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Two-dimensional magnetism in α-CuV2O6
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Several previous studies reported that a one-dimensional Heisenberg chain model is inadequate in describing
the magnetic properties of the low-dimensional quantum antiferromagnet α-CuV2O6, but the origin for this
observation has remained unclear. We have reinvestigated the magnetic properties of α-CuV2O6 and found
that our anisotropic magnetic susceptibility, neutron-powder diffraction, and electron paramagnetic spin-
resonance measurements are in good agreement with extensive density-functional theory (DFT + U ) total
energy calculations which indicate that the correct spin lattice model for α-CuV2O6 is rather a S = 1/2
2D-Heisenberg antiferromagnetic lattice. The magnetic susceptibility data are well described by a rectangular
Heisenberg antiferromagnet with anisotropy ratio α ∼ 0.7 consistent with the DFT results. Quantum Monte
Carlo simulations of the magnetic susceptibilities for a rectangular lattice Heisenberg antiferromagnet were
performed in the anisotropy range 0.5 � α � 1.0. The results of the Quantum Monte Carlo calculations
were cast into a Padé approximant which was used to fit the temperature-dependent magnetic susceptibility
data. Neutron-powder-diffraction measurements were used to conclusively solve the collinear antiferromagnetic
structure of α-CuV2O6 below the Néel temperature of ∼22.4 K.

DOI: 10.1103/PhysRevB.102.014436

I. INTRODUCTION

Interest in low-dimensional quantum magnetic systems is
motivated by the observation that such systems are model
candidates to test theoretical predictions for exotic ground
states with unusual excitations that are conceptually differ-
ent from the standard behavior of three-dimensional (3D)
magnetic systems [1–4]. For example, one-dimensional (1D)
arrangement of Cu2+ spin S = 1/2 ions in CuL2 ribbon
chains (where L are ligands such as O, Cl, or Br) have
recently proved to exhibit unusual magnetic and magneto-
electric ground-state properties [5–15]. Such ribbon chains
are made up of square-planar CuL4 plaquettes sharing their
opposite edges. The Cu–L–Cu bonding angle of the nearest-
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neighbor (NN) spin-exchange paths are close to 90◦, which
makes the NN spin exchange weak and usually ferromagnetic
(FM) [16–18], whereas the next-nearest neighbor (NNN)
spin exchange (super-superexchange), via Cu–L . . . L–Cu
paths, is antiferromagnetic (AFM) and generally stronger
in magnitude than the NN spin exchange [5–8,10–12]. The
spin frustration resulting from the competition between the
NN FM and NNN AFM spin exchanges provides a pro-
lific playground for novel fluidlike ground states with un-
conventional excitations and properties like type-II multi-
ferroicity based on incommensurate cycloid-type magnetic
structures or spin nematicity in external magnetic fields
[19–26]. In the present paper, we re-examine the magnetic
properties of the low-dimensional quantum antiferromag-
net α-CuV2O6 which in earlier studies has been analyzed
in terms of a 1D Heisenberg magnet with uniform NN
AFM spin exchange [27–29]. From the structural point of
view, α-CuV2O6 features such CuO2 ribbon chains result-
ing from trans-edge-sharing CuO6 octahedra, which are ax-
ially elongated due to a Jahn-Teller distortion (see Fig. 1).
Lately, α-CuV2O6 has also attracted attention because of
its catalytic and photocatalytic activity and as a possible
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FIG. 1. (a) Crystal structure of α-CuV2O6 (in P-1 setting space
group No. 2 [34]). The blue and cyan spheres show the Cu and
V atoms, respectively. The small red spheres represent the oxygen
atoms (O2, O3) in the distorted octahedral coordination around the
Cu atoms. The orange spheres are oxygen atoms (O1) coordinating to
V atoms exclusively. Note that we have chosen to present the triclinic
crystal structure in P-1 setting of space group No. 2. In this setting,
the shortest Cu–Cu distance is encountered along [100] whereas in
C-1 setting used before in literature [27–29], the shortest Cu–Cu
approach is found along the b direction. (a) Right: Arrangement of
the CuO4 stack-chains running along the a direction. (b), (c) Two NN
CuO4 planes along the b and c directions, defining the Jb,c exchange
paths.

active material for primary and rechargeable lithium batteries
[30–33].

Essentially guided by the crystal structure, all preceding
studies of the magnetic properties of α-CuV2O6 have assumed
that the dominant spin exchange is the intrachain spin ex-
change along the a direction, i.e., the spin exchange between
the NN Cu atoms along the chains with the shortest Cu . . .

