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Spin waves are promising candidates to carry, transport, and process information. Controlling the propagation
characteristics of spin waves in magnetic materials is an essential ingredient for designing spin-wave-based
computing architectures. Here, we study the influence of surface inhomogeneities on the spin-wave signals
transmitted through thin films. We use micromagnetic simulations to study the spin-wave dynamics in an in-plane
magnetized yttrium iron garnet thin film with thickness in the nanometer range in the presence of surface
defects in the form of locally introduced uniaxial anisotropies. These defects are used to demonstrate that the
backward volume magnetostatic spin waves (BVMSW) are more responsive to backscattering in comparison
to magnetostatic surface spin waves (MSSWs). For this particular defect type, the reason for this behavior can
be quantitatively related to the difference in the magnon band structures for the two types of spin waves. To
demonstrate this, we develop a quasianalytical theory for the scattering process. It shows an excellent agreement
with the micromagnetic simulations, sheds light on the backscattering processes, and provides a new way to
analyze the spin-wave transmission rates in the presence of surface inhomogeneities in sufficiently thin films, for
which the role of exchange energy in the spin wave dynamics is significant. Our study paves the way to designing
magnonic logic devices for data processing which rely on a designed control of spin-wave transmission.
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I. INTRODUCTION

The field of magnonics is concerned with studying spin
waves (SW), whose quanta are known as magnons. SWs
are the low-energy eigen-excitations of magnetic materials
[1]. The use of SWs promises many opportunities for data
processing using wave-based, quantum and unconventional
computing concepts [2–5]. SWs are particularly interesting
for several reasons: For instance, they provide access to
nanometer-range wavelengths [6,7], feature a large range of
operational frequencies from GHz to THz [8], and are also
characterized by the absence of Ohmic-loss contributions to
their dynamics, and hence the absence of Joule heating [1,9].
Therefore, using SWs opens up potential possibilities for
the design and implementation of energy-efficient nanometer-
scale device architectures for data processing that promise to
become even more compatible with the CMOS platform in the
years to come.

Controlling magnon transport is a necessary task for us-
ing SWs as data carriers. So far, several mechanisms have
been used for this purpose. One can refer to, for instance,
employing voltage [10–12] and strain [13,14], tuning of the
magnon chemical potential via nonlocal injection [15,16],
laser beams [17], spin textures [18–20], etc. Recently, it was
shown that surface inhomogeneities in the form of surface
roughness and defects can significantly influence the trans-
mission characteristics of the SWs in thin films [21–24]. In
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those films, the contribution of the exchange energy to the
magnon band structure is large enough to suppress direct
mode-hybridization by opening up an energy gap between
the fundamental mode and higher-order thickness modes [25].
In this context, SWs in such systems are very interesting for
applications due to their dimensions and the facile control of
their wave vector.

Here, we use a different type of surface inhomogeneity
to tune the propagation characteristics of the SWs in an
in-plane magnetized thin film. We utilize locally introduced
uniaxial anisotropies at the surfaces of a thin film (“anisotropy
defects”) and demonstrate theoretically and numerically that
transmission of a SW signal can be controlled by the defect
strength. Unlike topographical defects [21], this type of inho-
mogeneity is analogous to an internal boundary which shifts
the frequency of the local band structure of the magnons over
the entire wave vector range in the defect region and thus
requires a different approach to characterize the transmission
rates of the SWs. Moreover, studying these types of surface
inhomogeneities is important for several reasons: (i) magnetic
inhomogeneities and material defects are unavoidable during
thin film deposition. This can, for example, lead to linear
magnon scattering processes [26]; (ii) it has been shown that
breaking the spatial symmetry of the system with a certain
periodicity by varying the effective field or the saturation
magnetization, can lead to the presence of band gaps in the
transmission characteristics of the SWs. This phenomenon is
known as the magnonic crystal [27–29]; (iii) the capability to
control the transmission characteristics of SWs using surface
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defects may represent an extra tool for designing magnonic
devices that are essential for data processing using waves,
such as phase shifters [30].

We use micromagnetic simulations and quasianalytical
calculations to study SW propagation in an yttrium iron garnet
(YIG) thin film slab that is continuous in the slab plane and
has a continuous thickness t = 80 nm. By introducing local
uniaxial anisotropy at the surfaces of the film, we investigate
how SWs are transmitted through and reflected from such
defects. We define the local uniaxial anisotropies in a way
that they effectively act as local variation in the effective
field or the effective magnetization inside the inhomogeneities
without changing the saturation magnetization. This leads to a
local shift of the SW dispersion, and, consequently, affects the
SW transmission rates. We show that based on the notion of a
local dispersion relation inside the defect region, it is possible
to explain the propagation and reflection mechanisms of the
SWs. Furthermore, by comparing the magnetostatic surface
spin waves (MSSWs) and backward volume magnetostatic
spin waves (BVMSW), we demonstrate how the difference
in their magnon band structures impacts the SW propagation
through the defects. We note that we use YIG as the modeled
film material because YIG exhibits the lowest Gilbert damp-
ing known so far. Therefore, YIG is the most promising host
material for SWs [31–33]. However, we note that the reported
results can also be applied to metallic magnetic alloys such as
NiFe and CoFeB.

II. METHODS

A. Micromagnetic simulations

Micromagnetic simulations have been carried out using
the MuMax 3.0 open source GPU-based package [34]. This
package uses the finite difference method to solve the Landau-
Lifshitz-Gilbert equation on a rectangular mesh,

d−→m
dt

= −γ
1

1 + α2
Gilbert

{−→m ×−→
B eff + αGilbert[

−→m × (−→m ×−→
B eff )]}.

