formed for each wave vector.

The experimental spiral wave vector of β-MnO2 (qexp) is
(0, 0, 2/7). As shown in Figs. 1(e) and 1(f), the two intracell
spins (1 and 1′) are situated at the corner and body center
with α = 5π/7 ≈ 129◦. Both of them rotate by a step of
γ = 4π/7 ≈ 103◦ from cell 1 (1′) to cell 7 (7′) consecutively,
thus spanning two full circles for every seven unit cells
[21,40]. The angle between blue and yellow spins denoted as
β satisfies

α + β + γ = 2π, (3)

which leads to β = α = 5π/7 in this case.
Following the above analysis, a specific spiral state is well

defined by a (q, α) pair. Computationally, one needs to fix
q and initialize α as α0 (specify the two magnetic moments)
for a single calculation. After structural optimization, the self-
consistent value of α can be extracted from the charge-density
distribution, which does not equal to α0 in most situations. We
sample q along the Г (0, 0, 0)-Z (0, 0, 0.5) path and start with
α0 = 0◦, 90◦, 180◦ separately to cover as many spiral states as
possible. For the reason that α0 = 0◦ tends to result in much
higher energy, only the dispersions of α0 = 90◦ and 180◦ are
shown in Fig. 1(g), together with the final configurations of
three characteristic spin vectors.

The two setups are degenerate in both energy and spin
order for qc = 0 ∼ 0.4. Overall, α0 = 90◦ produces contin-
uously changing spiral states, with the blue spin rotating
anticlockwise from Г (antiferromagnetic, AFM, α = 180◦) to
Z (helix, α = 90◦) gradually. Therefore, the energy dispersion
is smooth in the whole range. For α0 = 180◦, however, the
blue spin starts to turn back around qc = 0.45 and undergoes
an abrupt change on reaching the Z point. Finally, α = 180◦
is obtained again in a more stable double-AFM (DAFM)
state, inflecting the dispersion downwards. Note that in the
neighborhood of the Z point, e.g., qc = 0.45, the small energy
difference also stems from distinct self-consistent states (dif-
ferent α) instead of numerical errors or failure in convergence.

We also computed the energy at qexp (blue circle), which
lies very close to the minimum of the curve. More importantly,
α spontaneously converges to the experimental value of 129◦.
In this sense, the experimentally determined helical spin order
can be predicted with high accuracy, which verifies the power
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FIG. 1. (a)–(f) Magnetic supercells for different spiral states of β-MnO2, uniquely determined by q and α. Arrows on atoms represent
local magnetic moments. Collinear ferromagnetic [FM, (a)] and antiferromagnetic [AFM, (b)] states correspond to q = (0, 0, 0) (Г point) with
α = 0◦ and 180° respectively. At q = (0, 0, 0.5) (Z point), the collinear state double-AFM [DAFM, (c)] is characterized by α = 180◦ or 0°,
the noncollinear spin helix (d) by α = 90◦. The experimental helical magnetism [q = (0, 0, 2/7), α = 129◦] is demonstrated in the primitive
cell (e) and its plan view (f). (g) Computed spiral dispersions along the Г-Z path with α0 = 0◦ and 90° separately, where the energy is scaled
to a formula unit with respect to the AFM type.

of the full-anisotropy strategy. Special spiral states at the Г

and Z points have also been produced by varying the initial
input α0. Based on these findings, we will continue to explore
the ground states and physical insights of recently discovered
rutile-type FeO2.

IV. MAGNETIC GROUND STATES OF RUTILE-TYPE FeO2

A. Global search for spiral states

We expand the sampling area of spin-spiral calculations
to a complete high-symmetry k path. The generalized Bloch
theorem guarantees the efficiency of searching for the spiral-
modulated ground states on a primitive-cell basis. It has
been extensively reported that the tetragonal rutile structure
(P42/mnm) typically undergoes a second-order phase tran-
sition into the orthorhombic CaCl2-type (Pnnm) structure at
high pressure [41–43]. This structural distortion only involves
octahedral rotation around the c axis, which easily fits into the
wave-vector search.

Figure 2 shows spiral dispersions of FeO2 along the
rutile high-symmetry k path. At 0 GPa [Fig. 2(a)], the
tetragonal symmetry is stabilized in a high-spin (HS) state.
The global energy minimum is reached at Z (0, 0, 0.5),
with the DAFM (α = 0◦ or 180◦) rather than helical (α =
90◦) spin order [Figs. 1(c) and 1(d)]. Another local mini-
mum appears at A (0.5, 0.5, 0.5), with energy only slightly
higher than DAFM. When the volume is compressed to
27.5 Å3/f.u. [Fig. 2(b)], orthorhombic distortion becomes
favorable throughout the whole path, introducing an energy
gain of about 16.0 meV/f.u. on average. Note that neither the
overall pattern of the dispersions nor the spin state is changed
despite notable octahedral rotation (see Sec. IV B). Therefore,
the collinear DAFM spin order persists in the HS state.

