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Low-energy physics of isotropic spin-1 chains in the critical and Haldane phases
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Using a matrix product state algorithm with infinite boundary conditions, we compute high-resolution
dynamic spin and quadrupolar structure factors in the thermodynamic limit to explore the low-energy excitations
of isotropic bilinear-biquadratic spin-1 chains. Haldane mapped the spin-1 Heisenberg antiferromagnet to a
continuum field theory, the nonlinear sigma model (NLσM). We find that the NLσM fails to capture the
influence of the biquadratic term and provides only an unsatisfactory description of the Haldane phase physics.
But several features in the Haldane phase can be explained by noninteracting multimagnon states. The physics
at the Uimin-Lai-Sutherland point is characterized by multisoliton continua. Moving into the extended critical
phase, we find that these excitation continua contract, which we explain using a field-theoretic description. New
excitations emerge at higher energies and, in the vicinity of the purely biquadratic point, they show simple cosine
dispersions. Using block fidelities, we identify them as elementary one-particle excitations and relate them to
the integrable Temperley-Lieb chain.

DOI: 10.1103/PhysRevB.102.014447

I. INTRODUCTION

The most general model for spin-1 chains with isotropic
nearest-neighbor interactions is the bilinear-biquadratic
Hamiltonian,

Ĥθ =
∑

i

[cos θ (Ŝi · Ŝi+1) + sin θ (Ŝi · Ŝi+1)2], (1)

where the angle θ ∈ [−3π/4, 5π/4) parametrizes the ratio
of the two couplings. It describes quasi-one-dimensional
quantum magnets like CsNiCl3 [1–3], Ni(C2H8N2)2NO2ClO4

(NENP) [4,5], or LiVGe2O6 [6,7], and can be realized with
cold atoms in optical lattices [8–10]. Depending on θ , the
ground state can be in one of several interesting quantum
phases. In addition to a ferromagnetic (π/2 < θ ) and a
gapped dimerized phase (−3π/4 < θ < −π/4) [11–14], the
model features the gapped Haldane phase (−π/4 < θ < π/4)
[15–18] characterized by symmetry-protected topological or-
der [19,20] and an extended critical phase (π/4 � θ < π/2)
[14,21–26].

While the ground-state phase diagram has been studied ex-
tensively, much less is known about the low-energy dynamics
that we address in this paper. We use a recently introduced
algorithm [27] based on the density matrix renormalization
group (DMRG) [28–30] and the time evolution of matrix
product states (MPS) [31–33] with infinite boundary condi-
tions [34,35] to compute high-resolution dynamic structure
factors,

S(k, ω) =
∑

x

e−ikx
∫

dt eiωt 〈ψ |Âx(t )B̂0(0)|ψ〉, (2)

in the thermodynamic limit. Here X̂ (t ) := eiĤt X̂ e−iĤt and |ψ〉
is the ground state. As the model is SU(2) symmetric and
the ground states are singlets, it follows from the Wigner-
Eckart theorem that there are only two independent struc-
ture factors for one-site operators—the spin structure factor

Szz(k, ω) where Â = B̂ = Ŝz, and the quadrupolar structure
factor SQQ(k, ω) where Â = B̂ = Q̂ = diag(1/3,−2/3, 1/3).
As the ground states of interest are singlets (Stot = 0), selec-
tion rules imply that these structure factors probe excitations
with total spin quantum numbers Stot = 1 and 2, respectively.
They allow us to elucidate the low-energy dynamics of the
model. To this end, we compare the numerical results to Bethe
ansatz and field-theoretical treatments. In this paper, we focus
on the Haldane phase and the extended critical phase, which
have the most interesting physics.

The structure factors provide a direct link between the-
ory and experiment, as they can be measured by inelastic
neutron scattering experiments [36]. An important example
is their precise measurement for the spin-1 antiferromagnet
CsNiCl3 [3]. Measurements of the magnetic susceptibility
of the vanadium oxide LiVGe2O6 substantiated the presence
of biquadratic interactions [6,7], and our results provide a
prediction for future measurements of the full dynamic struc-
ture factor for this material. In addition, experimental setups
with cold atoms in optical lattices have been proposed which
allow for the realization of the model (1) with control on
the parameter θ [8–10]. For these systems, dynamic structure
factors can be measured using inelastic scattering of photons
[37–43].