(1)

Here −→m is the magnetization vector, γ is the gyromagnetic
ratio, αGilbert is the Gilbert damping constant,

−→
B eff is the

effective field including the external, exchange, magnetostatic
and anisotropy fields. The system under investigation is a
thin film slab with dimensions equal to 50 μm × 1 μm ×
80 nm (length × width × thickness t) as shown in Fig. 1(a).
The system is divided into 5000 × 4 × 10 mesh cells leading
to cell sizes of 10 nm × 250 nm × 8 nm. We use periodic
boundary conditions (PBC × 100) in the y direction, which
means that the film is practically infinite in the y-direction.
Absorbing boundaries are assumed at the ends of the film to
prevent back-reflections and interference effects, and realistic
magnetic parameters for a YIG thin film are employed: Ms =
140 kA/m, αGilbert = 0.0002, Aexch = 3.5 pJ/m [35]. We set
the external field along the y-direction to simulate MSSWs,
while for BVMSW, the external field is applied along the
x-direction. The field amplitude is set to μ0Hex = 0.05 T
in all simulations. A SW excitation source with a width

FIG. 1. (a) Schematic picture of the systems under study, a YIG
thin film with a thickness t . The film is magnetized in its plane in
one of two possible directions with respect to the wave vector, cor-
responding to MSSW and BVMSW. (b), (c) Magnon band structures
for the MSSW and BVMSW modes (mode n = 0 in Eq. (12)) for
the reference film calculated via numerical simulations (colour plot)
and analytically. The MSSW and BVMSW modes are shown with
yellow and orange color, respectively; higher-order volume modes
[VM, mode n = 1 in Eq. (12)] are indicated by the green lines.

of 20 nm (along the x-direction) and a height equal to the
thickness (80 nm) is introduced at the middle of the film length
(x = 0 μm) to generate SWs. A spatially homogeneous and
sinusoidal oscillating field pulse with a frequency f and an
amplitude equal to 0.1 mT for t = 10 ns is applied perpendic-
ular to the static field in the excitation source region. Once the
excitation pulse is over, the generated SWs propagate for 60 ns
to ensure that the entire wave packet reaches the two opposite
edges of the slab. The collected simulation data is analyzed
using the fast Fourier transform (FFT) method in space and
time. To this end, dynamic magnetization components of the
second layer along y (mx for MSSWs and my for BVMSWs)
are collected through the entire simulation time.

We define the SW transmission as

Transmission (%) = [md( f , x)]

[mr ( f , x)]
× 100. (2)

Here [md( f , x)] and [mr ( f , x)] refer to the FFT amplitude
of the SWs at a location x past the defect region for the film
with the defect, and the FFT amplitude for a reference film
without defect at the same location x, respectively.

B. Original Born-equation-based model of
spin-wave scattering from 2D defects

Simultaneously to carrying out the micromagnetic simula-
tions, we also developed a problem-oriented quasianalytical
theory of SW scattering from 2D defects. The theory assumes
that both the film and the defect are continuous in the y-
direction. We consider single-frequency plane SW with wave
fronts of infinite length in the y direction.

As shown in Refs. [36–38], the problem of scattering of
SW from 1D defects can be cast in the form of a Born Equa-
tion. The Born Equation is an integral equation for the ampli-
tude of a wave that undergoes scattering from an area (called a
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“defect” in the present manuscript), where the value of some
parameter of the waveguiding medium is different from its
value elsewhere. In Ref. [36], the defect occupied the whole
thickness of the film and the strength of the parameter (the
strength of an additional localized external field in that paper)
was almost uniform across the film thickness. Furthermore,
the experiment carried out in the same paper was concerned
with transmission of the fundamental thickness mode of SWs.
For these two reasons, a rather accurate description of the
problem was obtained with the simple method of assuming
that the magnetization dynamics are thickness [i.e., z direction
in Fig. 1(a)] uniform and averaging all effective dynamic
fields as well as the extra defect field over the film thickness.
This yielded a one-dimensional integral equation of a very
simple form.

An important advantage of the Born method is that the
integral equation’s area of definition of is the volume of the
defect, and the areas outside the defect volume are excluded
from consideration. One simple way to solve the integral
equation is by using numerical methods. In Ref. [36] this was
needed because the shape of the defect was complex. In these
circumstances, the advantage of the integral-equation formu-
lation of the scattering problem becomes very pronounced—
the discrete mesh needs to cover the defect area only, and, thus
a small number of mesh cells is sufficient to solve the problem
numerically with good accuracy. Furthermore, the problem
can be formulated in the frequency domain—by considering
a plane single-frequency wave incident onto the defect. This
results in a very efficient algorithm that delivers a solution
within a minute. Conversely, the standard micromagnetic soft-
ware, such as MuMax or OOMMF, needs a mesh that covers
not only the defect areas, but also significant lengths in front
and behind the defect. Furthermore, these packages are not
problem-oriented and have a lot of built-in redundancies. This
slows down the simulations. These unnecessary features are:
(i) the necessity to simulate the static magnetization configu-
ration first before starting simulating the SW dynamics; (ii)
the SW nonlinearity; (iii) the intrinsic three-dimensionality
of the problem formulation; and (iv) the necessity to solve
the problem in the time domain for pulses of finite length
with subsequent Fourier analysis of the simulated data. All
these peculiarities slow down the simulations by a lot—a
typical simulation run for our geometries takes approximately
two hours.

Contrary to Ref. [36], the present paper considers de-
fects that do not occupy the whole film thickness (in the
direction z), therefore the present problem is essentially two-
dimensional. Here we extend the theory to the second dimen-
sion. To obtain simple expressions that allow easy conversion
into a short and fast numerical code, we use the fact that we
deal with ultrathin films.

Similar to the previous treatment [36], to formulate the
scattering problem, we cast the linearized Landau-lifshitz
equation in the following form:

χ̂ (ω)−1m(x, z) = hd (x, z) + hexc(x, z) + hani(x, z)

+ hdr (x, z), (3)

where χ̂ (ω) is the microwave magnetic susceptibility tensor
[39] that we assume to be uniform over the whole volume of

the film; hd is the dynamic dipole field of precessing magneti-
zation; hexc is the dynamic effective field of (inhomogeneous)
exchange interaction; hani is the effective anisotropy field;
and hdr is a spatially localized microwave magnetic field of
frequency ω that excites a SW incident onto the defect.

The dynamic dipole field is obtained by solving Maxwell
Equations in the magnetostatic approximation.

The solution takes a simple form in the Fourier space [40],

hdk (z) =
∫ t

0
Ĝk (z − z′)mk (z′)dz′, (4)

where t is the film thickness,

hdk (z) = 1

2π

∫ ∞

−∞
hd (x, z) exp(ikxx)dx, (5)

mdk (z) = 1

2π

∫ ∞

−∞
m(x, z) exp(ikxx)dx, (6)

and Ĝk (z) is the Fourier-space Green’s Function of the dipole
field, whose components are shown in Ref. [40].