Cu distance of 3.556 Å) [27–29]. However, Vasil’ev et al.
already estimated the intrachain exchange J and interchain
spin exchange J ′ to be 68 K and 33 K, respectively, leading
to a very large value for the ratio J ′/J ≈ 0.5 [27]. Kikuchi
et al. stated that a pure 1D chain model provides a poor
description of α-CuV2O6 because of the large value for J ′/J ,
and hence cannot explain the relatively high AFM ordering
temperature of ∼23 found by AFM resonance [27], neutron-
powder diffraction, and NMR experiments [28] as well as
specific-heat capacity measurements [29]. This view was also
echoed by Prokofiev et al., who pointed out the need to treat
α-CuV2O6 as an anisotropic 3D rather than a 1D magnetic
material [29].

A detailed inspection of the crystal structure of α-CuV2O6

(see Table S1 in the Supplemental Material [35] for structure

details), and especially of the orientation of the Jahn-Teller
elongated CuO6 octahedra, reveals that the CuO4 equatorial
plane of the Cu2+ cations with the four closest oxygen atoms
at distances of 1.91 Å and 2.04 Å is inclined with respect
to the propagation direction ([100]) of the ribbon chains [see
Fig. 1(a)]. As already noted by Koo and Whangbo, such an
arrangement of the magnetic dx2−y2 orbitals suppresses the
Cu–O–Cu spin exchanges, unless both Cu–O bonds lie in
the CuO4 equatorial planes containing the dx2−y2 magnetic
orbitals [36]. This observation presents serious issues con-
cerning the spin lattice relevant for α-CuV2O6. The 1D chain
of edge-sharing, axially elongated CuO6 octahedra shown in
Fig. 1(a) becomes a stack of isolated CuO4 square planes
once the elongated Cu–O bonds are removed to highlight
only the CuO4 planes containing the magnetic orbitals. Such
stack chains are isolated from each other in α-CuV2O6 [see
Figs. 1(b) and 1(c)], so there is no spin exchange of the Cu–
O–Cu type (superexchange) in α-CuV2O6. Thus, the magnetic
properties of α-CuV2O6 have to be determined by spin ex-
changes of the Cu–O . . . O–Cu super-superexchange type, in
which both Cu–O bonds lie in the CuO4 planes containing
the dx2−y2 magnetic orbitals even if the two Cu2+ ions do
not share a common oxygen atom. Such spin exchanges are
mostly AFM in nature and can be strong when the O . . . O
contact distance lies within the van der Waals (vdW) distance
(∼3.0 Å) and when the Cu–O . . . O angles are large. This is
so because the magnetic orbital, commonly referred to as the
Cu x2-y2 orbital, has the 2p orbitals of the O ligands combined
out of phase with the Cu x2-y2 orbital and because the strength
of the Cu–O . . . O–Cu spin exchange is determined by how
strongly these O 2p orbitals overlap across the O . . . O contact
[5,6]. When the O . . . O contact is intervened by a d0 metal
cation such as V5+, the strength of the Cu–O . . . V5+ . . .

O–Cu exchange is influenced by the empty d orbitals of the
V5+ cation [37–39].

To find the correct spin lattice we have carried out ex-
tensive spin-polarized density-functional theory (DFT + U )
calculations for several magnetic configurations (see Fig. S5
in the Supplemental Material for details [35]) and mapped
their relative energies to the corresponding relative energies
expected from the spin Hamiltonian. We find that the magnetic
properties of α-CuV2O6 need to described by a spin S =
1/2 Heisenberg rectangular spin lattice defined by Jc and
Ja+b with Jc/Ja+b ∼ 0.7 (see Figs. 11 and 12 for details).
Our theoretical finding, which clarifies the origin of the ob-
servations by Vasil’ev et al. [27], Kikuchi et al. [28], and
Prokofiev et al. [29] that α-CuV2O6 is not a 1D magnetic
system, is corroborated by a conclusive magnetic structure de-
termination from high-intensity neutron-diffraction measure-
ments as well as the anisotropic magnetization and magnetic
susceptibility data. In agreement with the theoretical results,
we indeed observe that the spin exchange between NN Cu
moments along the propagation direction of the ribbon chains
is not AFM but FM and by a factor of ∼30 weaker than
the strongest AFM exchange across the interconnecting VO6

double chains. A comparison of the temperature dependence
of the magnetic susceptibilities with quantum Monte Carlo
calculations (QMC) for the Heisenberg rectangular spin lattice
confirms the anisotropy ratio derived from the DFT calcula-
tions.
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II. EXPERIMENTAL DETAILS

