
PHYSICAL REVIEW B 102, 014441 (2020)

Long-range alternating spin current order in a quantum wire with modulated spin-orbit interactions
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A key concept in the emerging field of spintronics is the electric field control of spin precession via the
effective magnetic field generated by the Rashba spin orbit interaction (RSOI). Here we model a quantum wire
as a system of electrons on a discrete one-dimensional chain with nearest neighbor hopping. By extensive density
matrix renormalization group computations we demonstrate the presence of alternating spin current order in the
gapped phases of this quantum wire with spatially modulated RSOI and repulsive electron-electron interactions.
Our results are analytically supported by bosonization and by a mapping to a locally rotated spin basis.
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I. INTRODUCTION

The possibility to manipulate magnetization at nanoscale
using the coupling between the electron spin and its motion
(orbital angular momentum) has led to the emergence of
a research field named “spin-orbitronics” [1–4]. The main
advantage of this approach is based on the exploitation of the
spin-orbit (SO) interaction [5] to get efficient ways for ma-
nipulating the magnetization in integrated spintronic systems
and create a low power storage and/or logic devices [6,7].
The seminal proposal of Datta and Das for a spin field-effect
transistor highlights the use of the SO interaction [8]. A basic
ingredient of the Datta-Das transistor is a ballistic quantum
wire with sufficiently strong Rashba spin-orbit interaction
(RSOI) [9], the latter is required for creating a sizable spin
precession. Depending on spin orientations in the source and
in the drain one can modulate the current flowing through the
device and thus implement, in principle, ON/OFF states. The
strength of the spin-orbit coupling can be tuned by applying
a gate voltage to the system [10,11]. In two-dimensional
structures, coupling between the charge and spin degrees of
freedom via the SO interaction provides a mechanism for
efficient conversions between charge and spin currents. The
spin Hall effect [12,13] by which a charge current can be
converted into a transverse spin current and the inverse spin
Hall effect [14,15] for the inverse conversion are the primary
examples.

In last years the SO effects in quasi-one-dimensional
strongly correlated electron systems have became the subject
of intensive studies due to their fascinating properties and
wide possibilities to engineer materials with unconventional
electronic and magnetic properties. This includes helical con-
ductors which appear in the presence of strong spin-orbit

interaction in quantum wires [16], nanotubes [17] or on the
edges of topological insulators [18]. Helical conductors have
became of topical interest because their robustness with re-
spect to the disorder [19] and because they offer the possibility
for spin-filtered transport [16,20], Cooper pair splitting [21]
and, if in contact with a superconductor, the realization of
Majorana bound states at their ends [22–28].

Another fascinating property of the SO interaction is
that it can be exploited to engineer magnetic materials in
which different types of topological objects, such as chiral
domain walls or magnetic skyrmions can be stabilized (see,
for a recent review, Refs. [29,30]). Such spin configurations
are driven by an additional term in the exchange interac-
tion, namely Dzyaloshinskii-Moriya interaction (DMI) [31],
which arises from the presence of SO coupling and inversion
symmetry breaking [32]. In quasi-one-dimensional magnetic
materials the DMI is responsible for formation of a chiral
order [33–39]. It is also the key structural element ensuring
coupling between magnetic and electric degrees of freedom
in the spin-driven chiral multiferroic materials [40,41]. These
systems became very actual in last years [42], in particular
in the context of materials useful for electric field controlled
quantum information processing.

Recently it has been demonstrated that the SO interaction
can be tailored with a substantial efficiency factor by external
electric fields as in a metallic phase of a quantum wire [43],
as well as in the case of insulating quantum magnet [44]. This
unveils the possibility of controllling SO interaction and mag-
netic anisotropy via the electric field and opens a wide area
for exploring the effects caused by the spatially modulated
SO interaction on the properties of low-dimensional electron
systems both in conducting and insulating phases.
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Theoretical studies of the one-dimensional correlated elec-
tron systems with spatially modulated SO interactions of
different genesis, counts almost two decades [20,28,45–55].
A Peierls-type mechanism for a spin-based current switch was
identified in Ref. [51], where it was shown that a spatially
smooth modulated Rashba SOI coupling opens both charge
and spin gaps in the system at commensurate band fillings.
Such an interaction could be generated by a periodic gate
configuration, as sketched in Ref. [20], or in contact with an
antiferroelectrically ordered material [56]. In subsequent stud-
ies the effect of induced charge density wave correlations in
the quantum wire due to the periodic potential was examined,
and the optimal regime where an insulating current blockade
occurs was determined [53]. Later it was shown that the half-
metal phase, where electrons with only a selected spin polar-
ization exhibit ballistic conductance, can be reached by tuning
of a uniform external magnetic field acting on a quantum wire
with modulated spin-orbit interaction [20]. More recently it
was shown that, in the case of a half-filled band and in the limit
of strong Coulomb repulsion where the charge excitations are
gapped and the spin degrees of freedom are described by an
effective spin S = 1/2 Heisenberg chain, the very presence
of spatially modulated DMI substantially enriches the ground
state phase diagram of the spin system leading to the forma-
tion of gapped phases with composite order characterized by
the coexisting of bond-located alternating dimerization and
chirality patterns and, for a particular parameter range, also
of the staggered on-site magnetization [55].

In the present article we put forward studies of the insulat-
ing phases of one-dimensional electron systems with modu-
lated Rashba spin-orbit interaction including, in one scheme,
analysis of the band-filling commensurability conditions nec-
essary for the formation of band insulating phases [51] to-
gether with consideration of the effects caused by the strong
electron-electron interaction, responsible for the formation
of a Mott correlated insulator phase effectively described
by the above mentioned spin chain Hamiltonian [55]. We
present a detailed study of the excitation spectrum, as well
as alternating charge and spin order in the ground state of a
one-dimensional system of electrons with spatially modulated
RSOI, mainly using density matrix renormalization group
(DMRG) calculations on wires with open boundary condi-
tions. Since the Luttinger liquid is the basic model to describe
one-dimensional interacting electrons also in the presence
of spin-orbit interaction [37,57–60] we supplement our nu-
merical analysis by a bosonization treatment of the selected
limiting cases under consideration. The main outcome is the
presence of long range spin current wave order in the ground
state of all of the insulating phases found in the system,
together with charge bond wave order.