The Fourier image of the effective exchange field can be
written down as [40]

hexck (z) = α
[
∂2mk (z)/∂z2 − k2

x mk (z)
]
, (7)

where α is the inhomogeneous-exchange constant that we
assume to be the same for any point within the film. We
introduce the effective field of anisotropy employing the ten-
sor of effective demagnetizing factors of anisotropy N̂ani [41].
Because the tensor is local, this must be done in the real space,

hani(x, z) = N̂ani(x, z)m(x, z). (8)

We start with solving the SW excitation and propagation
problem for a homogeneous film, i.e., a film without defect.
In this case, N̂ani = N̂0

ani is co-ordinate independent and (8)
reduces to

hani(x, z) = N̂0
anim(x, z). (9)

Substitution of Eqs. (4)–(7) and (9) into Eq. (3) yields
an integrodifferential equation with respect to m(x, z). The
differential part of the equation originates from the second-
derivative term in Eq. (7) and the integral part from the
Green’s function formulation of the dipole field. The pres-
ence of the differential requires boundary conditions for the
exchange-field operator Eq. (7) at the film surfaces z = 0
and z = t . We assume the “unpinned surface magnetization”
boundary conditions (see, e.g., Ref. [40]),

∂m(x, z)/∂z|z=0,t = 0. (10)

Under this assumption, we may cast the solution of the
integro-differential equation into the form

m(x, z) =
N∑

n=0

mn(x) cos(nπz/t ). (11)

As shown in Ref. [25], for ultrathin films, it is sufficient to
keep the first two terms (n = 0 and n = 1) of the expansion.
This yields a solution in a very simple form,

m(x, z) = m0(x)
1(z)√

t
+

√
2

t
m1(x) cos(πz/t ), (12)
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where

1(z) =
{

1, 0 � z � t
0, elsewhere

, (13)

and we introduced the prefactor
√

2, to properly normalize our
orthogonal basis functions fn(z) (n = 0, 1):∫ t

0
[ f0(z)]2dz =

∫ t

0

[
1(z)√

t

]2

dz = 1,

∫ t

0
[ f1(z)]2dz =

∫ t

0

[√
2

t
cos(πz/t )

]2

dz = 1. (14)

Substituting Eq. (12) into the integrodifferential equation
and projecting the resulting equation onto the orthonormal
basis Eq. (14) yields a system of two linear integral equations
for m0(x) and m1(x) . Now we introduce a column-vector in
a Hilbert space,

|m(x)〉 =
(

m0(x)
m1(x)

)
. (15)

This converts the system of the integral equations into an
integral equation with a kernel in the form of a tensor,

χ̂−1|m(x)〉 −
∫ ∞

−∞
Ĉ(x − x′)|m(x′)〉dx′ = |hdr (x)〉, (16)

where the vector |hdr (x)〉 represents projections of the driving
field onto the orthogonal basis Eq. (14), and the components
of the tensor

Ĉ(x) =
(

C00(x) C01(x)
C10(x) C11(x)

)
(17)

are combinations of projections of the operators Eqs. (4), (7),
and (9) onto the orthogonal basis.

Equation (16) admits a formal solution,

|m(x)〉 =
∫ ∞

−∞
Ĝexc(x − x′)|hdr (x)〉dx′, (18)

where Ĝexc(x) is a Green’s function of SW excitation by an
external driving field. Its derivation is fully analogous to the
one-dimensional cases [36,37]. Equating the denominator of
the components of the Fourier transform of Ĝexc(x) to zero
yields dispersion relations ω(kx ) for the fundamental and the
first exchange SW modes. (We will obtain the dispersion
relations in a slightly different way in Sec. II B.)

Let us now introduce a defect in the form of a localized
nonuniformity of the effective anisotropy field,

N̂ani(x, z) = N̂0
ani + δN̂ani(x, z), (19)

where δN̂ani(x, z) =
{
δN̂ inside the defect
0 else where

, (20)

and δN̂ is a constant tensor that describes the defect amplitude.
With Eq. (19), Eq. (3) transforms into

χ̂−1|m(x)〉 −
∫ ∞

−∞
Ĉ(x − x′)|m(x′)〉dx′ + δN̂ani|m(x)〉

= |hdr (x)〉. (21)

We now multiply both sides of Eq. (21) by Ĝexc(x′′ − x)
and integrate over x from the negative infinity to the positive
one. With Eq. (18), this yields

|m(x)〉 +
∫ d

0
Ĝexc(x − x′)	N̂ |m(x′)〉dx′

= |m0(x)〉 exp(−ikxx) exp(−νx). (22)

(Note that we replaced x′′ with x and x with x′ to arrive at
this final form.)

This is the sought Born Equation for scattering of SWs
from 2D defects. In this equation, 	N̂ is a tensor that is
obtained by projecting δN̂ani(x, z) onto the orthogonal basis
Eq. (14), and

|m0(x)〉 exp(−ikxx) exp(−νx) (23)

is the SW incident onto the defect, |m0(x)〉 is its amplitude, kx

is its wave number satisfying the dispersion relation ω(kx ) =
ω, ω is the frequency of the driving field [see Eq. (3)],
and ν is the decrement of spatial decay of SW. Note that
|m0(x)〉 exp(−ikxx) exp(−νx) represents the exact solution
of Eq. (18) for the far zone of the excitation source [36].
In addition, note that the decrement of the spatial decay of
SW appears in this expression because we take into account
magnetic losses while writing down the expression for χ̂ (ω)
[39]. For the same reason, the Green’s function in Eq. (22)
takes into account the SW decay. Thus, Eq. (22) accounts for
the effect of SW decay on the efficiency of SW scattering from
the defect.

The physical meaning of the equation is that every point
of the defect x′ represents a source of secondary waves.
These waves combine (through the mathematical operation of
integration) at any point x to produce a scattered SW field.
The scattered field is given by the integral term of the equation
(with the negative sign). The scattered field for locations x <

0 in front of the defect (i.e., the back-scattered field) represents
the reflected SW, and the combination of the incident wave
(given by the right-hand side term of the equation) and the
forward-scattered field represents the transmitted wave for
locations behind the defect (x > d).

Importantly, the limits of integration in the equation are just
the length of the defect d in the direction x.