II. HALDANE PHASE

For the Heisenberg antiferromagnet (θ = 0) with a vanish-
ing biquadratic term, Haldane mapped the model to a contin-
uum field theory, the O(3) nonlinear sigma model (NLσM)
[15,16], by restricting to the most relevant low-energy modes
at momenta k = 0 and π . The mapping becomes exact in
the limit of large spin S → ∞. The NLσM is integrable and
predicts an energy gap to the lowest excited states, which
is known as the Haldane gap. This is at the heart of the
famous Haldane conjecture, according to which the physics
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FIG. 1. Comparison of the NLσM and fMPS predictions with
numerical results. Left: θ dependence of the excitation gap � and
the squared spin-wave velocity v2 at k = π . The NLσM values have
been scaled to match numerics at θ = 0. Right: Dynamic structure
factor Szz(k = π,ω) versus the NLσM three-magnon continuum.
For the comparison, the latter has been scaled by matching the
single-magnon weights and multiplying a factor of 4.

of integer and half-integer antiferromagnetic spin chains is
fundamentally different.

Based on the NLσM description, one expects the lowest
excited states to be a triplet of single-magnon states at mo-
mentum k = π . The single-magnon dispersion near k = π is
predicted to be of the form

εNLσM(k) =
√

�2 + v2(k − π )2, (3)

with the energy gap �, and the spin-wave velocity v.
Correspondingly, the onset of a two-magnon continuum
at (k, ω) = (0, 2�) and of a three-magnon continuum at
(k, ω) = (π, 3�) are predicted, and the contributions of these
continua to the dynamic structure factors have been computed
for the NLσM [44–47].

To study the applicability of the NLσM for the physics in
the Haldane phase, we include the biquadratic term from the
Hamiltonian (1) in the mapping to the field theory. Details
are provided in the Appendix. In the end, this boils down to
evaluating the matrix element of the biquadratic interaction
with respect to spin-coherent states. Using the fact that higher-
order terms vanish in the continuum limit, we find that the
biquadratic term does not change the form of the resulting
action. Its effect is a renormalization of the coupling con-
stant J such that J (θ ) = J (0)(cos θ − sin θ ). As long as the
biquadratic term is sufficiently small, the identification of the
relevant degrees of freedom and the further derivations remain
valid. Thus, one would expect the physics to be unchanged
for a region around θ ≈ 0 with the renormalization leading to
a θ dependence of the gap and the spin-wave velocity with
�, v ∝ cos θ − sin θ .

Surprisingly, these predictions strongly disagree with our
numerical data as shown in Fig. 1. For the simulations,
we employ a fourth-order Lie-Trotter-Suzuki decomposition
[48–50] with time step τ = 0.1 and truncate components with
Schmidt coefficients λk < λtrunc and truncation thresholds in
the range λ2

trunc ∼ 10−10 − 10−8, depending on θ .
While the NLσM predicts a decreasing gap when we

increase θ , the actual gap increases. For the spin-wave ve-
locity, the trend suggested by the NLσM seems correct at
first sight. However, after crossing the Affleck-Kennedy-Lieb-
Tasaki (AKLT) point θ = arctan(1/3) ≈ 0.1024π [51,52], the
minimum of the single-magnon dispersion shifts away from
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FIG. 2. The dynamic spin and quadrupolar structure factors in
the Haldane phase. Dashed lines indicate thresholds for two- and
three-magnon continua in the noninteracting approximation.

k = π , resulting in a change in curvature of the dispersion
near this antiferromagnetic wave vector (see Fig. 2). This is
irreconcilable with the NLσM prediction and corresponds to a
negative v2 in Eq. (3). In the right panel of Fig. 1, we compare
the dynamic structure factor Szz(k, ω) with the NLσM result
for the three-magnon continuum at momentum k = π [45,46]
for several values of θ . While they are qualitatively similar,
the NLσM curves have significantly stronger high-energy
tails [53] and the discrepancies become more pronounced
when increasing θ . Both shape and total spectral weight do
not agree. Overall, the NLσM predictions for the relevant
quantities in the Haldane phase are unsatisfactory.