The paper is organized as follows: in Sec. II we introduce
the Hamiltonian model and detail the order parameters of
interest; in particular we identify the presence of gapped
phases within the approximation of perturbatively interacting
electrons, in the bosonization framework. Then the setting to
fully study electron-electron correlations, the DMRG method,
is described in Sec. III. Section IV is devoted to presenting
the numerical results, with main focus on the most prominent
gapped phase at half-filling and vanishing magnetization; an-
alytical support is also briefly discussed with details deferred

to the Appendices. Finally, in Sec. V we summarize our
results.

II. MODEL AND ORDER PARAMETERS

A microscopic Hamiltonian modeling a quantum wire with
modulated RSOI can be written in a tight-binding formulation
as [51]

H = −t
∑
n,α

(c†
n,αcn+1,α + H.c.)

+ i
∑
n,α,β

γR(n)
(
c†

n,ασ
y
αβcn+1,β − H.c.

)

− hy

2

∑
n,α,β

c†
n,ασ

y
αβcn,β − μ

∑
n,α

c†
n,αcn,α

+U
∑

n

(c†
n,↑cn,↑)(c†

n,↓cn,↓), (1)

where c†
n,α (cn,α) are the creation (annihilation) operators for

electrons on sites n (numbered along the x̂ axis) with spin
α =↑,↓ in the quantization axis ẑ, �σ are the Pauli matrices, t
is the electron hopping amplitude, μ a chemical potential, hy

is a transverse external magnetic field along ŷ, and U is the
strength of on-site Hubbard interaction. We consider a modu-
lated amplitude γR(n) for the RSOI containing a uniform term
and an oscillating part with modulation length λ = 2π/Q,

γR(n) = γ0 + γ1 cos (Qn). (2)

In what follows, if not indicated especially, we take U > 0
to describe repulsive electron-electron interactions. As the
one-dimensional spin-momentum Rashba coupling contains
only σ y terms (defining the SO axis), and we have restricted
to magnetic fields along ŷ, spin components are decoupled
after a rotation of π/2 around the x̂ axis; in the following
we indicate this spin polarization by an index τ = ± and the
corresponding electron creation (annihilation) operators by
d†

n,τ (dn,τ ) with (
dn,+
dn,−

)
= ei π

4 σx

(
cn,↑
cn,↓

)
. (3)

In this basis the Hamiltonian in Eq. (1) reads H = H+ + H− +
Hint , where

Hτ = −t
∑

n

(d†
n,τ dn+1,τ + H.c.)

+ iτγ0

∑
n

(d†
n,τ dn+1,τ − H.c.)

+ iτγ1

∑
n

cos(Qn)(d†
n,τ dn+1,τ − H.c.)

−
∑

n

(
μ + τ

hy

2

)
d†

n,τ dn,τ (4)

and

Hint = U
∑

n

(d†
n,+dn,+)(d†

n,−dn,−) . (5)
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This can be also be written in terms of fermionic bilinears as

H = −t
∑
n,τ

qτ
n,n+1 +

∑
n,τ

τγR(n) jτn,n+1

+
∑
n,τ

(
μ + τ

hy

2

)
ρn,τ + U

∑
n

ρn,+ρn,−, (6)

where we introduce on-site polarized densities as

ρτ
n = d†

n,τ dn,τ , (7)

on-bond polarized densities as

qτ
n,n+1 = d†

n,τ dn+1,τ + d†
n+1τ dn,τ , (8)

and polarized current densities

jτn,n+1 = i(d†
n,τ dn+1,τ − d†

n+1,τ dn,τ ). (9)

One of the aims of the present work is to describe charge
and spin wave orders in the insulating phases of the model in
Eq. (1). Thus we propose, for a wire with L sites, the consid-
eration of the following ground state modulated averages of
polarized densities:

〈ρτ 〉Q = 1

L

∑
n

cos(Qn)
〈
ρτ

n

〉
, (10)

〈qτ 〉Q = 1

L

∑
n

cos(Qn)
〈
qτ

n,n+1

〉
, (11)

〈 jτ 〉Q = 1

L

∑
n

cos(Qn)
〈
jτn,n+1

〉
. (12)

One can recover the corresponding charge densities by adding
both spin polarizations and the corresponding spin (magnetic)
densities along ŷ by subtracting the different spin polariza-
tions. We then define the following order parameters for
detecting the modulation of charge and spin densities:

- the on-site charge density wave

OCDW = 〈ρ+
n 〉Q + 〈ρ−

n 〉Q, (13)

- the on-site spin density wave

OSDW = 〈ρ+
n 〉Q − 〈ρ−

n 〉Q, (14)

- the charge bond order wave

OCBOW = 〈q+〉Q + 〈q−〉Q, (15)

- the spin bond order wave

OSBOW = 〈q+〉Q − 〈q−〉Q, (16)

- the charge current wave

OCCW = 〈 j+〉Q + 〈 j−〉Q, (17)

- the spin current wave (a.k.a. chiral asymmetry current)

OSCW = 〈 j+〉Q − 〈 j−〉Q. (18)

In order to exhibit basic properties, we first discuss the
model in absence of the RSOI modulation (γ1 = 0) and
electron-electron interactions (U = 0). The Hamiltonians in
Eq. (4) can then be trivially diagonalized in momentum space.
One obtains

H0
τ =

π∑
k=−π

(
ε0
τ (k) − μτ

)
d†

k,τ
dk,τ

, (19)

FIG. 1. An illustration of the single particle dispersion relations
in the presence of uniform Rashba SO interaction and transverse
magnetic field (arbitrary parameters). The horizontal shift ±q0 of the
bands is due to the uniform Rashba SO interaction, while the vertical
shift hy reflects the Zeeman splitting. A single horizontal line shows
the Fermi level for both bands. Four different Fermi momenta are
needed for the bosonization formalism.

where ε0
τ (k) = −2t̃ cos(k − τq0) with t̃ =

√
t2 + γ 2

0 , q0 =
arctan(γ0/t ), and μτ = μ + τ

hy

2 . As one can observe in Fig. 1,
plotted for generic parameters, the τ = ± bands are shifted
horizontally by ±q0 because of the homogeneous RSOI and
vertically by ∓hy/2 because of the external magnetic field.
The effective chemical potentials μτ independently control
the filling fraction of each band, given by ντ = (ν + τm)/2
in terms of the total electron filling fraction ν and the SO axis
magnetization fraction m.