Furthermore, the components of

	N̂ =
(

	N̂00 	N̂01

	N̂10 	N̂10

)
(24)

scale as the respective overlap integrals Onn′ of δN̂ani(x, z) with
the basis functions fn(x)

Onn′ =
∫ t

0
δN̂ani(x, z)| fn(z) fn′ (z)dz =

∫ h

0
δN̂ fn(z) fn′ (z)dz,

(24a)

where h is the defect height in the direction z. Thus, we
account for the 2D character of the defect.

We solve the Born equation numerically on a 1D mesh
with Np = 100 points placed equidistantly within the defect
area 0 < x < d . The Green’s function of SW excitation ad-
mits an exact analytical solution in the Fourier space. The
inverse Fourier transform of the analytical solution yields two
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components [36]—the far field in the form of a traveling SW
Eq. (23) and the near field of the excitation source. No exact
solution for the near field exists; but approximate solutions
can be obtained for both MSSW and BVMSW cases in the
form of combinations of exponents of complex arguments
and exponential integrals [36,37]. Alternatively, the inverse
Fourier transform can be carried out numerically on the same
mesh. In this work, we employ numerical integration of the
Born Equation. The process of converting the integral equa-
tion into a numerical scheme is explained in Appendix A.

The last step of this calculation is converting the amplitude
of the transmitted wave into the transmission coefficient. This
is done by using Eq. (2), more precisely, its modification given
by Eq. (A5) from Appendix A. We calculate the amplitude of
the transmitted wave that enters those equations for a distance
2d from the rear (or far) boundary of the defect area.

More details of the extraction of the transmission coeffi-
cient from the results of the numerical calculation are given
in Appendix A. Here we just briefly discuss the effect of SW
losses on the value of the transmission coefficient as defined
by Eqs. (2) and (A5). Because we normalize the amplitude of
the wave transmitted through the defect area by the amplitude
of the wave that traveled the same distance in a reference
defect-free film, we largely eliminate the effect of SW decay
on the transmission coefficient. In the areas in front of the
defect and behind it, the amplitude of the forward-propagating
waves just decays exponentially. The decay decrement is the
same as for the wave in the reference film. This ensures that
the effect of SW damping on the amplitude of the incident
wave is eliminated completely. The same applies to the area
past the defect. Thus, the transmission coefficient as defined
by Eq. (2) accounts only for the strength of reflection of the
incident wave from the defect, processes that take place within
the defect area and partial conversion of the incident wave into
the higher-order thickness mode. From this point of view, it
does not matter where precisely we observe the transmission
coefficient. Its value will be the same at any point behind the
defect area, provided the point is located far enough from the
far boundary of the defect, to ensure that the contribution of
the near field of the far boundary to the total amplitude of
magnetization-vector precession is negligible.

However, as it will be shown in Sec. IIC, the dispersion
relation ω(kx ) for the spin waves in the defect area is different

from the dispersion relation for the regular parts of the film.
The spatial decay of SWs scales as V −1

g , where Vg = ∂ω/∂kx

is the SW group velocity. Because the group velocities are
different for the defect area and the regular film, the SW
decay does affect the contribution of the processes within the
defect area to the transmission coefficient. What is important
in this regard is the difference in the group velocities, not
its absolute values. Therefore, if the difference is small, then
one may expect a smaller impact of the SW damping on the
transmission coefficient.

In addition, below we will see that scattering of SWs
from the defect is a resonant process. Before escaping the
defect in the forward direction (and thus forming the trans-
mitted wave), the wave bounces a couple of times between
the defect boundaries, thus forming a partial standing wave
inside the defect area. If the group velocities are similar, then
the effect on the transmission coefficient of the decrease in
the amplitude of the wave crossing the defect area for the first
time is almost fully compensated by the process of division
by the denominator of Eq. (2). However, the spatial decay of
the wave that is partially reflected from the far boundary of
the defect area, travels back to the front boundary and then
bounces back towards the far boundary is not compensated by
our definition of the transmission coefficient. The transmitted
wave is formed through interference of the wave that has
passed the defect area one time with the wave that bounced
between the boundaries and then escaped. Therefore, one
expects to see a lesser amplitude of periodic oscillations of the
transmission coefficient as a function of the defect “strength”
for larger values of the spin-wave-damping coefficient or a
larger length of the defect. This is because the bouncing
wave will be damped more strongly and contribute less to the
total amplitude of the transmitted wave. (More detail of the
periodic oscillations will be given in Sec. III B.)

C. Spin-wave dispersion in the defect area

Performing the spatial Fourier transform Eqs. (5) and (6)
of the left-hand side of Eq. (16) and equating the resulting
expression to zero yields a dispersion relation for SWs. The
eigen-frequencies of SW for the defect-free (regular) areas are
given by eigen-values of a matrix Dr that follows from the
matrix C Eq. (17):

Dr = i

⎛
⎜⎜⎝

0 −�0k − ωMP00 −ωMQ sin(ϕ) 0
�0k + ωM (1 − P00 sin(ϕ)) 0 0 ωMQ sin(ϕ)

ωMQ sin(ϕ) 0 0 −�1k − ωMP11

0 −ωMQ sin(ϕ) �0k + ωM (1 − P11 sin(ϕ)) 0

⎞
⎟⎟⎠, (25)

where i is the imaginary unit, and the remainder of notations
is explained in Appendix B. There are two pairs of the eigen-
values ±iω1(kx ) and ±iω2(kx ) where i is the imaginary unit,
ω1(k) is the frequency of the fundamental mode for a given
kx, and ω2(kx ) is the eigen-frequency of the first higher-order
(volume) mode for the same kx.

As shown in Ref. [42], the respective matrix for a
thickness-nonuniform film is obtained by adding matrix
elements �ij that represents projections of the thickness-
nonuniform magnetic parameter onto the basis Eq. (14). In the
case of the in-plane uniaxial anisotropy with the anisotropy
easy axis parallel to the applied field, the dispersion matrix
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for the defect area Dd reads

Dd = i

⎛
⎜⎜⎜⎝

0 −�0k − ωMP00 − �00 −ωMQ01 sin(ϕ) −�01

�0k + ωM (1 − P00 sin(ϕ)) + �00 0 �01 ωMQ01 sin(ϕ)

ωMQ01 sin(ϕ) −�01 0 −�1k − ωMP11 − �11

�01 −ωMQ01 sin(ϕ) �0k + ωM (1 − P11 sin(ϕ)) + �11 0

⎞
⎟⎟⎟⎠,

(26)

where �i j = γ 	N ||
aniMs

∫ h
0 fi(z) f j (z)dz, h is the defect

height, Ms is the saturation magnetization for the film, 	N ||
ani

is the component of the tensor of the effective demagnetizing
factors of anisotropy that is responsible for the extra effective
anisotropy field in the defect (the effective anisotropy field
is 	N ||

aniMs), and the functions fi(z) are given by Eqs. (13)
and (14). The two positive eigen-values of Dd (k) represent
the frequencies of the fundamental and the first higher-order
volume mode for the defect area.