While the NLσM description fails quantitatively, it cor-
rectly predicts the presence of elementary magnon excitations
with dispersion minimum at k = π for an extended region
in the Haldane phase. The stable single-magnon line and
corresponding multimagnon continua are clearly observed in
the dynamic structure factors of Fig. 2. The exact shape of the
excitations strongly depends on θ . A lot of the features can
be explained by using a noninteracting approximation, where
multimagnon states are obtained by adding lattice momenta
and energies ε(ki ) of single-magnon states. This gives rise
to boundaries and thresholds at jumps in the multimagnon
density of states as indicated in Fig. 2. Jumps occur when
group velocities dε(ki )/dki agree for all magnons. Several
of the threshold lines do not extend over the entire Bril-
louin zone, because the single-magnon states are only well
defined down to a momentum kc(θ ), where ε(k) enters a
multimagnon continuum, e.g., kc(0) ≈ 0.23π . For small θ ,
almost all features in S correspond to such thresholds. See, for
example, the lower boundaries of the two- and three-magnon
continua and, for θ = 0, the structures at (k, ω) ≈ (0.6π, 3)
and (k, ω) ≈ (0.1π, 5), which result from an interplay of
jumps in the density of two- and three-magnon states. With
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FIG. 3. Dynamic spin structure factors Szz(k, ω) in the critical phase (π/4 � θ < π/2). Left: At the ULS point, we indicate exact continua
boundaries from the nested Bethe ansatz solution. Center panels: With increasing θ , the multisoliton continua contract and higher-energy
excitations emerge. Right: Just before the transition to the ferromagnetic phase, the soliton continua have collapsed onto the line ω = 0 and
the higher energy features are captured by simple cosine dispersions (5).

increasing θ � 0.1π , the magnons interact more strongly and
the noninteracting approximation cannot explain all structures
anymore. At the AKLT point, for example, a sharp feature
in the quadrupolar structure factor SQQ corresponds to an
exactly known excited state with Stot = 2, k = π , and energy
ω = 12/

√
10 ≈ 3.795 [54].

Tsvelik suggested a free Majorana field theory for the
vicinity of the integrable Takhtajan-Babujian point θ = −π/4
[55–57]. Surprisingly, we find that structure factors of that
theory [46,58] deviate even stronger than the NLσM results
also near θ = −π/4. This should be due to a neglect of
current-current interactions. Very recently, another alterna-
tive field-theoretic approach to the Haldane phase has been
suggested [59]. Instead of spin-coherent states, it uses an
overcomplete basis of “fluctuating” MPS (fMPS) with bond
dimension D = 2, containing the AKLT ground state [51,52].
Hence, the resulting Gaussian field theory works best around
the AKLT point and reproduces the corresponding single-
mode approximation for ε(k) [60]. Figure 1 shows gaps and
spin-wave velocities for the fMPS approach. It matches quite
well around the AKLT point, but predicts the gap to close too
early, at θ ≈ 0.18π instead of at the Uimin-Lai-Sutherland
(ULS) point θ = π/4, and at θ ≈ 0.04π instead of at the
transition point θ = −π/4 to the dimerized phase.

III. UIMIN-LAI-SUTHERLAND POINT

The transition from the Haldane phase to the critical phase
occurs at the SU(3)-symmetric ULS point θ = π/4. Here, the
model can be solved using the nested Bethe ansatz [21–23].
The low-energy excitations are two types of solitonlike par-
ticles with ε1(k1) = ( 2

3 )
3/2

π [cos( π
3 − k1) − cos π

3 ] for k1 ∈
[0, 2π

3 ] and ε2(k2) = ( 2
3 )

3/2
π [cos π

3 − cos( π
3 + k2)] for k2 ∈

[0, 4π
3 ], respectively. They are always created in pairs [23,61].