Considering RSOI modulations (γ1 	= 0), still in the
absence of electron-electron interactions (U = 0), the

FIG. 2. One particle energy dispersion bands at half-filling, no
magnetization and RSOI modulation with wave number Q = π , for
a wire of L = 1000 sites and periodic boundary conditions. Here and
in remaining figures we set t = 1, γ0 ≈ 0.577 and γ1 = 0.2.
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Hamiltonians in Eq. (4) are quadratic and can be exactly
diagonalized, even analytic results can be obtained for short
length modulations (see Appendix A); this provides the most
clear results that can be obtained by exact diagonalization.
However, for analytical discussions we find it convenient
to treat the RSOI modulations as perturbations. This allows
us to determine, within the bosonization approach [61], the
commensurate values of the band fillings ντ at which the
RSOI modulation opens band gaps and leads the electron
system into a band insulator phase.

Bosonization picture

The advantage of the bosonization procedure relies on its
prediction power and the universal extent of its results, though
it is well suited for the weak-coupling limit; here we assume

|U |, |γ1| � t̃ and treat both RSOI modulations and electron-
electron interactions on equal footing as perturbations with
respect to free Hamiltonians in Eq. (19). The bosonization for-
malism may look slightly different from usual presentations,
as we apply it to shifted bands: it is necessary to identify four
Fermi points (see Fig. 1)

kR
F,τ = τq0 + k0

F,τ , (20)

kL
F,τ = τq0 − k0

F,τ , (21)

where k0
F,τ = ντπ are the usual Fermi momenta in the absence

of Rashba interactions, at band filling ντ . Then the proce-
dure is straightforward. Using the standard recipes (see, for
instance, Ref. [61]) on the free Hamiltonians and the pertur-
bations one obtains the following bosonized Hamiltonian:

Hbos =
∑

τ

∫
dx

⎧⎨
⎩ vτ

F

2
[(∂xϕτ )2 + (∂xϑτ )2] + 2γ0γ1

πα0t̃

∑
j=±

sin
[(

jQ + 2k0
F,τ

)
x + k0

F,τ +
√

4πϕτ (x)
]⎫⎬⎭

+ U

π

∫
dx

[
(∂xϕ+)(∂xϕ−) + 1

πα2
0

sin
(√

4πϕ+(x) + 2k0
F,+x

)
sin

(√
4πϕ−(x) + 2k0

F,−x
)]

, (22)

where ϕτ (x) and ϑτ (x) are dual bosonic fields, vτ
F = 2t̃ sin (k0

F,τ ) are their Fermi velocities and α0 is a cutoff required to be of
the order of the lattice constant. Notice that v+

F 	= v−
F as soon as the system is magnetized (m 	= 0).

In the absence of Hubbard interactions one can see that the effect of perturbations introduced by the modulated RSOI are
present in the continuum limit only provided that γ0 	= 0 and γ1 	= 0, and survive only at commensurate band-fillings given by
separate different conditions

Q ± 2k0
F,τ

∼= 0 (mod 2π ) (23)

for each spin polarization band. When one of them is met, a relevant perturbation opens a gap [62] to the corresponding spin
polarized excitations (compare, for instance, Fig. 1 with Fig. 2 below). The case where the commensurability holds for just one
of the spin polarizations corresponds to the half-metallic phases considered in Ref. [20].

In the present work we focus on fully gapped phases, met when Q ± 2k0
F,+ ∼= 0 and Q ± 2k0

F,− ∼= 0. This requires at least
m = 0 or ν = 1, conditions that may be met by varying the magnetic field and the chemical potential. The qualitatively different
attainable gapped phases are then

- non magnetized insulator at half-filling (m = 0, ν = 1).
- non magnetized insulator away from half-filling (m = 0, ν 	= 1).
- magnetized insulator at half-filling (m 	= 0, ν = 1).
On the other hand, the Hubbard interaction term in Eq. (22) couples the ϕ+(x) and ϕ−(x) fields and does not allow for

straightforward inspection. We will comment on its perturbative effect on the different gapped phases after presenting our
numerical results for interacting electrons.

For later reference, we recall that the bilinear operators in Eqs. (7)–(9) take the following bosonized forms:

ρτ
n  1√

π
∂xϕτ (x) + 1

πα
sin

(√
4πϕτ + 2k0

F,τ x
)
, (24)

qτ
n,n+1  2 cos(q0)√

π
cos

(
k0

F,τ

)
∂xϕτ (x) − 2τ sin(q0)√

π
sin

(
k0

F,τ

)
∂xϑτ (x) + 2 cos(q0)

πα
sin

(√
4πϕτ + 2k0

F,τ x + k0
F,τ

)
, (25)

and

jτn,n+1  −2 cos(q0) sin
(
k0

F,τ

)
√

π
∂xϑτ (x) − 2τ sin(q0τ ) cos

(
k0

F,τ

)
√

π
∂xϕτ (x) − 2τ sin(q0)

πα
sin

(√
4πϕτ + 2k0

F,τ x + k0
F,τ

)
. (26)

These will allow for a semiclassical inspection of the order parameters in Eqs. (13)–(18) in the different gapped phases.

III. DMRG INVESTIGATION OF THE EFFECT OF
ELECTRON-ELECTRON INTERACTIONS

In order to investigate the nonperturbative effects of
electron-electron interactions in the present model we have

performed extensive numerical computations in the DMRG
framework [64], with repulsive Hubbard couplings ranging
from U = 0 up to U = 25 t , and additional explorations
with attractive interactions U < 0. Our results provide a
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description of the charge and spin gaps, and correlation in-
duced effects in the alternating charge and spin order struc-
tures.

In this work we employ the finite-size DMRG algorithm,
as implemented in the ALPS library [65]. We have run
simulations for systems up to L = 128 sites, using open
boundary conditions (OBCs). We have computed the lowest
energy states in eigenspaces of spin polarized number oper-
ators N̂τ = ∑

n ρτ
n , in order to estimate the charge and spin

excitation gaps. We have also computed local expectation
values and nearest neighbors correlations to estimate the order
parameters.

The choice of boundary conditions deserves some observa-
tions. On the one side, the use of periodic boundary conditions
(PBCs) requires a careful commensurability of system lengths
to avoid a net magnetic flux associated to the accumulation of
the complex phases of t ± iγR(n) in Eq. (4). On the other side,
an OBC chain with spatially modulated hopping acquires a
topological character [66,67] that may introduce edge bound
states with energies laying inside the gaps we aim to compute,
depending on the modulation phase chosen for the left-most
bond in the wire and the commensurability between the wire
and modulation lengths. We have taken rational modulations
Q = 2πr/p and chain lengths that are integer multiples of
p, setting cos(nQ) = +1 for the left-most bond; this renders
the open chain in the topologically trivial sector, avoiding
(here) undesired gapless edge states. Following this recipe we
have analyzed chains of L = 48, 64, 96, and 128 sites for
modulations with wave number Q = π and L = 48, 66, 96,
and 126 sites for Q = 2π/3. Data points have been obtained
keeping 600 states during 20 sweeps. The estimated error for

energy gaps is less than 10−5t , which ensures enough energy
precision for the results we report. Two-point correlations are
computed within an error of 10−6.