III. RESULTS AND DISCUSSIONS

A. Comparison of MSSW and BVMSW

We first compare the MSSWs to BVMSWs. Figures 1(b)
and 1(c) show the magnon band structures of the system
when the magnetization vector

−→
M is either perpendicular or

parallel to the wave vector
−→
k , respectively. The color plots

are the results of micromagnetic simulations, while the dotted
lines are based on analytical calculations from Ref. [43]. The

case of
−→
M ⊥−→

k , named MSSWs, also known as the “Damon-
Eshbach” geometry, is presented in Fig. 1(b). This mode
features a higher group velocity, nonreciprocal (chiral) mode
profile, and significant robustness against backscattering from

surface topographical defects [21]. However, for
−→
M || −→k ,

BVMSWs, with a reciprocal mode profile, appear as displayed
in Fig. 1(c). In addition, the first volume mode (VM) that
is quantized over the thickness of the films is shown with
green color. Due to the rather small thickness of the films, the
contribution of the exchange energy to the energy of the SWs
is large enough to open up a gap between the fundamental
mode and the VMs, leading to the absence of any direct mode
crossing or hybridizations [21,25,37]. Note that this gap will
be even larger for thinner films.

Subsequently, we study the propagation of SWs in the
presence of the surface inhomogeneities introduced above in
the form of areas with locally increased uniaxial anisotropy.
Note that throughout our study, we consider the modes that
are exemplarily shown by large white circles in Figs. 1(b)
and 1(c). In this case, the frequency of the MSSW is f =
4.64 GHz while the frequency of the BVMSW is set to f =
3.2 GHz. Under this condition, the wave vector for the areas
outside the defect regions is set to kx = 25.9 rad/μm for both
modes.

B. Parallel surface anisotropies

We first define localized uniaxial anisotropy defects with
an axis parallel to the applied field in the defect region. The
size of the defect is 2 μm × 1 μm × 16 nm, which means that

it is long enough to cover the entire slab in the y direction
while its height h is only 20% of the film thickness t .

The defects are indicated with the gray rectangles in Fig. 2.
They are placed on the lower surfaces of the films, where
MSSWs propagating in the positive direction of the axis x
are localized. The anisotropy constants Ku1 are chosen such
that the local effective field is enhanced within the defect -
Beff = μ0Hex + μ0H ||

ani = μ0Hex + 2Ku1
Ms

. Here, Hex is the ex-
ternal bias field, Ku1 is the first-order uniaxial anisotropy
constant and Ms is the saturation magnetization. This type
of defect is supposed to locally shift the carrier SW number
down for the carrier frequency of the incident wave packet
(since we work at positions of positive group velocity for both
situations, compare Fig. 1).

Figure 2 displays the snapshots of the simulated propa-
gating SWs in the presence of the defined surface defects
(gray rectangles). In this case, the defect amplitude is set to
μ0Hani = 150 mT, which is three times higher than the exter-
nal field: Hani/Hex = 3.0. As shown in Fig. 2(a), the MSSWs
cross the defect area almost without reflection, yielding a
transmission rate close to 97%. However, under the same
conditions, the BVMSWs exhibit a significant reflection when
impinging on the defect, and the transmission rate drops to
zero, as presented in Fig. 2(b).

We next compare the MSSWs and BVMSWs more quan-
titatively. We fix the size of the defect as shown in Fig. 3(a)
(top row), and plot in Fig. 3(a) (bottom row) the computed
transmission rates obtained by micromagnetic simulations
(separate data sets) for both modes as a function of the defect
amplitude. Increasing the local effective field by adding a
local anisotropy does not lead to a significant scattering of
MSSW and the transmission rates remain above 90% even in
the presence of relatively strong surface anisotropies. How-
ever, for BVMSW, the transmission rate drops below 50% if
the amplitude of the defect is twice of the external field and
goes to zero in the presence of a stronger effective field in the
defects.

Additionally, we fix the amplitudes of the anisotropy de-
fects and vary their height h, as presented in Figs. 3(b) and
3(c) (top row). This shows how SWs are transmitted through
defects that can even be as tall as the entire thickness of
the film t . Figures 3(b) and 3(c) (bottom row) compare the
transmission rates of MSSWs and BVMSWs with respect to
the defect heights h for the given defect strengths, respec-
tively. In these figures, the discrete points are the results of the
micromagnetic simulations. From these figures, we conclude
the following: (i) for the investigated parameters, the height
of the defects h must be more than 50% of the thickness t ,
to observe a strong reflection of the MSSW, regardless of the
strength of the surface defects; (ii) lower transmission rates
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FIG. 2. Snapshots of the propagating SWs in the presence of an anisotropy surface defect. The defect is shown with a gray rectangle.
(a) MSSW ( f = 4.64 GHz and kx = 25.9 rad/μm). (b) BVMSW ( f = 3.2 GHz and kx = 25.9 rad/μm). Reflected and unscattered SWs are
shown with dashed and solid blue arrows, respectively.

of BVMSW in comparison to MSSWs in the presence of an
identical defect are observed.

We use the micromagnetic results to validate our original
model of Eq. (22) by applying it to the same geometries. The
results of the computations employing this model are shown
with solid lines in Fig. 3 (below we refer to this model as “the
original model”). One sees excellent agreement of the original
model with the micromagnetic simulations concerning the
general trend, which illustrates the validity of the theoretical
assumptions. However, one also notices from Figs. 3(b) and
3(c) (bottom row) that the quasianalytical theory produces
dependencies that are oscillatory and nonmonotonic. This is
the main difference between the two methods. The presence of
multiple small peaks in the results obtained with the original

model is due to formation of transmission resonances for
particular values of the defect height. This is consistent with
the experimental and theoretical results from Ref. [36]. These
resonances are not resolved in the micromagnetic simulation
since in the micromagnetic simulation the propagation of a
SW pulse is modeled with a relatively small duration, and
hence with a relatively broad frequency spectrum, whereas the
original model use the truly single-frequency SW signals.