Note that a computation of dynamical correlation functions
based on the nested Bethe ansatz has not yet been achieved
for this model. While recent work [62,63] has addressed the
computation of scalar products of Bethe vectors, a single
determinant representation has not yet been found. Hence,
in the left panel of Fig. 3, we show the numerical result
for the dynamic structure factor Szz(k, ω) and the boundaries
of the relevant multisoliton continua, which agree precisely
with the main features. The line ω1(k) indicates the lowest
energy of a two-soliton excitation with total momentum k, the
two-soliton density of states doubles at ω2(k), and ωu(k) is

the upper boundary of the two-soliton continuum. In addition,
a multiparticle continuum with less spectral weight can be
found in the momentum range k ∈ [ 2π

3 , π ]. Its lower bound
ω4(k) = ε1(k − 2π

3 ) corresponds to four-soliton states.

IV. THE CRITICAL PHASE

As we increase θ starting from π/4, the soliton continua
remain visible in the dynamic structure factor, but contract
to lower energies as shown in Fig. 3. In addition, further
excitations emerge at higher energies. The contraction of the
continua can be explained by a field-theoretical description
that is valid in the vicinity of the ULS point. In this re-
gion, the Hamiltonian can be mapped to a level-one SU(3)
Wess-Zumino-Witten model (action ASU(3)1 ), a conformal
field theory with central charge c = 2 and certain marginal
perturbations [26]. As a function of θ , the overall action can
be written as

Aθ = cos θ [ASU(3)1 + g1(θ )A1 + g2(θ )A2]. (4)

The first marginal term A1 describes an SU(3)-symmetric
current interaction, which arises from constraining the di-
mension of the local Hilbert space and from a Gaussian
integration over fluctuations of a mean-field variable [26]. The
second marginal term A2 corresponds to the SU(3)-symmetry
breaking Hamiltonian term Ĥθ − Ĥπ/4 with coupling g2 ∝
tan θ − 1, where g2 = 0 corresponds to the SU(3)-symmetric
ULS point.

Figure 4 displays trajectories of the renormalization group
(RG) flow for the couplings g1 and g2 of the marginal per-
turbations [26]. A comparison with the exact Bethe ansatz
solution at the ULS point shows that the physically relevant
trajectories start with g1 � 0. In this regime, the term A1 is
always marginally irrelevant and leads only to logarithmic
finite-size corrections. Depending on the initial value of g2,
we have to distinguish two types of trajectories. For g2 < 0
(θ < π/4), the term A2 becomes marginally relevant, leading
to a Berezinskii-Kosterlitz-Thouless (BKT) transition. Here,
the model is asymptotically free with a slow exponential
opening of the Haldane gap. For g2 � 0 (θ � π/4), the term
A2 is marginally irrelevant and the RG flow approaches the
only fixed point g∗

1 = g∗
2 = 0. Hence, the low-energy physics

of this regime is described by the same field theory as the
ULS point, corresponding to the presence of the extended
critical phase. Furthermore, the prefactor cos θ in the action
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exact group velocity at the ULS point.

(4) explains the contraction of the multisoliton continua for
increasing θ as observed in Fig. 3. Figure 4 compares the
numerically obtained group velocities in the critical phase to
the field-theoretic prediction, finding very good agreement.

V. ELEMENTARY EXCITATIONS FOR θ → π/2−

With increasing θ , further higher-energy features emerge.
To understand them, let us focus on the limit θ → π/2− (right
panel in Fig. 3). The low-energy continua have collapsed
onto the line ω = 0 and we observe that the new dispersive
excitations at higher energies can be described by intriguingly
simple dispersion relations:

ε±
1 (k) = 3 + 2 cos(±k − 4π/3), (5a)

ε±
2 (k) = 7/3 + 2/3 cos(±k − π/3). (5b)

Additional structures are constant-energy lines that appear
at the minima and maxima of ε±

1,2(k), bounding correspond-
ing excitation continua. The states in these continua can be
explained as combinations of one of the massive excitations
with one of the ω = 0 excitations with arbitrary momentum k.