The spin-state transition (SST) occurs on further compres-
sion, accompanied by dramatic changes in the dispersions.
As shown in Figs. 2(c) and 2(d), the energy becomes less
dispersed on the whole, with the ground-state wave vector
deviating from the Z point yet remaining in the Г-Z path. This
corresponds to a spin spiral propagating in the c direction,
which is similar to the ambient-pressure β-MnO2 phase. The
orthorhombic distortion is still preferred in the high-pressure
low-spin (LS) regime, whose energy gain broadens from 1.9
meV/f.u. (25 Å3/f.u.) to 12.3 meV/f.u. (24 Å3/f.u.). In the
latter case, the magnitude is actually comparable to the spread
of magnetic energy. To determine the ground-state wave
vector more accurately, calculations with increased sampling
density are conducted along the Г-Z segment [Figs. 2(e) and
2(f)]. For both volumes, the energy minimizes at qmin =
(0, 0, 0.33) with α ≈ 120◦, that is to say, every 3 unit cells
along the c axis constitutes a period of such a spin helix.

It is worth to note that the special states in Figs. 1(a)–1(d)
are again obtained at high-symmetry points in these disper-
sions. The starting angle α0 is important for inducing possible
metastable states because it imposes constraints on the initial
charge-density distribution. Given the wave vector is fixed, the
optimization algorithm may either end up at a nearby local
minimum if it exists or overcome the energy barrier towards
the global minimum. In the vicinity of high-symmetry points,
this competition sometimes makes the algorithm less stable
and efficient, yielding discontinuous singular states such as
the one next to the Г point in Fig. 2(d).

In nature, this correlated many-body system exhibits
competitions between fluctuated spiral states. Although the
ground-state spin order is closely related to the spin state,
the octahedral rotation seems to be decoupled from magnetic
transitions.
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FIG. 2. Spiral dispersions along the rutile high-symmetry k path calculated with (a) full relaxation, corresponding to 0 GPa, or with the
volume fixed at (b) 27.5 Å3/f.u., (c) 25 Å3/f.u., and (d) 24 Å3/f.u., representing increasing pressures. (a) and (b) are computed in a HS state
whereas (c) and (d) in a LS state. The spin-spiral search starts with α0 = 0◦, 90°, and 180◦ separately for the ambient-pressure tetragonal (T)
phase and high-pressure orthorhombic (O) phase. The global ground states (red arrow) together with some other special states (black arrow)
are indicated. For comparison, dispersions of the less stable tetragonal phase at high pressures are also given with α0 = 180◦. Figures 2(e)
and 2(f) are magnified Г-Z segments of the orthorhombic (α0 = 180◦) dispersions in Figs. 2(c) and 2(d), respectively, with increased sampling
density. Energies are scaled to a formula unit with respect to the tetragonal AFM (Г point, α = α0 = 180◦) phases.

B. Magnetic transition and structural distortion

As discussed earlier, two independent pressure-induced
phase transitions seem to exist in the FeO2 system: the or-
thorhombic distortion at a relatively lower pressure and the
magnetic phase transition at a higher pressure. Two magnetic
ground states have been revealed from the global search,
namely HS-DAFM [q = (0, 0, 0.5), α = 0◦ or 180◦] and
LS-helix [q = (0, 0, 0.33), α ≈ 120◦]. Therefore, we will
focus on the magnetic transition first. With the spin orders
fixed, energy-volume relations in the HS and LS regimes are
calculated and fitted separately [Fig. 3(a)] using the Birch-
Murnaghan isothermal equation [33]:

E (V ) = E0 + 9V0B0

16

⎧⎨
⎩

[(
V0

V

)2/3

− 1

]3

B′
0

+
[(

V0

V

)2/3

− 1

]2[
6 − 4

(
V0

V

)2/3
]⎫⎬
⎭, (4)

where E0 is the equilibrium energy, V0 is the equilibrium
volume, B0 is the bulk modulus, and B′

0 is the derivative of
the bulk modulus with respect to pressure.