The Hamiltonian in Eq. (1) commutes with the total charge
operator Q̂ = N̂+ + N̂− and the total spin y-component opera-
tor M̂ = 1

2 (N̂+ + N̂−). In consequence, the eigenvalues of N̂+
and N̂− are good quantum numbers describing the occupation
of states with given spin polarization τ = ±. For a system
with L sites and Nτ occupied states in each spin sector, the
filling fraction ν and the transverse magnetization density m
mentioned in the previous section are determined as

ν = (N+ + N−)/L , (27)

m = (N+ − N−)/L . (28)

Given ν and m, defining a band insulating phase, we determine
by DMRG the lowest energy state (without external field and
chemical potential) in the subspace with Nτ = L(ν + τ m)/2
occupied states with spin τ ; we denote by E0(N+, N−) the
corresponding energy eigenvalue. Chemical potential and ex-
ternal magnetic field energy contributions are proportional to
the total charge and spin y component, respectively, so they
just produce an energy shift that can be added later when
needed. Expectation values of local operators and correlations
are computed in such states.

For describing charge and spin excitations we consider
the standard two-particle excitation gaps. The charge gap is
defined as the average energy cost of adding or removing two
particles with different spin orientation, thus without change
in the magnetization,

�c = E0(N+ + 1, N− + 1) + E0(N+ − 1, N− − 1) − 2E0(N+, N−)

2
. (29)

Similarly, the spin gap is defined as the average energy cost of adding a particle with a given spin orientation and removing
another with the opposite, without changing the total charge,

�s = E0(N+ + 1, N− − 1) + E0(N+ − 1, N− + 1) − 2E0(N+, N−)

2
. (30)

Defining also the one-particle gaps as the average energy cost of adding or removing a particle with a given spin polarization,

�+ = E0(N+ + 1, N−) + E0(N+ − 1, N−) − 2E0(N+, N−)

2
(31)

and

�− = E0(N+, N− + 1) + E0(N+, N− − 1) − 2E0(N+, N−)

2
, (32)

for noninteracting electrons the two-particle gaps are simply
related to the highest occupied and lowest unoccupied one-
particle energies by �c = �s = �+ + �−. The presence of
electron interactions generally changes these relations; the
more different charge and spin gaps are, the more correlated
the system is.

IV. RESULTS

In this section we focus on the three situations pointed out
at the end of Sec. II, where bosonization anticipates insulator

phases. We choose specific RSOI modulation lengths Q, elec-
tron fillings ν, and magnetizations m in order to investigate
the effects of the electron-electron interactions on the charge
and spin gaps, and on the corresponding wave order patterns,
in the three selected situations. Of course, the opening of
band gaps in the absence of electron interactions is easily
verified by Fourier diagonalization of Hτ in Eq. (4), in the
case of long finite site chains and PBC (see Appendix A).
For numerical computations we set in the following the hop-
ping amplitude t = 1, the homogeneous Rashba coefficient
γ0 ≈ 0.577 (exactly γ0 = tan (q0) with q0 = π/6) and the
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amplitude of the Rashba coefficient oscillation γ1 = 0.2; we
found no qualitative differences for RSOI parameters in the
range 0 < γ0, γ1 < 1.

The most salient feature in our results is the presence of
a long range spin current wave order in the ground state of
all of the insulating phases found in the system, together with
charge bond order waves.

A. Nonmagnetized insulator at half-filling

We start discussing in detail the gaps and the order pa-
rameters for the most prominent insulating phase of the
Hamiltonian in Eq. (1), that with half-filling ν = 1 and no
magnetization m = 0. One finds that k0

F,τ = π/2 and vF,τ ≡
vF irrespective of the spin projection. In order to fulfill the
commensurability conditions in Eq. (23) the RSOI modula-
tions are required to have wave number Q = π , that is a
two-site wave length. Such a short length modulation could
be observed in a layered material, by designing a quantum
wire on top of an anti-ferroelectric substrate [56].

Given the short length modulation, it is worth reviewing
the analytical description of the band structure. In absence
of interactions the one particle spectrum has two bands with
dispersion relations ±ετ (k), where

ετ (k) = 2
√

t̃2 cos2(k − τq0) + γ 2
1 cos2(k) , (33)

and −π
2 � k < π

2 . Only at finite γ0 and γ1, in agreement with
bosonization prediction in Sec. II, these bands are separated
by an energy gap

� = 2

√
2t ′2 − 2

√
t ′4 − 4γ 2

0 γ 2
1 (34)

found at incommensurate momentum

k∗ = τ arccot

(
2tγ0

t2 − γ 2
0 + γ 2

1

)
. (35)

The dispersion bands are shown in Fig. 2, as obtained numer-
ically under PBC (see Appendix A for Fourier conventions,
analytical results, and numerical procedure). At half-filling,
U = 0, and zero temperature the lower bands are completely
occupied; with this information one can compute ground
state expectation values. From Eqs. (A5), (A6), and (A8) in
Appendix A we learn that in the present phase there is no site
density wave order

OCDW = OSDW = 0 (36)

nor bond spin wave order nor charge current wave order

OSBOW = OCCW = 0 . (37)

In contrast,

OCBOW = − 1

π

∑
τ

∫ π/2

−π/2

τγ1 sin(2k)

ετ (k)
dk 	= 0 (38)

and

OSCW = 1

π

∑
τ

τ

∫ π/2

−π/2

2τγ1 cos2(k)

ετ (k)
dk 	= 0 (39)

for γ0 	= 0 and γ1 	= 0.

FIG. 3. Local oscillation of bond charge density 〈qc
n,n+1〉 and spin

current density 〈 js
n,n+1〉 in the ground state of a wire of L = 48

sites (PBC), at half-filling and no magnetization. Charge density is
homogeneous, while spin density, on-bond spin, and charge current
densities vanish (not shown).