To characterize the nature of the dispersive features, in
particular, to assess whether they are due to elementary
one- or two-particle excitations, we compare subsystem den-
sity matrices for the perturbed time-evolved state |ψ (t )〉 ∝
e−iĤt B̂0|ψ〉 and the ground state |ψ〉. Let us define block A
as the left part of the spin chain up to but excluding the central
site x = 0 on which the perturbation is applied, and let us call
the remainder of the system B. Reduced density matrices for
block A are obtained by a partial trace over the degrees of
freedom of block B, and we define σ̂A(t ) := TrB |ψ (t )〉〈ψ (t )|

FIG. 5. Evolution of block fidelities (6) for different systems and
perturbation operators B̂ as indicated in brackets. We show the spin-1
Heisenberg chain [θ = 0 in Eq. (1)] as an example for elementary
one-particle excitations and want to characterize excitations at the
biquadratic point θ = π/2−. Examples for elementary two-particle
excitations include isotropic and anisotropic spin-1/2 XXZ chains
and the spin-1 chain (1) at the ULS point θ = π/4.

and ρ̂A := TrB |ψ〉〈ψ |. To quantify how similar the perturbed
time-evolved states and the ground state are on block A, we
employ the block fidelity:

FA(t ) :=
[

Tr
√√

ρ̂A σ̂A(t )
√

ρ̂A

]2

. (6)

For elementary single-particle excitations, we expect half of
the weight of |ψ (t )〉 to describe a left-moving particle. In
this component, the state of the left subsystem is orthogonal
to the ground state; hence it does not contribute to FA(t ).
The other half describes a particle traveling to the right. On
subsystem A, this component looks like the ground state.
We therefore expect FA(t ) to approach 1/2 for large times.
For elementary two-particle excitations, the wave function
contains components describing one particle traveling to the
left and one traveling to the right. There can be additional
components with both particles traveling in the same direc-
tion. Only components where both particles travel to the right
will contribute to FA(t ), which should hence approach a value
significantly below 1/2.

Figure 5 shows fidelities FA(t ) for several models. We
include isotropic and anisotropic spin-1/2 XXZ chains, and
the bilinear-biquadratic spin-1 chain (1) at the ULS point
θ = π/4. For these three examples, we know that the dy-
namics is dominated by elementary two-particle excitations
[23,61,64–69]. As expected, FA(t ) converges to a small value
significantly below 1/2. For the spin-1 antiferromagnetic
chain, where the dynamics is dominated by the single-magnon
excitations, we confirm that the fidelity converges to ≈1/2.
The small deviation can be attributed to the contribution of
multimagnon excitations with relatively small spectral weight.
For the spin-1 chain (1) at θ = π/2−, we find that the block
fidelity approaches ≈1/2. This is a strong indication that the
observed dispersive features in the dynamic structure factor
in the right panel of Fig. 3 are due to elementary one-particle
excitations.

VI. TEMPERLEY-LIEB CHAIN AND INTEGRABILITY

The simple functional form of the dispersions (5) suggests
that an exact solution is possible for θ = π/2−. At the purely
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biquadratic point θ = π/2, the Hamiltonian is in fact frustra-
tion free and can be expressed as a sum of bond-singlet pro-
jectors P̂i,i+1 such that Ĥπ/2 = ∑

i(1 + 3P̂i,i+1). The ground-
state space is exponentially large, containing all states without
bond singlets. The projectors {P̂i,i+1} obey a Temperley-Lieb
algebra [11,70], which implies integrability of the model, and
a corresponding generalization of the coordinate Bethe ansatz
has been found [71]. Starting from a ferromagnetic reference
state, the Ĥπ/2 eigenstates can be constructed by creating
two types of pseudoparticles and adding so-called impurities.
For θ = π/2−, an infinitesimal bilinear term ∼∑

i Ŝi · Ŝi+1

resolves the ground-state degeneracy. In terms of the Bethe
ansatz, the resulting θ = π/2− ground state is a specific
linear combination of θ = π/2 ground states containing a
complex array of impurities and pseudoparticles. Unfortu-
nately, the Bethe ansatz solution in its current form does not
give access to this ground state. Hence, analytically deriving
the dispersion relations (5) remains an open problem. These
massive excitations need to involve one bond singlet and, thus,
ε±

1,2(k) � 1.