We can draw a line which is tangent to both fitting curves,
and the critical pressure pc2 is found by taking the opposite of
its slope. Alternatively, pc2 may be directly determined from

the enthalpy-pressure diagram (inset) derived from the E-V
relations:

H = E+pV = E − V

(
∂E

∂V

)
S

. (5)

The intersection of the two H-p curves defines a critical
pressure of 22 GPa, which remains a constant in the two-phase
zone according to the Gibbs phase rule.

The average magnitude of the magnetic moments of Fe is
also given in Fig. 3(a). At 0 GPa (31 GPa), the values are
around 3.50 μB(1.75 μB), corresponding to the HS (LS) state
of Fe4+[3d4]. The SST results from the competition between
the splitting energy (�) and electron pairing energy (P) within
the crystal-field theory (CFT) framework. The compression
induces a contraction in bond lengths and enhances the re-
pulsion between eg orbitals and O ligands, thus broadening
the splitting gap. If it outweighs the electron pairing energy
(� > P), the LS state will be energetically more favorable.

The magnetic transition is predicted to be of first order
because of the discontinuity in volume (from V1 to V2) at
pc2. However, the widely studied orthorhombic distortion of
the rutile structure is of second order in nature [41–43]. This
lower critical pressure pc1 may be conveniently deduced from
extrapolation of pressure-dependent structural parameters. As
illustrated in Fig. 3(c), the orthorhombic distortion is realized
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FIG. 3. (a) Total energy (square) and average magnitude of the
magnetic moments of Fe (triangle), as a function of volume. The
energy-volume relations are fitted with the Birch-Murnaghan EOS,
and then converted to enthalpy-pressure curves (inset) to deter-
mine the critical pressure of the magnetic phase transition (pc2).
(b) The spontaneous strain and octahedral rotation angles in the
HS orthorhombic phase as a function of pressure, fitted by lin-
ear and quadratic functions, respectively. The critical pressure of
the orthorhombic distortion (pc1) is obtained by extrapolation. (c)
Structural evolution across the two phase transitions, represented by
structures at 0, 20, and 31 GPa.

through octahedral rotation around the c axis. The two rotation
angles denoted as ω and ω′ increase with pressure, as well
described by quadratic fitting curves in the lower panel of Fig
3(b). Extrapolation to the p axis yields a critical pressure of
2.9 GPa for the onset of octahedral rotation. Another structural
parameter characterizing the distortion is the spontaneous

TABLE I. Bond lengths and bond valences for the ambient FeO2

phase.

Bond Bond
Bonda length (Å) Bond valence valence sum

Fe–O1 (e) 1.836 0.841 Fe: 4.134
Fe–O2 (e) 1.844 0.823 O: 2.067
Fe–O3 (a) 2.108 0.403

a(e) and (a) stand for equatorial and apical oxygen atoms, respec-
tively. Each bond contributes twice to the bond valence sum of Fe
and once to that of O.

strain in the ferroelastic orthorhombic phase, given by

ess = a − b

a + b
. (6)

This order parameter should be linearly proportional to
(p − pc)1/2 according to Landau’s theory of second-order
phase transitions [44]. In the upper panel of Fig. 3(b), the e2

ss
vs p relation is plotted and a rather good linear fit is obtained,
which similarly yields pc1 = 4.3 GPa through extrapolation.
In comparison, this critical pressure has been found to be 0.9
GPa for β-MnO2 [42] and 12 GPa for CrO2 [44] by the same
token but based on experimental data.

Besides octahedral rotation, octahedral elongation along
one of the 〈110〉 directions has also been observed in the HS
states [Fig 3(c)]. At ambient pressure, the Fe–O bond lengths
for apical and equatorial O are 2.11 and 1.84 Å, respectively
(Table I), corresponding to a relative elongation of 14.7%.
The strong Jahn-Teller effect of the HS Fe4+ ions should well
account for this elongation, which weakens with increasing
pressure and vanishes upon the SST.

C. Chemical bonding and electronic structures

In chemistry, the formal oxidation state based on electron
counting is a powerful concept to understand chemical bond-
ing [45]. Pyrite-type FeO2 was first proposed as a peroxide
where the covalent O–O bonds facilitate the forming of Fe2+
as in the case of FeS2. Later theoretical studies held the view
that the valence of iron is +(2 + δ)(0 < δ < 1) or close to +3
[14,17,46], including one work using Bader charge analysis.
Although the charge-partitioning scheme is totally compatible
with first-principles calculations, it tends to underestimate the
valences quantitatively for most compounds. For example, the
Bader charges assigned to Fe and O in Fe2O3 are only +1.75
and −1.17, respectively [17]. In addition, the differences be-
tween various stoichiometries are not obvious enough, raising
ambiguity to some degree.