The presence of alternating long range order in the spin
current, expressed by OSCW 	= 0, is a distinguished feature of
the present model. It might be better appreciated from the spa-
tial expectation value profile of the operators in Eqs. (7)–(9),
easily computed in the absence of electron interactions. One
finds that the local occupation number is homogeneous with
〈ρτ

n 〉 = 0.5 for both spin polarizations, so that there is neither
CDW nor SDW order. In contrast, 〈qτ

n,n+1〉 oscillates with
period two and the same values for both polarizations, while
〈 jτn,n+1〉 oscillates with the same period but opposite values
for different polarizations. Then the corresponding modula-
tions in 〈qS

n,n+1〉 = 〈q+
n,n+1 − q−

n,n+1〉 and 〈 jC
n,n+1〉 = 〈 j+n,n+1 +

j−n,n+1〉 cancel out, while 〈qC
n,n+1〉 = 〈q+

n,n+1 + q−
n,n+1〉 and

〈 jS
n,n+1〉 = 〈 j+n,n+1 − j−n,n+1〉 add up, as shown in Fig. 3. This

explains the reason why OSBOW = OCCW = 0 but OCBOW and
OSCW do not vanish.

Indeed, there is an underlying reason for the observed
relations between the ground state expectation values of bond
densities and current densities: under the time evolution gov-
erned by the Hamiltonian in Eq. (1) the currents

Jτ
n→n+1 = t jτn,n+1 + τγR(n) qτ

n,n+1 (40)

are conserved, whether with or without electron interactions
(see Appendix B). That is, the usual expression for particle
density currents jτn,n+1 is modified by the presence of the
RSOI. This fact, together with inversion symmetry (w.r.t.
bond centered inversion points) shows that in stationary states
〈J (τ )

n→n+1〉 = 0 at any bond. Then bond densities and currents
are deeply connected by

t
〈
jτn,n+1

〉 = −τγR(n)
〈
qτ

n,n+1

〉
, (41)

as has been verified in numerical data all along the present
work.

The effects of electron-electron interactions in the pre-
vious picture is the main purpose of the present work. We
have explored these effects numerically. Extensive DMRG
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FIG. 4. Evolution of the charge gap with U , at half-filling, no
magnetization and Q = π . For large U the gap grows linearly, indi-
cating a Mott insulator phase. Several wire lengths and the infinite
size extrapolation are shown.

computations (see Sec. III for details) show that the charge
and spin gaps, which coincide at U = 0, do not close at any
finite U but behave differently suggesting a crossover from the
band insulator to a correlated Mott insulator regime. Under
repulsive interactions U > 0 the charge gap grows, getting
asymptotically linear for large U as shown in Fig. 4. Instead
the spin gap reaches a maximum slightly above its band value
and then decreases, as shown in Fig. 5. This suggests that the
spin gap remains finite for any finite U and asymptotically
approaches zero for U → ∞.

The order parameters are computed from nearest neighbors
correlation functions. We have found that the long range
alternating order signaled by nonvanishing OCBOW and OSCW

is robust against electron-electron interactions, as shown in
Fig. 6. Also charge density remains homogeneous at one

FIG. 5. Evolution of the spin gap with U , at half-filling, no
magnetization and Q = π . After reaching a maximum the spin gap
decays with increasing U . It remains finite, suggesting an asymptotic
approach to zero for U → ∞. Several wire lengths and extrapolation
are shown.

FIG. 6. Charge bond wave order and spin current order param-
eters evolution under electron-electron interactions, for a wire of
L = 128 sites. The inset shows the plain averages of bond charge
density 〈qC〉 and spin current density 〈 jS〉.

particle per site, as well as spin density, spin bond order, and
charge current order remain null (not shown).

Interestingly, we have found clear signals of a spin-charge
duality in the behavior of charge and spin gaps. As shown in
Fig. 7, they are interchanged when comparing the repulsive
regime U > 0 with the attractive regime U < 0, a similar
behavior to that of the Hubbard model at half-filling [68]. This
duality is not immediately expected, as the RSOI explicitly
breaks the SU (2) symmetry of the Hamiltonian in Eq. (1).
However, a closer look shows that the present system can in-
deed be mapped onto a spatially modulated hopping Hubbard
model, without RSOI, by means of an invertible SU (2) gauge
transformation (see Appendix C). As the mapping preserves
the charge and spin quantum numbers, this implies that, in

FIG. 7. Charge and spin gaps are interchanged when the Hubbard
interaction is attractive instead of repulsive. We show here both
gaps together, which also allows for comparison of Figs. 4 and 5.
Extrapolated in 1/L from L = 48, 64, 96, 128 sites. t = 1, γ0 =
tan (π/6), γ1 = 0.2, and Q = π .
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our model, all of the charge (spin) observables in the repul-
sive regime are dual to the spin (charge) observables in the
attractive regime. Also the SU (2) × SU (2) spin and charge
symmetry, another important property of Hubbard models at
half-filling [68], is present in our model. We point out that the
gauge mapping getting rid of the RSOI provides theoretical
insight into the original model at the price of introducing
a twist in the boundary conditions of finite length wires.
This fact reflects itself through intricacies in the analysis of
edge effects in open chains [69]. We recall that our DMRG
procedure, dealing directly with the Hamiltonian in Eqs. (4)
and (5), has been carefully tuned to avoid undesired edge
states. Analogously, in finite periodic wires the mapping
introduces a net flux that is sensitive to the system length and
makes unstable the infinite size extrapolation.

The present numerical results find support within the
bosonization analysis, at least at a perturbative level. At half-
filling and zero magnetization the Fermi momenta in the
absence of RSOI are k0

F,+ = k0
F,− = π/2 and the sinusoidal

term in the second line in Eq. (22) is commensurate with
the lattice spacing. For the same reason the Fermi velocities
of τ = ± excitations in the first line are the same, then the
quadratic term introduced by the Hubbard interaction can
be incorporated into the free (Gaussian) Hamiltonian by the
introduction of the usual charge and spin bosonic fields [61].
Following standard steps we find that at a semiclassical level
there is no competition between the remaining perturbative
terms. The order structure can then be inspected by evaluation
of Eqs. (24)–(26) in the field configurations minimizing the
semiclassical potential; the results support the presence of
long range OCBOW and OSCW order. The lack of competition
between perturbative terms also supports the absence of or-
der transitions driven by the repulsive Hubbard interaction.
Finally, the linear growth of the charge gap is related to the
commensurability of the so-called Umklapp term [61] with
wave number 2(k0

F,+ + k0
F,−) = 2π .