VII. CONCLUSION

We have explored the low-energy physics of isotropic spin-
1 chains. The MPS algorithm [27] allowed us to compute
precise dynamic structure factors, even in the highly entangled
critical phase with c = 2. We have found that the NLσM
and Majorana field theories fail to capture the influence of
the biquadratic term and provide only a rather unsatisfactory
description for the Haldane phase. While an interpretation
in terms of noninteracting magnons explains most features
for small θ , magnon interactions are quite important around
and beyond the AKLT point, and a better field-theoretical
understanding would be very valuable. In the critical phase,
we observed and explained the contraction of the two-particle
continua from the ULS point, finding agreement with field
theory arguments. In addition, we have discovered new ex-
citations at higher energies, which we have characterized
to be of elementary one-particle type. For θ → π/2−, their
dispersion relations approach intriguingly simple forms. We
hope that this observation will stimulate further research,
possibly extending Bethe ansatz treatments for the integrable
Temperley-Lieb chain.
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APPENDIX: MAPPING TO THE NONLINEAR SIGMA
MODEL

In this Appendix, we explicitly show the calculations for
the mapping of the bilinear-biquadratic spin-1 model (1)
to the nonlinear sigma model (NLσM), complementing the
discussion in the main text. We use a path-integral description
based on spin-coherent states as, e.g., described in Ref. [72],
and show how the derivations need to be modified due to the
presence of the biquadratic term.

1. Path integral with spin-coherent states

For a single spin-S with Ŝz eigenbasis {|S; M〉}, we define
coherent states |n〉 parametrized by unit vectors n. They obey
(Ŝ · n)|n〉 = |n〉 and can be obtained by rotating the state with
maximum Ŝz quantum number by an angle χ ,

|n〉 := eiχ (ez×n)
|ez×n| ·Ŝ|S; S〉, (A1)

where n · ez = cos χ and ez is the unit vector along the z axis.
These states can be used to derive a path integral representa-
tion for spin systems [72].

Consider a spin chain

Ĥ =
∑

i

ĥi

with nearest-neighbor interactions ĥi acting on sites i and i +
1 where, in the case of the bilinear-biquadratic chain,

ĥi(θ ) ≡ cos θ (Ŝi · Ŝi+1) + sin θ (Ŝi · Ŝi+1)2. (A2)

Starting from the partition function in imaginary time, Z =
Tr e−βĤ , one follows the usual procedure of discretizing time,
β = Nτ , and inserting resolutions of the identity in terms
of the states (A1) for each intermediate time point and each
lattice site i. This leads to the formal expression

Z = lim
N→∞
Nτ=β

∫
D[{ni}] e−S[{ni}]. (A3)

Here, D[{ni}] is an appropriate measure for the integral over
the collection of smooth individual unit-vector paths ni(t )
with periodic boundary conditions ni(0) = ni(β ). For the
case of nearest-neighbor interactions, one can show that the
Euclidean action S takes the form

S[{ni}] = − iS
∑

i

SWZ[ni(t )]

+
∑

i

∫ β

0
dt 〈ni(t ), ni+1(t )|ĥi|ni(t ), ni+1(t )〉,

where |ni, ni+1〉 ≡ |ni〉 ⊗ |ni+1〉 denotes the tensor product of
two spins on neighboring sites. The first term is the sum of
Wess-Zumino terms for individual spins, where SWZ[ni(t )] is
given by the total area of the cap on the unit sphere bounded
by the (closed) trajectory ni(t ).