For rutile-type FeO2, an oxidation state of +4 is anticipated
in analogy to other rutile compounds, which is also supported
by our previous discussion of spin states and the Jahn-Teller
distortion. Here, we resort to the bond valence model [34]
to examine whether Fe4+ complies with the rutile structure
instead of performing charge-partitioning procedures. Bond
valences in the ambient phase (Table I) are calculated with
relaxed bond lengths and the empirical bond valance pa-
rameter for Fe4+–O (1.772) derived from the CaFeO3 phase
[47]. In fact, the bond valence parameter is dependent on
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FIG. 4. Total, Fe-d projected, O-p projected DOS, and corresponding band dispersions of (a) tetragonal HS-DAFM phase at 0 GPa, (b)
orthorhombic HS-DAFM phase at 20 GPa, and (c) orthorhombic LS-helix phase at 31 GPa. Only one spinor is shown in (a) and (b) because
the other one has the same energy dispersion. (d) DOS projected to O-p orbitals and the t2g, dxy, dz2 orbitals of a spin-up Fe for the phase at 0
GPa, with respect to the CFT coordinate system (inset) [50]. With fixed lattice parameters, two imaginary states are simulated for comparison,
where (e) Hubbard U is reduced to 2.5 eV or (f) the oxygen atoms are deliberately displaced to suppress the Jahn-Teller distortion.

the oxidation state. Thus as a general rule, bond valence
sums that agree with the assumed formal valence can be
taken as primary evidence of a correct structure [34]. Due to
the Jahn-Teller distortion, the central Fe atom in an [FeO6]
octahedron bonds with 2 apical and 4 equatorial O atoms.
The bond valence sums for Fe (4.134) and O (2.067) turn out
to match the assumed oxidation states quite well, suggesting
correctness of this distorted structure. The bond valences for
high-pressure phases are not given because the bond valence
parameter is also impacted by pressure [48].

For condensed matter, the extended band structure is some-
what more accepted in the physical world. As indicated in
Fig. 4(a), the ambient ground state is an insulator with an in-

direct band gap of about 1.03 eV. The valence-band maximum
and conduction band minimum are located at Г (0, 0, 0) and
near R (0.5, 0.5, 0), respectively. The main contribution to the
valence bands (VBs) is O-p orbitals while the very narrow
conduction bands (CBs) show strong hybridization between
O-p orbitals and Fe-d orbitals. According to the Hubbard
model [49], electron correlation splits the d bands into the
lower Hubbard band (LHB) below VB, and the upper Hubbard
band (UHB) above CB. Raising the pressure to 20 GPa in-
troduces second-order symmetry breaking and results in band
dispersions along the different orthorhombic high-symmetry k
path [Fig. 4(b)]. However, the indirect band gap persists under
compression and octahedral rotation, even broadened by 0.2
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FIG. 5. Phonon dispersions of (a) tetragonal HS-DAFM phase at 0 GPa, (b) orthorhombic HS-DAFM phase at 20 GPa, (c) orthorhombic
LS-helix phase at 31 GPa.

eV. With similar patterns, the density of states (DOS) exhibits
larger bandwidths of VB, UHB, and LHB due to increased
orbital overlap. After the SST, the electronic structure under-
goes a major change. The band gap becomes direct at the Г

point and reduces to 0.35 eV [Fig. 4(c)]. Both VB and CB are
better dispersed with continuity. Mixed O-p and Fe-d states
now dominate the VB, with the original narrow CB absent
from above the Fermi level.

Electron correlation, lattice distortion, and magnetism are
key to understanding the intricate electronic properties of
strongly correlated systems, such as V2O3, VO2, which are
known for the temperature-driven MIT [1]. These competing
factors also exist in the current FeO2 system, only the driving
force being pressure. In Fig. 4(d), we project DOS of the
HS-DAFM (0 GPa) phase to five d orbitals of a spin-up
Fe4+ with respect to the crystal-field coordinate system (inset)
[50]. Although the octahedra in this structure deviate from the
formal Oh symmetry, we will still use the t2g and eg notations
for convenience. The major d component in the narrow CB is
dxy of eg symmetry, indicating σ interaction with O-p orbitals
[13,51]. To understand this curious CB structure, the same
site-and-orbital-projected DOS of two imaginary states are
calculated for comparison. In the one with weakened elec-
tron correlation (U = 2.5 eV, J = 0.8 eV), the LHB moves

to higher energy levels and becomes more hybridized with p
bands [Fig. 4(e)]. Conversely, the t2g bands above the Fermi
level move to lower energy, mixing with and flattening out the
narrow dxy-p bands. When applying the original parameters
U = 5 eV, J = 0.8 eV but deliberately suppressing the Jahn-
Teller distortion in the relaxed structure, the gap between the
dxy-p bands and t2g bands remains [Fig. 4(f)]. Nonetheless, the
actual band gap is smeared by O-p states, which implies that
the Jahn-Teller distortion is essential to opening a band gap in
the HS phases despite considerable electron correlation.