C. Discussion

To explain our observations, it is necessary to consider the
magnon band structure of the SWs inside the defect regions
and compare it to the magnon band structure of the slab

FIG. 3. Transmission of the MSSW and BVMSW as a function of the strength of local parallel surface anisotropy and corresponding
sketches of geometry. Symbols indicate MuMax results, while the continuous lines are computed with our original model. (a) Transmission
of MSSW and BVMSW as a function of the relative defect amplitude if the defect height is fixed to h = 20% of the film thickness t .
(b) Transmission of MSSW as a function of the defect height for various defect amplitudes. (c) Transmission of BVMSW as a function
of the defect height for a number of defect amplitudes.
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FIG. 4. Magnon band structures of the slab without defect in comparison to the band structure inside the defect regions with different
anisotropies. (a) MSSWs and (b) BVMSWs.

without defects. We start with the fact that we are dealing with
a very thin YIG film, so let us have a closer look at the SW dis-
persion as shown in Fig. 1. For this range of film thicknesses,
the contribution of the exchange energy to the SW dispersion
relation is large and leads to two important features in the
spectrum. The first one is a strong increase in the frequency
of the fundamental modes (MSSWs and BVMSWs) for large
wave numbers k � 1/t where the dipolar contributions to the
frequency are saturated. For the BVMSW case, this effect
even leads to a change in the slope of the dispersion relation
from negative for small wave numbers (where the dipole con-
tribution to the magnon energy dominates) to a positive one at
larger frequencies (where the exchange interaction provides
a significant contribution to the total magnon energy). This
behavior is clearly seen from Fig. 1(b). The second feature
that originates from the exchange-energy contribution is a
strong upshift of frequencies of the higher-order thickness
modes, also known as Volume Modes (VM). Those modes,
characterized by the nonuniform distribution of the dynamic
magnetization across the film thickness [Eq. (12)], acquire
large frequencies. In Fig. 1, the first volume mode is shown
by green lines.

An important consequence of the exchange upshift of the
higher-order-mode frequencies is that the fundamental SW
mode (shown with the blue lines in Fig. 4, similar to Fig. 1)
is now characterized by a much more uniform distribution
of dynamic magnetization across the film thickness than for
the exchange-free Damon-Eshbach type waves [44] typical
for much larger film thicknesses [25,45]. As a result, the
properties of the SWs propagating in the film become depen-
dent mostly on the averages of the film parameters over the
film thickness, and much less on the nonuniformity of those
parameters across the film thickness [45].

In the following, we use this fact to analyze our simulation
results. We consider a film with a thickness of t = 80 nm and
assume two different values to the magnitude of the effective
field of uniaxial parallel anisotropy - Hani/Hex = 0.56 and
Hani/Hex = 1.14. Material parameters that are identical to the
ones discussed in the Methods section are used in these cal-
culations. Figures 4(a) and 4(b) show the corresponding band
structures for the MSSWs and BVMSWs with and without
uniaxial anisotropies, respectively. The figures represent the

dispersion relations of the slab (blue curve) and inside the
defect regions (black and red curves). To calculate the local
dispersion for the defect, the anisotropy field is averaged
over the film thickness (named as the “mean field”), and the
dispersion curve is calculated for a film possessing a spatially
uniform anisotropy field equal to the mean field.

The carrier waves of the wave packet are shown with the
orange dots in Figs. 4(a) and 4(b). From these panels, one
sees that two regimes of the incident wave packet interaction
with the defect are possible. The first one is depicted with the
solid arrow in Fig. 4(a). This regime corresponds to a defect
which has a magnitude of Hani/Hex = 0.56. The local SW
dispersion law for the defect is shown with the black line in
Fig. 4(a). One sees that this dispersion law is characterized by
a nonvanishing solution for the wave vector at the frequency
of the incident wave. (The tip of the solid arrow points to
this spectral point.) The presence of the nonvanishing local
wave vector evidences that propagation of SWs in the defect
is allowed. Thus, while interacting with the defect, the wave
scatters to a state which has a smaller momentum inside
the defect, as displayed by the continued orange arrow. This
two-magnon scattering process is characterized by partial
reflection of the incident wave; however, partial and rela-
tively efficient transmission through the defect is also allowed
through the process of resonant scattering [36]. Indeed, in the
case of the solid arrow in Fig. 4(a), the transmission rate is
∼76%, as shown in Fig. 3(b).

The second possible regime is characterized by the lo-
cal dispersion law shown with the red line in Fig. 4(a). It
corresponds to Hani/Hex = 1.14. The dashed arrow indicates
that for this dispersion curve, there is no momentum state
that corresponds to the frequency of the incident wave. As
a result, the only way for the packet to cross the defect is
through the process of tunneling [36,46]. If the length of the
defect is large enough, then the efficiency of the tunneling
process is negligible, and this mode is fully reflected from the
front edge of the defect. The same reasoning applies to the
BVMSW case—however, here a full reflection must already
take place in the presence of a defect with an amplitude equal
to Hani/Hex = 0.56 [purple curve in Fig. 3(c), dashed arrow in
Fig. 4(b)], because no resonant scattering to a mode inside the
defect is possible.
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Now recall our claim that the scattering properties of a
defect are mostly determined by the defect magnitude aver-
aged over the film thickness. From Fig. 3(b) one sees, that a
MSSW wave packet becomes fully reflected from the defect
with a magnitude Hani/Hex = 1.14 when the defect height
reaches 90% of the total film thickness. This implies that the
average anisotropy field Hani/Hex = 1.14 × 0.9 = 1.026. Our
calculations show that the MSSW dispersion relation for a
thickness-uniform Hani/Hex = 1.026 has a cut-off frequency
f (kx = 0) = 4.69 GHz that is very close but below the fre-
quency of the incident wave packet. This is in agreement
with the vanishing transmission for Hani/Hex > 1.026 from
Fig. 4(a).