2. Evaluating the matrix element

To obtain the action for the spin-1 model (1) as a function
of θ , we need to evaluate the matrix element

〈ni, ni+1|ĥi(θ )|ni, ni+1〉
= cos θ〈ni, ni+1|(Ŝi · Ŝi+1)|ni, ni+1〉

+ sin θ〈ni, ni+1|(Ŝi · Ŝi+1)2|ni, ni+1〉.
Evaluating the bilinear term is straightforward and yields

〈ni, ni+1|(Ŝi · Ŝi+1)|ni, ni+1〉 = ni · ni+1. (A4)

For the evaluation of the biquadratic term, let

|n(χ )〉 := eiχ Ŝy |S = 1; M = 1〉.
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Then |n(0)〉 = |1; 1〉, and we consider the matrix element

f (χ ) := 〈n(0), n(χ )|(Ŝ1 · Ŝ2)2|n(0), n(χ )〉. (A5)

Writing the operator in the form (Ŝ1 · Ŝ2)2 = ( 1
2 Ŝ+

1 Ŝ−
2 +

1
2 Ŝ−

1 Ŝ+
2 + Ŝz

1Ŝz
2)2, one obtains nine terms from expanding the

square, and it is straightforward to see that only the two terms
(Ŝz

1)2(Ŝz
2)2 and 1

4 (Ŝ+
1 Ŝ−

1 )(Ŝ−
2 Ŝ+

2 ) yield nonzero contributions in
Eq. (A5). Therefore,

f (χ ) = 〈n(0)|(Ŝz )2|n(0)〉〈n(χ )|(Ŝz )2|n(χ )〉
+ 1

4 〈n(0)|Ŝ+Ŝ−|n(0)〉〈n(χ )|Ŝ−Ŝ+|n(χ )〉
= 〈n(χ )|(Ŝz )2|n(χ )〉 + 1

2 〈n(χ )|Ŝ−Ŝ+|n(χ )〉.

Note that Ŝ−Ŝ+ = Ŝ
2 − (Ŝz )2 − Ŝz, and we can easily read

off 〈n(χ )|Ŝ2|n(χ )〉 = 2 as well as 〈n(χ )|Ŝz|n(χ )〉 = cos χ

because we have S = 1 and Ŝ transforms like a vector
under rotations. To evaluate the remaining matrix element
〈n(χ )|(Ŝz )2|n(χ )〉, we expand the rotated state |n(χ )〉 in the
Ŝz eigenbasis {|1; M〉},

|n(χ )〉 =
1∑

M ′=−1

|1; M ′〉〈1; M ′|eiχ Ŝy |1; 1〉

= 1 + cos χ

2
|1; 1〉 + sin χ√

2
|1; 0〉 + 1 − cos χ

2
|1; −1〉,

where the coefficients are entries of the representation ma-
trix for spin-1 rotations [Wigner (small) d matrix]. Hence,
〈n(χ )|(Ŝz )2|n(χ )〉 = 1

4 (1 + cos χ )2 + 1
4 (1 − cos χ )2 = 1

2 +
1
2 cos2 χ . Putting everything together, we obtain f (χ ) = 5

4 −
1
2 cos χ + 1

4 cos2 χ . As (Ŝ1 · Ŝ2)2 transforms as a scalar un-
der rotations, the matrix element depends only on the angle
between the two spin-coherent states. Thus, the calculation
generalizes to any two states |n1, n2〉, and we can replace
cos χ by n1 · n2, obtaining

〈n1, n2|(Ŝ1 · Ŝ2)2|n1, n2〉 = 5
4 − 1

2 n1 · n2 + 1
4 (n1 · n2)2.

Combining this result with Eq. (A4), we arrive at the matrix
element of the Hamiltonian interaction (A2) :

〈ni, ni+1|ĥi(θ )|ni, ni+1〉
= 5

4 sin θ + (
cos θ − 1

2 sin θ
)
(ni · ni+1)

+ 1
4 sin θ (ni · ni+1)2. (A6)

Note that (ni + ni+1)2 = n2
i + 2ni · ni+1 + n2

i+1 = 2ni ·
ni+1 + 2, and (ni + ni+1)4 = (2ni · ni+1 + 2)2 = 4(ni ·
ni+1)2 + 8ni · ni+1 + 4, such that

ni · ni+1 = 1
2 (ni + ni+1)2 + const,

(ni · ni+1)2 = 1
4 (ni + ni+1)4 − (ni + ni+1)2 + const.