There is no sign of previously reported half metallicity in
our calculations, which is actually the effect that comes with
ferromagnetic ordering, as also highlighted in the VO2 case
[52].

D. Dynamical stability

In addition to obvious energetic advantage, the orthorhom-
bic distortion introduces further stability on the dynamical
level. As indicated in Figs. 5(b) and 5(c), the phonon disper-
sions at 20 and 31 GPa both show a linear behavior near the �

point. No imaginary frequencies are observed along the high-
symmetry k path, suggesting their dynamical stability against
thermal vibrations. By contrast, the tetragonal HS-DAFM (0

TABLE II. Elastic constant tensor (ci j ) its minimum eigenvalue (λ1), bulk modulus (B), shear modulus (G), Young’s modulus (E), and
Possion’s ratio (ν) for the three phases at 0, 20, and 31 GPa. All the values are given in GPa except for ν and the underlined values in (ci j ) are
independent components for the given symmetry.

Phase Symmetry (ci j ) λ1 B G E ν

HS-DAFM (0 GPa) Tetragonal

⎛
⎜⎜⎜⎜⎜⎜⎝

123 88 89 0 0 0
88 123 89 0 0 0
89 89 383 0 0 0
0 0 0 78 0 0
0 0 0 0 78 0
0 0 0 0 0 114

⎞
⎟⎟⎟⎟⎟⎟⎠

34 117 63 160 0.272

HS-DAFM (20 GPa) Orthorhombic

⎛
⎜⎜⎜⎜⎜⎜⎝

292 158 161 0 0 0
158 220 107 0 0 0
161 107 446 0 0 0
0 0 0 76 0 0
0 0 0 0 100 0
0 0 0 0 0 188

⎞
⎟⎟⎟⎟⎟⎟⎠

76 193 97 250 0.285

LS-helix (31 GPa) Orthorhombic

⎛
⎜⎜⎜⎜⎜⎜⎝

495 300 265 0 0 0
300 392 185 0 0 0
265 185 579 0 0 0
0 0 0 168 0 0
0 0 0 0 190 0
0 0 0 0 0 317

⎞
⎟⎟⎟⎟⎟⎟⎠

135 323 163 417 0.285
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GPa) phase goes through a minor phonon softening near the
Г point yet is very stable in other regions [Fig. 5(a)]. We
also calculate the elastic constant tensors and some related
mechanical properties for these structures (Table II). Indicated
by positive minimum eigenvalues, the elastic constant tensors
are all positive-definite matrices. Therefore, the three phases
exhibit a certain degree of mechanical stability, that is, the
ability to endure a random strain or deformation.

V. CONCLUSIONS

We first revisit the classical β-MnO2 system of helical
magnetism and successfully reproduce the experimental spiral
wave vector from a dispersion curve, which in turn justifies
the predictive power of the fully anisotropic DFT+U method
used in this study. By employing the same scheme, magnetic
ground states varying with pressure are explored for the
recently discovered isostructural rutile-type FeO2. We have
identified a second-order CaCl2-type orthorhombic distortion
starting from 3 ∼ 4 GPa, which is characterized by octahe-
dral rotation. The energetically and dynamically more stable
orthorhombic phase further undergoes a first-order magnetic
transition from the collinear HS-DAFM phase to the non-

collinear LS-helix phase at about 22 GPa. Electronic proper-
ties also change tremendously upon the spin-state transition.
For the HS states, an indirect band gap of about 1 eV is formed
along with the narrow dxy-p hybridized CB, through electron
correlation and the Jahn-Teller effect. This character does not
persist up to the LS state, whose direct band gap is around 0.35
eV at 31 GPa. The magnetic moments, Jahn-Teller distortion,
and bond valence sums consistently indicate a +4 oxidation
state of Fe instead of +(2 + δ)(0 < δ < 1) as in pyrite-type
FeO2. Our work enriches the phase diagram of iron dioxides
with physical insights, and the way we approach magnetism
can be promisingly generalized to other strongly correlated
systems with spin spirals.
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