Polycrystalline samples of α-CuV2O6 were synthesized by
firing CuO (99.999%, Alfa Aesar) and V2O5 (99.999%, Alfa
Aesar) in a porcelain crucible. In a first step, the thoroughly
mixed powder was annealed to 540 ◦C, then ground again
in an agate mortar and heated to 610 ◦C [40]. Crystals of
α-CuV2O6 were grown from the powder by chemical vapor
phase transport (CVT) in a temperature gradient from 600 ◦C
to 500 ◦C using TeCl4 as a transport agent. The powder sam-
ples were initially characterized with respect to phase purity
by x-ray powder diffraction at room temperature using MoKα1

radiation. High-resolution neutron powder diffraction patterns
were collected at 1.5 K on the high-resolution two-axis
diffractometer D2B installed at the Institut Laue-Langevin
(ILL, Grenoble) using neutrons of 1.594 Å wavelength. The
sample of ∼9 g was filled into a thin-walled vanadium tubu-
lar container of 8-mm outer diameter. Rietveld refinements
by varying the lattice parameters and atom positions were
performed in the triclinic space group P-1 (No. 2) using the
FULLPROF software package assuming a pseudo-Voigt peak
profile (FULLPROF NPR = 5) [42]. Isotropic and anisotropic
displacement parameters were tested in case of the x-ray
and neutron diffraction patterns, respectively. The background
was modeled by a higher-order Chebychev polynomial. The
refinements typically converged to Bragg- and R f -reliability
factors of ∼2% or less and χ2-values better than 1 were
achieved for the x-ray patterns. For the neutron diffraction,
the reliability factors were somewhat larger (see Table SI in
the Supplemental Material [35] for more structure details).
Medium-resolution high-intensity neutron powder diffraction
was performed between 1.5 K and 30 K on ILL’s diffrac-
tometer D20 at a wavelength of 2.42 Å. DC magnetization
measurements versus magnetic field and temperature were
performed in a Magnetic Property Measurement System em-
ploying the RSO option (Quantum Design, MPMSXL). The
needle-shaped crystals were oriented with the a axis (P-1
setting, needle axis) parallel and perpendicular to the mag-
netic field. Heat-capacity measurements on a crystal grown
in a V2O5−K2SO4 melt [29] as well as on a CVT crystal
were performed in a physical property measurement system
(Quantum Design, PPMS) in magnetic fields up to 9 T with
the field oriented perpendicular to the crystal needles.

III. RESULTS

A. Magnetic and thermal properties

The magnetic susceptibility of polycrystalline samples of
α-CuV2O6 has been reported and discussed before by Vasil’ev
et al., Kikuchi et al., and Prokofiev et al. [27–29]. They
consistently reported a Néel temperature of ∼24 K which
was also found in first measurement of the heat capacity by
Prokofiev et al. [29]. Whereas Vasil’ev et al. and Kikuchi et al.
found reasonable agreement of their experimental magnetic
susceptibility data with the Bonner-Fisher model for a 1D
spin S = 1/2 Heisenberg chain [43]; Prokofiev et al. reported
discrepancies. Especially the g factor obtained from their fit
of a 1D Heisenberg model to the susceptibilities measured
with magnetic field along the needles (b axis in C-1 setting,
a axis in P-1 setting) amounted to 2.44, remarkably larger

FIG. 2. Anisotropy of the magnetic susceptibilities of a crystal
of a α-CuV2O6 observed with magnetic field applied parallel [100]
(along the crystal needle) and perpendicular as indicated. The upper
inset displays a Curie-Weiss plot of the inverse susceptibility. The
lower inset shows Fisher’s heat capacity [45] obtained by taking
the derivative with respect to temperature of the quantity χmol × T ,
showing the long-range ordering anomaly at 22.2(1) K.