We also notice that the bosonization of the present system
with RSOI is related, through the gauge mapping discussed in
Appendix C, to the bosonization of one-dimensional Hubbard
systems with SU (2) invariant perturbations. Along this line
we have checked that our results are consistent with the vast
literature written about those systems, and the competence
amongst different relevant perturbations, in the context of the
Peierls-Hubbard model [70–81].

B. Magnetized insulator at half filling

For completeness, we briefly report the results obtained in
the other gapped phases.

We showed in Sec. II that the existence of a gapped
phase with net magnetization requires the filling to be fixed
to one electron per site (ν = 1). As a representative case
we analyze here a system with RSOI modulations of wave
number Q = 2π/3 (three sites wave length) and an external
magnetic field along the ŷ axis setting a net magnetization
m = 1/3, so that the commensurability conditions in Eq. (23)
are satisfied with k0

F,+ = 2π/3 and k0
F,− = π/3. For numerical

computations we set t = 1, γ0 = t tan(π/6) and γ1 = 0.2, the
same parameters as in Sec. IV A.

FIG. 8. Dispersion relations for elementary excitations in a half-
filled magnetized insulator, with Q = 2π/3 and ν = 1. An appropri-
ate magnetic field hy sets a net magnetization m = 1/3.

Disregarding electron interactions, the band structure is
shown in Fig. 8. This system shows period three oscillations in
the ground state expectation values of the site magnetization
mn = ρ+

n − ρ−
n , in the bond charge density qC

n,n+1 = q+
n,n+1 +

q−
n,n+1 and in the spin current density jS

n,n+1 = j+n,n+1 − j−n,n+1
as shown in Fig. 9.

In the presence of repulsive interactions the charge gap and
spin gaps evolve in a similar way as they do in the half-filled
nonmagnetized phase, as shown in Fig. 10. This is supported
by the bosonization analysis: both the oscillatory interacting
terms in Eq. (22) and the Umklapp term are commensurate
with the lattice spacing. However, the net magnetization
breaks the spin-charge duality and the gaps for attractive
U < 0 are not symmetric with respect to the repulsive regime.

FIG. 9. Local oscillation of local magnetization 〈mn〉, bond
charge density 〈qC

n,n+1〉, and spin current density 〈 jS
n,n+1〉 in a wire

of L = 48 sites (PBC), with Q = 2π/3, ν = 1 and m = 1/3. Charge
density is homogeneous 〈ρC

n = 1〉, while bond spin and charge
current densities vanish (not shown).
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FIG. 10. Evolution of the charge and spin gaps with U , at half
filling, magnetization m = 1/3 and RSOI modulations with Q =
2π/3. For large U the charge gap grows linearly, indicating a Mott
insulator phase. There is no spin-charge duality for U < 0 (not
shown).

The order parameters defined in Eqs. (13)–(18), with Q =
2π/3, keep track of the oscillations of 〈mn〉, 〈qC

n,n+1〉 and
〈 jS

n,n+1〉. One can see in Fig. 11 that they are robust under
the electron interactions, with a tendency to stabilize mag-
netization oscillations and fade out bond density and current
oscillations. This appears to be consistent with the U →
+∞ limit where the system, at half-filling, is driven onto
an anisotropic spin 1/2 Heisenberg model with modulated
DMI [82] at m = 1/3 magnetization. Moreover, the limiting
value of OSDW suggests the formation of an ordered quantum
ground state alternating two-site spin singlets and isolated
spin + sites [83].

C. Nonmagnetized insulator away from half-filling

A gapped phase with electron filling away from one par-
ticle per site requires that the net magnetization vanishes
(m = 0). A representative case is chosen here as a system with

FIG. 11. Evolution of the non vanishing order parameters with
U , for a wire of L = 126 sites at half filling ν = 1, net magnetization
m = 1/3, and RSOI modulations with Q = 2π/3.

FIG. 12. Dispersion relations for elementary excitations in the
non-half-filled nonmagnetized insulator, m = 0 and Q = 2π/3. An
appropriate chemical potential μ sets the filling fraction at ν = 2/3.

RSOI modulations of wave number Q = 2π/3 (three sites
wave length) with a chemical potential μ setting the electron
filling at ν = 2/3, satisfying the commensurability conditions
in Eq. (23) with k0

F,+ = k0
F,− = π/3. As before, for numerical

computations we set t = 1, γ0 = t tan(π/6), and γ1 = 0.2.
Ignoring electron interactions, the band structure in Fig. 12

shows equal charge and spin gaps. These gaps are modified
by a repulsive Hubbard interaction as shown in Fig. 13.
According to the bosonized Hamiltonian in Eq. (22) the effect
of U is present because k0

F,+ = k0
F,− but there is no Umklapp

term as 2(k0
F,+ + k0

F,−) = 4π/3 violates pseudomomentum
conservation; this provides a reason for the similar behavior
of the charge and spin gaps for moderate U , up to U ≈ 10 t .
However, we find that the charge gap bounces back for larger
U and then grows within the analyzed U range, remaining
below its U = 0 band value.

FIG. 13. Evolution of the charge and spin gaps with U , at filling
ν = 2/3, no magnetization and Q = 2π/3. The spin gap decays
smoothly towards zero for large U , while the charge gap starts
decaying up to U ≈ 10 t and then grows (below its band value)
within the analyzed U range.
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FIG. 14. Local oscillation of site and bond charge densities 〈ρC
n 〉,

〈qC
n,n+1〉 and spin current density 〈 jS

n,n+1〉 in a wire of L = 48 sites
(PBC), with Q = 2π/3, ν = 2/3, and m = 0. Local magnetization,
bond spin density, and charge current density vanish (not shown).

Regarding order, this insulating phase shows period three
oscillations in the ground state expectation values of the site
charge density ρC

n = ρ+
n + ρ−

n , the bond charge density qC
n,n+1

and the spin current density jS
n,n+1 as shown in Fig. 14. The

evolution of the corresponding order parameters is shown in
Fig. 15. The charge bond order wave gets damped for large
U but the spin current wave and the charge density wave
stay present in this regime. The latter gets out of phase with
respect to RSOI modulations just when the charge gap starts
to increase. These findings might signal a nonperturbative
process that could be investigated in a future work.