The situation is slightly more complicated in the case
of BVMSW [Fig. 4(b)]—the minimum frequency for the
SW band does not correspond to a mode at kx = 0. The
minimum now sits at kx ∼ 10 rad/μm. Despite this differ-
ence, we see the same trend for the BVMSW configura-
tion – the defect area stops transmitting the SW signal for
the defect height of 40% that corresponds to the value of
mean field Hani/Hex = 1.14 × 0.4 = 0.46. Its dispersion gives
f (kx = 10 rad/μm) = 3.48 GHz. This value is very close
but slightly below the frequency of the incident wave packet,
but it is enough to block the SW transmission.

From Fig. 4 one also clearly sees that the frequency of
the incident wave packet is noticeably closer to the bottom of
the BVMSW spectrum than to the MSSW one. This implies
that a smaller defect height is able to push the packet carrier
frequency locally out of the BVMSW SW band. As a result,
a relative defect height of 0.46 is enough to fully block the
BVMSW propagation through the defect area, but a much
taller defect (of 90%) is needed to stop transmission of MSSW
completely.

To confirm this idea, we plot the efficiency of SW trans-
mission through the defect satisfying Hani/Hex = 1.14 and the
upshift of the SW dispersion law in the defect in Fig 5. The
results of micromagnetic simulations and the data obtained
with the original theory are shown as separate red data sets
and continuous red lines, respectively. The blue dashed and
dotted lines show the dispersion shift (right vertical axis).
The dispersion shift is calculated as the frequency difference
between the frequency of the incident wave and the frequency
of the bottom of the spectrum in the defect region. The
frequency for the spectrum’s bottom is obtained by solving
the eigen-value problem for the matrix Dd (k) (26) that is
a slightly more accurate approach than using the average
defect field.

One sees a very strong correlation between the two
dependencies—the SW transmission rate drops to zero in
the vicinity of the defect height for which the frequency of
the incident SW signal is equal to the minimum frequency
(i.e., the energy gap) for the respective spectrum. This energy
barrier appears when the shift of the spectrum with respect to
the reference mode reaches zero, as indicated by the purple
arrows in Fig. 5.

We finally note that, in the presence of several equivalent
defects, the total transmission rate of the SWs may be es-
timated as a product of the respective transmission rates of
SWs though the individual defects. Furthermore, the position
of those defects with respect to the z coordinate does not

FIG. 5. Left axis (red color coded): spin-wave transmission of
the MSSW and BVMSW as a function of the defect height. The
strength of the defects satisfies Hani/Hex = 1.14. Separated data
points indicate the results from MuMax micromagnetic simulations
while the continuous lines are computed with our original model.
Right axis (blue color coded): the shift of the spectrum of the
MSSW and BVMSW inside the defect calculated with Eq. (26)
in comparison to the reference film Eq. (25) as a function of the
defect height. The purple arrows indicated defect heights in which
the energy barrier appears.

influence significantly the reflection and transmission coeffi-
cients. This estimation is valid if the defects are placed arbi-
trarily with respect to the x co-ordinate. Conversely, if several
defects are placed equidistantly, then one expects formation
of a magnonic crystal of finite length. This will translate in
appearance of band gaps in the frequency dependence of the
transmission characteristics for the defect area similar to ones
observed in Ref. [47].

So far, we have discussed the impact of defects whose
uniaxial anisotropies are parallel to the external field. In
reality, defects can also take the form of a change of the
effective magnetization. In the following, we briefly discuss
such a defect.

D. Perpendicular surface anisotropies

As the second type of anisotropy defect, we locally in-
troduce a perpendicular anisotropy H⊥

k in the defect re-
gion. Therefore, we define a local uniaxial anisotropy with
an axis perpendicular to the applied field and normal to
the film plane in the defect region, as shown in Fig. 6(a).
The size of the defect is 2 μm × 1 μm × 16 nm (similar to
the parallel anisotropy defects). Note that we again use the
same parameters as discussed before.

The resulting transmission characteristics of the SWs are
shown in Fig 6(a) (bottom row). As before, changing the
local perpendicular anisotropy does not significantly influ-
ence the transmission of MSSW, whereas the scattering via
the mechanisms mentioned earlier leads to a strong drop of
the transmission for BVMSW.
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FIG. 6. Spin-wave transmission of the MSSW and BVMSW as a function of the local perpendicular surface anisotropy strength (defect)
and their corresponding schematic pictures. (a) Transmission of MSSW and BVMSW as a function of the relative defect amplitude if the
defect height h is fixed to 20% of the film thickness t . (b) Transmission of MSSW as a function of the defect height in the presence of different
defect amplitudes. (c) Transmission of BVMSW as a function of the defect height in the presence of different defect amplitudes. Separated
data points indicate the results from micromagnetic simulations and dashed lines are guides to the eyes.

To further confirm the higher robustness of the MSSW
against backscattering from surface inhomogeneities in com-
parison to BVMSW as explained earlier, we fix the anisotropy
defect amplitudes and vary their height h, as presented in
Figs. 6(b) and 6(c) (top row). Figures 6(b) and 6(c) (bottom
row) compare the transmission rates of MSSWs and BVM-
SWs with respect to the defect heights h for the given defect
strengths, respectively. Similar to the parallel anisotropy de-
fects, it is clear that the height of the defects h, must be more
than 50% of the thickness t to ensure a strong reflection of
the MSSW regardless of the strength of the surface defects.
Moreover, BVMSWs in comparison to MSSWs exhibit a
stronger reflection in the presence of similar defects. The
underlying mechanism of these reflections is the same as the
one discussed in the preceding section.

Concluding this section, we propose that the defects of
the type investigated in this work may be implemented by
using, for example, voltage-controlled magnetic anisotropy
(VCMA). This effect allows one to tune the anisotropy of
the system locally [10–12]. In addition, one may employ
ion irradiation to modify the saturation magnetization for the
material at the position of the defect [48,49]. Furthermore,
using locally induced external magnetic fields, such as the
Oersted field created by a current carrying wire on top of the
thin film, is expected to produce the same effect [50].