than is typically observed for Cu2+ in Jahn-Teller elongated
octahedral environment [44]. Figure 2 displays the tempera-
ture dependence of the magnetic susceptibilities of a needle-
shaped crystal of α-CuV2O6 with the external field oriented
parallel (parallel a in P-1 setting, parallel b in C-1 setting) and
perpendicular to the crystal needle, as indicated. As described
before for polycrystalline samples, the susceptibilities are
characterized by a broad maximum centered at about 43 K
due to short-range AFM ordering, followed by a Curie-Weiss-
type hyperbolic decrease above. The Curie-Weiss tempera-
ture amounts to −70(2) K, (see inset in Fig. 2), indicating
predominant AFM spin exchange. For the crystal sample,
we observe a large directional dependence of the magnetic
susceptibilities. Not only are the susceptibilities different in
magnitude, indicating a substantial anisotropy of the effective
moments viz. the g factors in the different directions but,
especially, the temperature dependence below the short-range-
order maximum is different for the three perpendicular field
directions. Whereas, with a field applied along [100], the
susceptibility continuously decreases to lowest temperatures,
the susceptibilities with a field applied perpendicular to [100]
(perpendicular to the crystal needles) initially drop and, after
a kink at ∼22.5 K, either level off or slightly increase again.
The kink with the change of the slope for χmol([100]) and
a sharp anomaly in the quantity d/dT (χmol × T ) (Fisher’s
heat capacity) [45] marks the onset of AFM long-range order,
in agreement with preceding results [27–29]. The anisotropy
of the single-crystal susceptibilities is typical for an uniax-
ial antiferromagnet with the easy axis aligned along [100].
Figure 3 displays the isothermal magnetization of a needle-
shaped α-CuV2O6 crystal at 1.85 K with the external field
oriented parallel (‖ a in P-1 setting, ‖ b in C-1 setting) and
perpendicular to the needle axis. With the latter orientation,
the magnetization increases linearly with the field, whereas
with the field oriented along the needle we observe a spin-flop
of the magnetization, suggesting that the magnetic field was
oriented along or close to the easy axis.
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FIG. 3. Isothermal magnetization of a α-CuV2O6 crystal at
1.85 K with the magnetic field applied parallel and perpendicular
the the crystal needle as indicated.

The spin-flop field versus temperature determined from
the derivatives of the isothermal magnetization Mmol(T, H ),
(dMmol(H, T )/dH )T ) is summarized in Fig. 4, where the
inset highlights the temperature dependence of the peaks. The
spin-flop upshifts with field when increasing the temperature
and disappears above the Néel temperature.

Figure 5 displays the temperature and magnetic field de-
pendence of the heat capacity near the Néel temperature
of two crystals of different origins. The magnetic field was
oriented perpendicular to the needle-shaped crystals. The λ

anomaly in the heat capacity of the crystal grown from the
flux is well shaped and sharp and at zero field peaks at
22.44(4) K. Applying a magnetic field slightly increases the
Néel temperature (see inset Fig. 5) but does not alter the shape
of the anomaly. The magnetic anomaly in the heat capacity of
the CVT crystal exhibits the same onset temperature but is
broadened, possibly due to some inhomogeneity.

B. Magnetic structure

The magnetic structure of α-CuV2O6 was determined from
neutron-powder-diffraction patterns. Figure 6 displays the

FIG. 4. Derivative of the isothermal magnetization (per Cu atom)
with respect to the magnetic field indicating the position of the
spin flop. The inset provides the spin-flop field versus measuring
temperature.
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FIG. 5. Heat capacity versus magnetic field of a flux grown
and a CVT-grown crystal near the Néel temperature. The λ-shaped
anomaly shifts to higher temperature with increasing field applied
perpendicular to the crystal needle. The anomaly of the CVT-grown
crystal is somewhat smeared out, however, with the same onset tem-
perature as the flux-grown crystal. The magnetic entropy contained
in the anomaly amounts to ∼2% of R ln2 expected for a spin S = 1/2
system, implying that almost all magnetic entropy is removed by
short-range AFM ordering above the Néel temperature.

diffraction pattern taken at 1.5 K together with a Rietveld
profile refinement of the nuclear structure with atom and
lattice parameters in agreement with those derived from the
high-resolution neutron data (see Table SI in the Supplemental
Material [35] for more structure details). At 2� = 16.14◦
(d = 8.61 Å), an extra Bragg reflection is observed. It dis-
appears above ∼22 K, indicating that it is of magnetic origin
(see Fig. 7). To search for more magnetic Bragg reflections,
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FIG. 6. Neutron-powder-diffraction pattern of α-CuV2O6 col-
lected at 1.5 K using neutrons with a wavelength of λ = 2.424 Å on
ILL’s medium resolution high-intensity powder diffractometer D20
shown together with a Rietveld profile refinement of the nuclear
structure (solid black line). The red circles represent the measured
counts, the blue solid line at the bottom of the graphs shows the
difference between the observed and calculated patterns. Vertical
tics (blue) mark the Bragg angles of the reflections used to simulate
the refined patterns. The inset displays the range with the strongest
magnetic Bragg reflection marked by the arrow at d = 8.61 Å in an
enlarged scale.
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FIG. 7. Red circles: Integrated intensities of the magnetic Bragg
reflection observed at 2� = 16.14◦. The dashed line is a fit of the
data close to Tc = 22.37 K with a critical power law according to
Eq. (1), assuming a critical exponent β = 0.36.