V. SUMMARY AND CONCLUSIONS

In the present work we analyze the charge and spin or-
der structure in several gapped phases found in a quantum
wire with spatially modulated Rashba spin-orbit interaction,
including electron-electron repulsive interactions and a mag-
netic field along the spin-orbit axis. We classify the conditions

FIG. 15. Evolution of the nonvanishing order parameters with U ,
for a wire of L = 126 sites at filling ν = 2/3 and no magnetization.

for the existence of a charge gap in the absence of interactions
and provide numerical data for both the charge and spin gaps
and a set of proposed order parameters in the repulsive regime,
obtained by DMRG computations in finite length wires of
up to L = 128 electron sites. The main features observed
are supported by analytic arguments within the bosonization
framework.

We first recall [51] that insulating phases, namely ground
states with a finite charge gap, can only be obtained when
the modulated Rashba coupling contains both uniform and
oscillating terms. In the present analysis we consider a single
frequency modulation γR(n) = γ0 + γ1 cos (Qn) with γ0 	= 0
and h γ1 	= 0 and provide commensurability conditions for
the charge gap opening, which relate the modulation wave
number Q, the electron filling and the magnetization [20].

The emerging result in all of the possible insulator phases
is the presence of a long range order modulated spin current
(spin current wave), accompanied by a charge bond order
wave. The charge gap and the spin current wave are found
to be robust under Hubbard electron-electron interactions,
proven up to U = 25 t . We relate this result to the modified
expression of particle current conservation under the evolution
dictated by the modulated Rashba Hamiltonian.

In the most prominent insulating phase of the system, that
with particle filling fraction one-half and no magnetic field,
we show unexpected symmetry properties such as particle-
hole duality between the repulsive and attractive regimes
and the possibility of classifying quantum states with charge
SU (2) quantum numbers, besides standard SU (2) spin quan-
tum numbers. These properties are explained by means of a
gauge mapping relating the modulated Rashba Hamiltonian
with a modulated hopping Hubbard Hamiltonian without spin
orbit interaction [84].

Regarding half-filled phases, the effective model for low
carrier density electron systems and large Coulomb repul-
sion [82,85] relates the modulated Rashba interaction with
modulation and anisotropy in exchange couplings and mod-
ulated Dzyaloshinskii-Moriya couplings in an effective S =
1/2 Heisenberg spin chain. The large Hubbard repulsion U
analyzed in the present problem might provide hints to under-
stand the behavior of those particular models of quantum spin
chains.
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APPENDIX A: SOME EXACT RESULTS FOR
NONINTERACTING ELECTRONS WITH

MODULATED RSOI

The Hamiltonians in Eq. (4) are partially diagonalized after
a Fourier transformation

dn,τ = 1√
L

π∑
k=−π

eikndk,τ (A1)
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into momentum space. In order to decouple the excitation
modes, in the case of a periodic wire with length L and
RSOI modulations with rational wave number Q = 2πr/p
(compatible with L), it is convenient to write the pseudomo-
mentum k as k = k0 + νK with k0 in a reduced Brillouin zone
−π

p � k0 < π
p , an index ν = 0, · · · , p − 1 and K = 2π p/L.

The Hamiltonians then take the form

Hτ =
∑

k0

p−1∑
ν,ν ′=0

Mνν ′ (k0,τ )d†
k0+νK,τ

dk0+ν ′K,τ
, (A2)

which still couples sets of p modes with pseudomomenta
differing by νK . Diagonalization of the Hermitian p × p ma-
trices M(k0, τ ) by means of unitary transformations U (k0, τ )
unravels the elementary excitations

Hτ =
∑
k0,ρ

ερ (k0, τ ) f †
k0,ρ,τ

fk0,ρ,τ
, (A3)

where ρ = 0, · · · , p − 1 is a band index, ερ (k0, τ ) are the
corresponding band dispersion relations and the fermionic
operators fk0,ρ,τ

are related to dk,τ
in Eq. (A1) by

dk0+νK,τ
=

∑
ρ

Uνρ (k0, τ ) fk0,ρ,τ . (A4)

One can readily prove that the on-site order parameters in
Eqs. (13) and (14) are expressed as

OCDW = 1

L

∑
k0,ρ,τ

1

2

∑
j=±

∑
ν

nρ (k0, τ )U ∗
ν+ jr,ρ (k0, τ )Uνρ (k0, τ )

(A5)
and

OSDW = 1

L

∑
k0,ρ,τ

τ

2

∑
j=±

∑
ν

nρ (k0, τ )U ∗
ν+ jr,ρ (k0, τ )Uνρ (k0, τ ),

(A6)

where nρ (k0, τ ) = 〈 f̃ †
k0,ρ,τ

f̃k0,ρ,τ
〉 are the occupation numbers

of states in the ρ-th band, with momentum k0 and spin τ .
For the zero temperature ground state in a given filling and
magnetization regime, these occupation numbers are 0 or 1
according to the band structure and the corresponding band
filling fractions ντ .

Bond-located order parameters in Eqs. (15)–(18) can be
recovered from the more general modulated average

Oτ
bond = 1

L

∑
n

cos(Qn)〈d†
n,τ dn+1,τ 〉, (A7)

which after diagonalization reads

Oτ
bond = 1

L

∑
k0,ρ

1

2

∑
j=±

∑
ν

nρ (k0, τ )ei(k0+νK )U ∗
ν+ jr,ρ (k0, τ )

× Uνρ (k0, τ ). (A8)

Then, being 2 d†
n,τ dn+1,τ = qτ

n,n+1 − i jτn,n+1, one finds that

OCBOW =
∑

τ

2Re
(
Oτ

bond

)
,

OSBOW =
∑

τ

2τ Re
(
Oτ

bond

)
,

OCCW = −
∑

τ

2 Im
(
Oτ

bond

)
,

OSCW = −
∑

τ

2τ Im
(
Oτ

bond

)
. (A9)

The p × p matrices Mνν ′ (k0,τ ) can be conveniently diag-
onalized with the help of numerical routines, providing the
energy dispersion bands and the corresponding one-particle
eigenstates. Then the ground state for a given filling and
magnetization, as well as its order parameters, can be exactly
computed. Still, we find it useful to give analytical expressions
for the simplest case r = 1, p = 2. In this case Q = π and one
performs the diagonalization of

M(k0, τ ) =
(−2t̃ cos(k0 − τq0) −iτ2γ1 cos(k0)

iτ2γ1 cos(k0) 2t̃ cos(k0 − τq0)

)