Inserting this into Eq. (A6) yields for the matrix element, up
to an irrelevant additive constant:

〈ni, ni+1|ĥi(θ )|ni, ni+1〉 = cos θ − sin θ

2
(ni + ni+1)2

+ sin θ

16
(ni + ni+1)4 + const.

(A7)

Then, as a function of θ , the action for the bilinear-biquadratic
spin-1 chain (A2) is given by

Sθ [{ni}] = −i
∑

i

SWZ[ni(t )]

+
∫ β

0
dt

∑
i

[cos θ − sin θ

2
(ni(t ) + ni+1(t ))2

+ sin θ

16
(ni(t ) + ni+1(t ))4

]
. (A8)

The special case θ = 0 corresponds to the spin-1 Heisenberg
antiferromagnet, for which the original derivation was done
[15–17].

3. Continuum limit and nonlinear sigma model mapping

In the next steps of the derivation, we follow the same
approach that was taken for the Heisenberg antiferromagnet
[15–17,72]. It is reasonable to expect staggered short-range
order for the spin field n, and the most relevant low-energy
modes should be ferromagnetic and antiferromagnetic fluctu-
ations. Hence, we can choose an ansatz that separates these
relevant degrees of freedom,

ni = (−1)i
√

1 − a2l2
i mi + al i, (A9)

where a is the lattice spacing and we have the constraints
m2

i = 1 and mi · l i = 0. Here, mi and l i are slowly varying,
which allows us to take the continuum limit a → 0. We
can write mi+1 ≈ mi + a(∂xmi ) and similarly for l i. When
inserting the ansatz (A9) into the action (A8), we only need
to keep terms to the lowest order in a. For the first term, this
yields

1
2 (ni−1 + ni )

2 + 1
2 (ni + ni+1)2

= a2((∂xmi )
2 + 4l2

i

) + O(a3),

where we have grouped two neighboring interaction terms
together to take advantage of the cancellation of additional
terms. Correspondingly, the contributions from the second
term (ni + ni+1)4 will be of the order O(a4). Hence, the sec-
ond term can be ignored in the continuum (low-energy) limit,
and the effective action has the same form as in the case of the
Heisenberg antiferromagnet (θ = 0). The only change due to
the biquadratic term is an effective rescaling of the coupling
in the form J (θ ) = cos θ − sin θ . Thus, the remaining steps in
the derivation for the mapping to the NLσM are identical to
the case of the Heisenberg antiferromagnet.

After taking the continuum limit for the Wess-Zumino
terms as well, one can integrate out the fluctuations in the field
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l , which yields an effective action

S[m] =
∫∫

dx dt
1

2g

(
v(θ ) (∂xm)2 + (∂t m)2

v(θ )

)
+ iφQ[m],

(A10)

where we have introduced the coupling constant g = 2/S, the
spin wave velocity v(θ ) = 2aJ (θ )S, and the topological angle
φ = 2πS. The second term contains the topological charge or
winding number of the field configuration:

Q[m] = 1

8π

∫∫
dx dt εi jm · (∂im × ∂ jm) ∈ Z.

Note that for integer spin S, the imaginary part φQ[m] in
Eq. (A10) is always an integer multiple of 2π , such that it
does not affect the physics. In this case, the model is described
by the first term, which is the standard O(3) nonlinear sigma

model (NLσM). For half-integer spin, however, the contri-
butions to the path integral of configurations with an odd
winding number Q are weighted by a factor of −1. This leads
to fundamentally different physics, which is at the core of Hal-
dane’s conjecture [15–17]. While antiferromagnetic chains
with integer spin are gapped, those with half-odd-integer spin
are gapless.

In conclusion, the low-energy physics of the bilinear-
biquadratic spin-1 chain should be described by the NLσM,
which predicts an excitation gap �(θ ) ∝ J (θ )e−πS and a dis-
persion ε(k) =

√
�2 + v2(k − π )2 for the single-magnon line

near k = π . In the main text, we are testing the dependence
of the gap and the spin-wave velocity on the Hamiltonian
parameter θ , for which we summarize the NLσM predictions:

�(θ ) ∝ (cos θ − sin θ ) and

v2(θ ) ∝ (cos θ − sin θ )2. (A11)
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