we used a contour plot of difference patterns collected while
ramping up the temperature from 1.5 K to 30 K. As can be
seen from Fig. 8, five additional Bragg peaks can be identified,
two of them above 40◦ being very weak. The plot of the
integrated intensity of the 16.14◦ magnetic Bragg reflection as
a function of temperature confirms the second-order nature of
the phase transition. A fit of the integrated intensity, I (T ), to
a power law assuming a critical exponent β = 0.36, typically
found for the 3D-Heisenberg universality class [46],

I (T ) ∝ (1 − T/Tc)2β, (1)

yields a critical temperature of

Tc = 22.37(7) K,

in good agreement with the critical temperature found from
the magnetization and heat capacity experiments.
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FIG. 8. Contour plot of the difference intensity (30 K data set
subtracted) as a function of the Bragg angle and temperature of the
D20 neutron-powder-diffraction patterns (λ = 2.424 Å) highlighting
the magnetic Bragg reflections marked by (yellow) vertical arrows.
They disappear above ∼23 K.

FIG. 9. Rietveld profile refinement of the difference pattern, 1.5
K–30 K. Red: Circles indicate the difference counts and the (black)
solid line shows the theoretical pattern calculated using the Bragg
angles of the magnetic reflections indicated by the (blue) vertical
bars. The (blue) solid line marks the difference between measured
and calculated intensity. The two horizontal (black) short bars indi-
cate regions which were excluded in the refinement.

Using the program k-search contained in the FULLPROF

suite [42] and the lattice parameters refined from the 1.5 K
refined nuclear pattern (cf. Fig. 6) the magnetic Bragg reflec-
tion could be readily indexed based on the propagation vector
(P-1 setting of space group No. 2):

�τ = (0, 0.5, 0.5).

A symmetry analysis with the program BasIreps [47,48]
yielded two equivalent 1D irreducible representations with
real basis vectors along a, b, and c. A full least-squares refine-
ment of the magnetic structure was finally carried out based
on the difference pattern I(1.5 K)−I(30 K) augmented by a
constant offset to avoid small negative differences. Figure 9
shows the refined difference pattern and Fig. 10 displays the
magnetic structure. As already implied by the propagation
vector, one finds a doubling of the nuclear cell along b and
c, with the magnetic moments aligned essentially along the

FIG. 10. Magnetic structure of α-CuV2O6.The moments point
essentially along the a axis (P-1 setting of space group No. 2).
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a axis and vanishing component along b. Allowing a small
component of the moment pointing along b [≈ 0.05(3) μB] did
not significantly improve the fits. The magnitude of ordered
moment amounts to

μ = 0.66(2)μB,

in good agreement with the results of our DFT calculations
and with Kikuchi et al.’s finding [28].

The refined components of the ordered moment are

μ(a) = 0.65(1)μB,

μ(b) = 0.0μB,

μ(c) = 0.12(3)μB.

Antiparallel collinear alignment of the Cu moments is
found along the b and the c lattice directions, whereas along
the a axis (chain direction) collinear parallel alignment is
observed.

IV. DISCUSSION

Magnetic structure

Our magnetic structure solution for α-CuV2O6 based on
a total of five magnetic Bragg reflections is essentially a
C-type AFM structure characterized by a FM alignment of
the Cu moments along the [100] (P-1 setting) direction, i.e.,
the direction of the closest Cu . . . Cu approach. Cu moments
in neighboring chains in the a − b plane align antiparallel
to those in neighboring chains along the [001] direction.
Our magnetic structure solution agrees with Kikuchi et al.’s
second magnetic structure proposal shown as Fig. 9(B) in
Ref. [28]. The saturation moment refined for the Cu atoms
is 0.66 μB close to 0.7 μB proposed by Kikuchi and the
DFT calculations (see below). The FM alignment of the Cu
moment along [100], which is counterintuitive to the 1D
AFM character of α-CuV2O6 surmised by all previous studies
[27–29], is surprising.