(A10)

with −π
2 � k0 < π

2 , ignoring for the moment diagonal terms
proportional to the chemical potential and the magnetic field.
The energy bands, labeled by ρ = 0, 1, are found to be
ερ (k0, τ ) = (−1)ρ+1ετ (k0) with

ετ (k0) = 2
√

t̃2 cos2(k0 − τq0) + γ 2
1 cos2(k0), (A11)

while the unitary matrices diagonalizing M(k0, τ ) are given
by

U (k0, τ ) =
(

cos(θτ (k0)) −iτ sin(θτ (k0))

−iτ sin(θτ (k0)) cos(θτ (k0))

)
(A12)

with

2θτ (k0) = arctan

(
γ1 cos(k0)

t̃ cos(k0 − τq0)

)
. (A13)

APPENDIX B: CONSERVED CURRENTS

Consider a lattice Hamiltonian with time-independent co-
efficients

H = 1

2

∑
n

⎡
⎣ ∑

m∈N (n)

· · ·
⎤
⎦ (B1)

for some local degrees of freedom (spins, bosons, fermions),
where N (n) stands for the set of neighbor sites m connected
with n by local interactions. Consider also a local density
operator ρn (for instance a local number operator). In the
Heisenberg picture we can write the time evolution of ρn as

d

dt
ρn = i[H, ρn]. (B2)

A continuity equation for ρn in the lattice should relate this
time rate with the flow of local currents Jn→m transporting
density from the site n into neighbors m ∈ N (n). Thus we get

− d

dt
ρn =

∑
m∈N (n)

Jn→m. (B3)

From the actual form of the r.h.s. of Eq. (B3) for a given model
we can define current operators that describe the flow of ρ
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from site n to site m. Notice that the expression for current
operators defined in this way depends not only on the degrees
of freedom involved, but also on the Hamiltonian structure and
coefficients. In a stationary state |ψ〉 one finds that 〈ψ |ρn|ψ〉
does not evolve with time, then the net current flow from each
site vanishes ∑

m∈N (n)

〈ψ |Jn→m|ψ〉 = 0. (B4)

Considering the Hamiltonian in Eq. (6) and spin polarized
densities ρn,τ in Eq. (7) we find that

d

dt
ρτ

n = −i
[
H, ρτ

n

] = Jτ
n→n+1 + Jτ

n→n−1 (B5)

with

Jτ
n→n+1 = t jτn,n+1 + τγR(n) qτ

n,n+1 (B6)

mixing what we have called spin polarized bond density qτ
n,n+1

and spin polarized current jτn,n+1 in the main text [see Eqs. (8)
and (9)]. Equations (B4) and (B5), together with inversion
symmetry (w.r.t. bond centered inversion points), show that
at any bond

〈J (τ )
n→n+1〉 = 0 . (B7)

APPENDIX C: PARTICLE-HOLE DUALITY
AND SU (2) × SU (2) SYMMETRY

In the main text, according to our interest, we have re-
spected the distinction between hopping terms and current
terms. An alternative strategy starts by grouping real and
imaginary coefficients of H in Eq. (6) into complex coeffi-
cients as

H = −
∑
n,τ

(t̃ne−iτφn d†
n,τ dn+1,τ + H.c.)

−
∑
n,τ

(
μ + τ

hy

2

)
ρn,τ + U

∑
n

ρn,+ρn,−, (C1)

where t̃n =
√

t2 + γ 2
R (n) and tan φn = γR(n)/t . One can then

perform [84] the following gauge transformation:

dn,τ → eiτθn dn,τ (C2)

with

θn =
∑
m<n

φm (C3)

so that

d†
n,τ dn+1,τ → eiτφn d†

n,τ dn+1,τ , (C4)

while densities ρn,τ = d†
n,τ dn,τ remain invariant. In this way

H is mapped onto a Hubbard model with (real) modulated
hopping coefficients and no RSOI interactions. It appears
appropriate to say that the RSOI is gauged away by the above
procedure. Notice that the transformation in Eq. (C2) can be

also depicted as local spinor rotations around the ŷ axis,

dn → eiσyθn dn, (C5)

where d†
n = (d†

n,+, d†
n,−) stands for the fermionic operators in

spinor form and �σ are the Pauli matrices [rotated in order
to make σy = diag(1,−1), see Eq. (3)]; this immediately
allows for writing the mapping as a unitary transformation
U in the Hilbert space, H → HHubbard = U−1H U . A related
transformation has been presented in earlier works [84,86],
and recently used in [55] to gauge away spin-orbit interactions
from spin chain models.

The existence of the mapping between H in Eq. (6) and a
modulated hopping Hubbard model reveals a hidden SU (2)
spin symmetry. To be explicit, as the Hubbard Hamiltonian
has the usual global SU (2) symmetry generated by the spin
operators

�J =
∑

n

1

2
d†

n �σdn , (C6)

then the modulated RSOI Hamiltonian has a symmetry
[U �J U−1, H] = 0 with “twisted” spin generators U �J U−1 sat-
isfying an SU (2) algebra. These “twisted” spin generators are
a generalization of those discussed in Ref. [87].

Moreover, in the half-filled nonmagnetized phase dis-
cussed in Sec. IV A the target Hamiltonian HHubbard possesses
enhanced symmetries: it is particle-hole dual and invariant
under SU (2) × SU (2) spin and charge transformations [68].
Indeed, in that Hubbard case the particle-hole transforma-
tion [88] is given by

dn,+ → dn,+

dn,− → (−1)nd†
n,−, (C7)

and can be implemented as a unitary transformation X with
the duality property

X HHubbard(U )X−1 = HHubbard(−U ). (C8)

The charge SU (2) generators for the Hubbard model are
obtained as a particle-hole transformation of the spin gener-
ators, �Jcharge = X �J X−1. They are proven to satisfy the SU (2)
algebra, to commute with HHubbard and also to commute with
�J , so that ( �J, �Jcharge) generate an extended SU (2) × SU (2)
symmetry. Mapping back these generators onto the problem
in Sec. IV A one learns that U X U−1 is a particle-hole duality
transformation and that (U �J U−1, U �Jcharge U−1) generate a
SU (2) × SU (2) symmetry on the RSOI Hamiltonian H . As
the mapping preserves total charge and total magnetization
along the ŷ axis, one can identify charge and spin sectors of
both models.

As we have seen, gauging away the RSOI brings theoretical
insight into the problem of interest in the present work. How-
ever, it has the cost of introducing a twist, and the associated
numerical difficulties, in the boundary conditions for finite
size chains [69].
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