IV. CONCLUSION

We have used micromagnetic simulations and quasian-
alytical calculations to present a new way to control the
transmission characteristics of dipole-exchange SWs in thin
films using surface inhomogeneities. Employing locally intro-
duced uniaxial anisotropies in the form of surface defects, we
have shown the criterion for controlling the SW transmission

signals in real space. The small thickness of the investigated
film and the high contribution of the exchange energy to
the magnon band allowed us to average the anisotropy field
over the film thickness, to describe the transmission and
reflection mechanisms of the SWs. The comparison of the
magnon band structure inside the defect area to the reference
thin film clarifies the condition of resonant transmission via
linear scattering processes, and reflection due to the energy
conservation laws. Our results indicate that BVMSWs, which
propagate parallel to the static magnetization vector, are
more susceptible to backscattering from anisotropy defects
in comparison to MSSWs that propagate perpendicular to
the magnetization vector. A defect as large as the entire film
thickness and the strength of which satisfies Hani/Hex = 0.56
is strong enough to block transmission of BVMSWs entirely.
However, the defect strength must be twice larger and satisfy
Hani/Hex = 1.14 to fully block propagation of MSSWs. We
finally emphasize that the presented analysis and argumenta-
tions cannot be applied to topographical defects [21], since
reducing the thickness of the film does not shift the frequency
of the entire magnon band structure in a way similar to the
anisotropy defects. Our study provides a new way to tune the
transmission rates of SWs in thin films, and will be helpful
for designing nanoscopic magnonic devices for analogue and
digital data processing, where SWs are used as data carriers.
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APPENDIX A: NUMERICAL SOLUTIONS
OF THE BORN EQUATION

The whole procedure of numerical solution of Eq. (22) is
implemented as a MathCAD worksheet. It works as follows:
First, the values of the Green’s function Ĝexc(xi ) are calculated
for the mesh points I = 0, 1 . . . Np by performing numerical
inverse Fourier transformation of the analytical expression
for its Fourier image. Second, values of the tensor product
Ĝexc(xi − x j )	N̂ 	x are computed for the mesh points. (Here
	x is the mesh cell size.) This converts the tensor into a matrix
̂ with elements i j . Then the right-hand side of Eq. (22)
is obtained by acting with Ĝexc(x) on an assumed localized
excitation source. The source is located at a single point x0 in
front of the defect. It is separated from the defect by a distance
that is large enough to ensure that the front edge of the defect
is situated in the far zone of the source. The source has only
one vector component of the driving field. It is the z one. This
choice is dictated by the fact that this component can drive
both BVMSW and MSSW. Thus, the external source is

|hdr (x0)〉 =
(

0
h(x0)

)
.

As a result, the discrete version of the right-hand side of
Eq. (22) takes the form of a simple product

Ĝ(xi − xo)|hdr (x0)〉 that represents a column vector �̄ with
components �i.

These three steps allow us to convert the integral equation
into an inhomogeneous vector-matrix equation

̂ M̄ = �̄, (A1)

where M̄ is an unknown column vector having |m(xi )〉 as its
components.

We solve the matrix Eq. (A1) using the numerical methods
of linear algebra built in the MathCAD software. The solution
represents values of |m(x)〉 at the points xi within the defect
area. To calculate the transmission coefficient, we pick up
an “observation point” xt located behind the defect and at a
distance 2d from its rear boundary. At this distance, we expect
only traveling waves with characteristics corresponding to
eigen-waves of the regular (homogeneous) film to be present.
Put differently, we expect all potential near-field effects such
as leaky waves localized at the far boundary of the defect not
to reach xt because of its significant distance from the defect.
The SW amplitude at the observation point is computed using
the discrete version of the same Eq. (22)

|m(xt )〉 = −	x
Np∑
i=1

Ĝexc(xt − xi )	N̂ |m(xi )〉 + |m0(xt )〉

× exp(−ikxxt ) exp(−νxt ), (A2)

where, as before, xi are the mesh points within the defect area.

We assume that the incident wave |m0(x)〉 represents a
fundamental mode of SWs of the film. For symmetry reasons,
if the defect height h is smaller than the film thickness t , then
we may expect scattering of the fundamental mode into the
first higher-order (antisymmetric) SW mode. Therefore, in the
general case, the dynamic magnetization at the observation
point |m(xt )〉 represents a combination of the fundamental
and the first higher-order mode. We separate the contributions
based on the fact that the eigen-waves of the regular film are
characterized by ratios |m0(x)/m1(x)| [see Eq. (12)] that are
specific to particular eigen-modes. This implies that the total
SW “field” |m(xt )〉 is

|m(xt )〉 = A f

(
m f

0

m f
1

)
+ A1ho

(
m1ho

0

m1ho
1

)
, (A3)

where A f and A1ho are the sought scalar amplitudes of the
fundamental and the first exchange mode, respectively, and
the vectors (

m f
0

m f
1

)
and

(
m1ho

0

m1ho
1

)
(A4)

are the vectors typical for the respective eigen-waves for the
film. For instance, if the film is thin to the extent that there is
no signature of anticrossing (hybridization) of the two modes,
then m f

1 = 0, m f
0 = (m f

x , m f
z ) = (1, m f

z ) for the fundamental
eigen-wave, and m1ho

0 = 0 and m1ho
1 = (1, m1ho

z ) for the eigen-
waves representing the first exchange mode. If a signature
of mode hybridization is present in the eigen-wave spectrum,
then the situation is technically more complicated but remains
qualitatively the same.

The vectors Eq. (A4) are computed as eigen-vectors of the
direct spatial Fourier transform of matrix C Eq. (A1) and then
properly normalized to obtain m f (1ho)

x = m1ho
x = 1. Equation

(A3) represents a system of linear equations from which the
unknown amplitudes A f and A1ho are found. The transmission
coefficient T is then defined as

T (h) = A f (h)/A f (h = 0). (A5)

Recall that h is the defect height, and hence, h = 0 corre-
sponds to a film without any defect present.

We repeat that the model is implemented as a MathCAD
worksheet. It takes about 8 min to complete calculation of T
for 100 values of h covering the range from zero to h = t .

APPENDIX B: QUANTITIES THAT ENTER
EQUATIONS (25) AND (26)

�nk = ωH + ωMαk2
n , P00 = 1 − 1−exp(−|kx |t )

|kx |t , P11 =
k2

1− 2|kx |
t [1−exp(−|kx |t )]

2k4
1

, Q =
√

2k2
x

k2
1

[1 − exp(−|kx|t )], k2
n = k2

x +
n2π2

t2 , n = 0, 1, ωH = γ H , H is the applied field, ωM = γ Ms,
Ms is the saturation magnetization for the film, α is the
exchange constant, and ϕ = 0 for BVMSW and 90 degree for
MSSW.
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