V. DFT CALCULATIONS OF THE SPIN EXCHANGE
INTERACTIONS

To establish the spin-exchange paths and to resolve the
apparent discrepancies between our study and other reports
concerning α-CuV2O6, we first analyzed the crystal structure
of α-CuV2O6 from the viewpoint of “square-planar” CuO4

units. For each axially elongated CuO6 octahedron, the x2-y2

magnetic orbital of the Cu2+ ion is contained in the CuO4

plane made up of the four short, equatorial Cu–O bonds
[34,35]. As already sketched in the Introduction, the NN spin
exchange Ja along the a direction [see Fig. 1(a)] should be
negligible since its O . . . O distance (3.556 Å) is longer than
the vdW distance, and so should be the NN spin exchange
Jb along the b direction [Fig. 1(c)] for the same reason
(O . . . O = 4.956 Å) (see Table I for more geometrical details).
Consequently, Cu−O . . . O−Cu-type super-superexchange
has to be considered to describe the magnetic properties
of α-CuV2O6. α-CuV2O6 has two Cu–O . . . O–Cu spin-
exchange paths with O . . . O contact shorter than the vdW
distance; the NN exchange Jc along the c direction with O . . .

O = 2.738 Å [Fig. 11(a)], and the NN exchange Ja+b along

TABLE I. Geometrical parameters associated with the spin-
exchange paths Ja, Ja+b, Jb, and Jc used in the mapping analysis.

Cu . . . Cu O . . . O
Direction (Å) (Å) Other

Ja ‖ a 3.556 3.556 parallel CuO4 planes
Ja+b ‖ (a+b) 4.858 2.665 O . . . V5+ . . . O bridges
Jb ‖ b 4.956 4.956 parallel CuO4 planes
Jc ‖ c 6.455 2.738 ∠Cu - O . . . O = 161.07◦

the (a + b) direction with O . . . O = 2.665 Å [see Fig. 11(b)].
One might speculate whether Ja+b is stronger than Jc since
it has a shorter O . . . O distance. However, the Cu−O . . .

O angles are considerably greater in the exchange path Jc

(161.07◦) than in the Ja+b path (131.98◦, 96.29◦), leading to
the opposite speculation. Another complicating factor is that
there is no intervening V5+ cation in the O . . . O contact of
Jc [Fig. 11(a)], but there is in each O . . . O contact of Ja+b.
The empty d orbitals of the d0 cation V5+ can influence the
strength of the Cu–O . . . O–Cu exchange even when the Cu–O
. . . O angles are not large because the interaction between the
O 2p orbitals across each O . . . O contact can be modified
by empty d orbitals of V5+ [6]. Consequently, the spin lattice
relevant for α-CuV2O6 would be a two-dimensional (2D) rect-
angular lattice [see Fig. 11(c)] if the Jc and Ja+b exchanges are
comparable in strength, but would be a 1D chain otherwise.
Note that the CuO4 stack-chains lying in every plane parallel
to the ab plane are bridged by the VO4 tetrahedra to form
a layer of composition CuV2O6 [see Fig. 11(d)]. Thus, the

FIG. 11. Structural features of α-CuV2O6 associated with its
spin-exchange paths. (a) Two NN CuO4 planes along the c direction
defining the Jc exchange path; (b) two NN CuO4 planes along the
(a + b) direction defining the Ja+b exchange path, where the Cu2+

cations are bridged by two VO4 tetrahedra; (c) Four spin-exchange
paths of α-CuV2O6 presented in a unit cell box. (d) A perspective
view of a single CuV2O6 layer parallel to the ab-plane. Color coded
as in Fig. 1.
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FIG. 12. Relevant spin-exchange paths, Ja, Ja+b, Jb, and Jc, in
α-CuV2O6. Color coded as in Fig. 1. The exchange paths for Ja,
Ja+b, Jb, and Jc are represented by red, blue, orange, and cyan lines,
respectively.

exchange paths Ja+b are present within each CuV2O6 layer
while the paths Jc occur between two adjacent CuV2O6 layers.

To verify this point, we have carried out spin-polarized
DFT + U calculations for a set of eight collinear ordered spin
structures (Fig. S5) considering the spin-exchange paths Ja,
Ja+b, Jb, and Jc, which are the NN spin exchanges along the
a, (a + b), b, and c directions, respectively (see Table I for
the geometrical details). The relative energies obtained for
these states from the spin-polarized DFT calculations were
mapped onto the corresponding relative energies of the spin
Hamiltonian written in terms of the four spin-exchange paths,
Ja, Ja+b, Jb, and Jc highlighted in Fig. 12.

The results of the mapping analysis of the total energies
Table SIII [35] to Eqs. (S2) [35] are summarized in Table II.

Table II reveals that the Ja is weakly FM, Jb is weakly
AFM, while Ja+b and Jc are strongly AFM. Thus, as an-
ticipated from the examination of the crystal structure, Ja+b

and Jc, are much stronger than Ja and Jb with the Jc/Ja+b

ratio of ∼0.8. The Ja+b path lies within each CuV2O6 layer
[Fig. 11(d)]. In contrast, the Jc path occurs between two ad-
jacent CuV2O6 layers [Fig. 11(a)] . Thus, α-CuV2O6 must be
described by a 2D rectangular spin lattice defined by the two

TABLE II. Ja, Ja+b, Jb, and Jc spin exchange parameters for
α-CuV2O6 determined by the energy-mapping analysis based on the
DFT+U calculations using Ueff = 4, 5, and 6 eV. The Curie-Weiss
temperature θCW given in the last row has been calculated according
to θCW = −2/3 ×S(S + 1)

∑4
i=1 Ji.

Ueff = 4 eV 5 eV 6 eV

Spin exchange (meV)
Ja −0.23(13) −0.23(8) −0.29(6)
Ja+b 7.48(13) 6.06(9) 4.85(6)
Jb 0.18(11) 0.08(8) 0.10(6)
Jc 6.55(16) 5.15(10) 3.94(8)
Jc/Ja+b 0.88(4) 0.85(3) 0.81(3)
θCW/K −81 −64 −50

TABLE III. Magnetic moments on the Cu, V and O atoms in the
FM states of α-CuV2O6 from the DFT+U calculations.

μB/atom

Atom Ueff = 4 eV 5 eV 6 eV

Cu 0.68 0.71 0.74
V 0.03 0.03 0.02
O 0.04 0.04 0.03

repeat vectors along the c and (a + b) directions. Structurally,
however, the CuV2O6 layers lie in the ab plane.

The DFT + U calculations of the ordered spin states
show that they are all magnetic insulating states with the
magnetic moments essentially residing on the Cu2+ ions.
The moments amount to 0.69–0.74 μB (see Table III) in
good agreement with our experimental findings. Our magnetic
structure solution agrees with the second structure proposed
by Kikuchi et al. (see Ref. [28], Fig. 9 B). The moment
arrangement of our magnetic structure AFM7 (i.e., C-type
AFM) is depicted schematically in Fig. 13 (right-hand side).
Its calculated exchange energies with respect to the FM
structure are listed in Table SIII of the Supplemental Material
[35]. Also shown in Fig. 13 (left-hand side) is the alternative
magnetic structure (A-type AFM) proposed by Kikuchi et al..
Using the spin-exchange parameters of Table II, we find that
the total exchange energy of the C-type AFM structure is
more stable than the A-type AFM structure by 29.7, 23.6,
and 18.6 meV per 2a × 2b × 2c supercell for Ueff = 4,
5, and 6 eV, respectively, clearly showing that our magnetic
structure, AFM7, is energetically more favorable.

Two-dimensional spin lattice

The magnetic structure determination lends strong support
for the results of our DFT + U calculations, which suggest
a 2D rectangular spin lattice model. This result questions
all evaluations of the magnetic susceptibility data carried out
so far assuming a Heisenberg 1D chain with uniform AFM
NN spin-exchange interaction along the octahedral chains
[27–29]. We have therefore reanalyzed the magnetic suscepti-
bility data in terms of a spin S = 1/2 Heisenberg rectangular
spin lattice model. Using QMC calculations, we examined the
temperature dependence of the magnetic susceptibility and the
heat capacity for the spin S = 1/2 Heisenberg rectangular
spin lattice model as a function of the ratio α = Jy/Jx from
0.5 � α � 1 (see Supplemental Material [35] for more

FIG. 13. Schematic representations of the two magnetic struc-
tures of α-CuV2O6 proposed by Kikuchi et al. Left: Figure 9 A of
Ref. [28]. Right: Figure 9 B of Ref. [28]. The latter is identical to our
magnetic structure solution.
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FIG. 14. Magnetic susceptibility of a crystal of α-CuV2O6 mea-
sured with a field of 0.1 Tesla applied along the crystal needle (a axis
in P-1 setting). The (red) solid line is a fit of the magnetic suscepti-
bilities (T � 30 K) to the prediction of a spin S = 1/2 Heisenberg
rectangular lattice with spin exchange parameters given in the text. In
addition to the spin susceptibility, according to Eq. (2) a temperature-
independent susceptibility χ0 = 130(2) × 10−6cm3/mol to account
for the diamagnetic susceptibilities of the electrons in the closed
electron shells and van Vleck contributions was added [10]. The blue
dashed line shows the theoretical susceptibility of a spin S = 1/2
AFM Heisenberg chain with uniform NN exchange interaction of
90 ± 3 K using the same g factor [49].

details). The results for six discrete ratios of α are subse-
quently fitted to a Padé approximant, adopting the procedure
described in detail in Ref. [49]. The Padé coefficients for the
discrete α values were fitted to a fourth-degree polynomial.
This enables continuous interpolation of the anisotropy ratio
α when fitting experimental data. Also taking a temperature
independent susceptibility and a Curie-Weiss-type impurity
term into account, we fit the experimental susceptibility data
using the equation

χmol(T ) = (1 − ximp) χ∗
sq(α, g, T )

+ ximpCimp/(T − �) + χ0, (2)

where the first term on the right-hand side represents the
susceptibility of the rectangular model including interplanar
coupling in a mean-field approach (see below), and the second
and third terms account for paramagnetic impurities and a
temperature independent susceptibility, respectively. x is the
fraction of paramagnetic impurities. Figure 14 shows the fit
of the magnetic susceptibility of α-CuV2O6 with field aligned
along [100].

Using g[100] = 2.297(2), close to the value observed in the
ESR experiments (see Figs. S7 and S8 in the Supplemental
Material [35]), the fits indicate the following parameters for
Ja+b and the ratio α:

Ja+b = 54.6(5)K,

Jc/Ja+b = 0.71(1),

in good agreement with the predictions from the DFT + U
calculations. The temperature-independent susceptibility χ0

amounts to

χ0 = 130(2) × 10−6cm3/mol,

somewhat larger than typically expected from the sum of the
diamagnetic and van Vleck contributions [10].

Long-range AFM order in α-CuV2O6 takes place at 22.4 K
due to interplanar spin exchange coupling. When fitting the
experimental susceptibilities to Eq. (2), in addition to the ratio
α and the g factor, a weak interplanar exchange interaction,
Jinter, was considered by a mean-field approach according to

χ∗
sq(α, g, T ) = χsq(α, g, T )/

[
1 + χsq(α, g, T )

× (zinterJinter )
/(

NAg2μ2
B

)]
,

with zinter being the number of neighboring moments seen by
a Cu moment in an adjacent plane. Jinter represents the spin-
exchange interaction between planes and NA is Avogadro’s
constant [50]. Commonly, one uses the product zinterJinter,
representing an effective interplanar coupling strength which,
according to the fits, amounted to

zJinter = 2.9(1) K(≡0.25(1) meV).

The interplanar spin-exchange parameters are given by Ja and
Jb with z = 2 neighbors for each. Taking the values for Ja and
Jb from Table II for Ueff = 6 eV, the interplanar spin exchange
adds up to 0.38 meV, consistent with this finding.

VI. SUMMARY AND CONCLUSION

α-CuV2O6 has previously been analyzed in terms of a
1D AFM Heisenberg spin S = 1/2 model with uniform NN
spin-exchange interaction. The results presented here clearly
reveal that α-CuV2O6 rather constitutes a 2D spin S = 1/2
Heisenberg rectangular lattice with a spin-exchange ratio of
Jc/Ja+b ∼ 0.7. The spin exchange along the infinite octahe-
dral chains propagating along a, which had been regarded
as dominant and AFM in all previous studies, is negligi-
bly weak. This finding reflects the fact that any Cu–O–Cu
spin exchange is negligible unless both Cu–O bonds lie in
the CuO4 planes containing the magnetic orbitals of the
Cu2+ ions. According to our heat capacity, magnetization,
and neutron-diffraction measurements, α-CuV2O6 undergoes
long-range AFM order below ∼22.4 K to a C-type AFM
structure. The magnetic moments on the Cu ions are re-
duced and amount to ∼0.66 μB. The crystal structure ex-
hibits noticeable magnetoelastic coupling (see Figs. S2 and
S3 in the Supplemental Material [35]) when AFM order
sets in. α-CuV2O6 constitutes a striking example where the
combination of ab initio and model-based calculations and
experimental data are decisive for a conclusive assignment
of the correct spin lattice of a low-dimensional quantum
antiferromagnet.
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