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Effect of curvature on the eigenstates of magnetic skyrmions
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Spectrum of spin eigenmodes localized on a ferromagnetic skyrmion pinned by a geometrical defect (bump)
of magnetic films is studied theoretically. By means of direct numerical solution of the corresponding eigenvalue
problem and finite element micromagnetic simulations we demonstrate that the curvature can induce localized
modes with higher azimuthal and radial quantum numbers, which are absent for planar skyrmions (for the same
parameters). The eigenfrequencies of all modes, except the breathing and gyromodes decreases with increasing
curvature. Due to the translational symmetry break, the zero translational mode of the skyrmion gains a finite
frequency and forms the gyromode, which describes the uniform rotation of skyrmions around the equilibrium
position. To treat the gyromotion analytically we developed a Thiele-like collective variable approach. We show
that Néel skyrmions in curvilinear films experience a driving force originating from the gradient of the mean
curvature. The gyrofrequency of the pinned skyrmion is proportional to the second derivative of the mean
curvature at the point of equilibrium.
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I. INTRODUCTION

Nowadays, magnetic skyrmions [1–5] are the subject of
extensive studies. This can be explained by the fundamental
interest in the physics of topological solitons [6], by the
feasibility to use single skyrmions as possible bit carriers in
various memory and logic devices [4,5,7–14], and also due to
the ability to realize skyrmion lattices [15–19] with possible
applications in devices relying on the topological Hall effect
[20–23].

Introducing curvature by bending magnetic thin film the
properties of magnetic skyrmions is changed. The majority of
the new effects related to surface curvature can be explained
in terms of the effective magnetic interactions caused by
locally curved geometries: (i) curvilinear geometry-induced
effective anisotropy and (ii) curvilinear geometry-induced
effective Dzyaloshinskii-Moriya interaction (DMI) [24–26].
This effective DMI emerges as an antisymmetric part of
the common isotropic exchange in a curvilinear frame of
reference which follows the surface. The transition into the
curvilinear frame of reference is not just a mathematical
trick, but is physically conditioned by the presence of the
magnetic interactions determined by the film geometry, e.g.,
the uniaxial anisotropy whose axis follows the surface normal,
or intrinsic, DMI of the surface type [27–29]. A convincing
example of curvature-induced DMI effect is the stabilization
of ferromagnetic skyrmions on a curvilinear shell free of
intrinsic DMI [30,31].

*volodymyr.kravchuk@kit.edu

Previously it was reported [32] that a local curvature
(bump) of the film can create attracting as well as repulsing
potentials for skyrmions. In the case of attraction the pinned
skyrmion can posses a multiplet of states and the regular
arrangement of the bumps will result in an artificial skyrmion
lattice as the ground state of the system [32]. These interesting
findings can be considered for applications. The present paper
is a continuation of the static study presented in Ref. [32]
and is focused on the linear dynamics of skyrmions pinned
on bumps.

Here, we report on the study of magnon eigenexcitations in
ferromagnetic skyrmions pinned on geometrical defects with
rotational symmetry. Three different methods are used. (i) We
formulate and solve numerically the eigenvalue problem for
a skyrmion on a curvilinear bump. This is the generalization
of the previously developed analysis in Ref. [33] for the
case of planar films. (ii) We perform full-scale finite ele-
ment micromagnetic simulations using our code TETRAMAG

[34]. (iii) We generalize the Thiele equation for the case
of a ferromagnetic topological soliton on a curvilinear film.
The generalized equation keeps the form of the common
Thiele equation but the gyrovector follows the surface normal.
The gyrovector amplitude approaches its planar value in the
limited case when the skyrmion radius is much smaller as
compared to the curvature radii. The curvature-induced driv-
ing force proportional to the gradient of the mean curvature
appears for the case of Néel skyrmions. This effect takes place
due to the curvilinear geometry-induced effective DMI. It is
analogous to the curvature-induced domain walls motion in
curvilinear wires [35,36]. We utilize the generalized Thiele
equation to obtain the analytical expression for the gyromode
of a small-radius Néel skyrmion.
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The paper is organized in as follows. In Sec. II we intro-
duce the Hamiltonian of the system and discuss the magnetic
interactions which are taken into account. In Sec. III we obtain
the static solution for a skyrmion on a curvilinear defect
of the rotational symmetry (bump) and compare it to the
micromagnetic simulations. In Sec. IV we formulate and solve
numerically the eigenvalue problem for spin waves excited
over the skyrmion pinned on a bump. In Sec. V we utilize the
generalized Thiele equation to derive the analytical expression
for the gyromode eigenfrequency. In Sec. VI we summarize
our results. In Appendix A we list the eigenfunctions of the
localized eigenmodes obtained in Sec. IV. In Appendix B we
generalize the Thiele equation for the case of a curvilinear
shell. In Appendix C we provide details of the micromagnetic
simulations.

II. MODEL

The magnetic medium assumed to be a thin film of a chiral
ferromagnet with perpendicular easy-axial anisotropy can be
modeled by the following energy functional:

E = L
∫ [

AEx + Ku
(
1 − m2

n

) + DED

]
dS, (1)

where L is the film thickness and the integration is performed
over the film area. The first term of the integrand is the ex-
change energy density with Ex = ∑

i=x,y,z(∂im)2, with A being
the exchange constant. Here m = M/Ms is the unit magneti-
zation vector with Ms being the saturation magnetization. The
second term is the easy-normal anisotropy with Ku > 0 and
mn = m · n is the normal magnetization component with n
being the unit normal to the surface. The exchange-anisotropy
competition results in the magnetic length � = √

A/Ku, deter-
mining the characteristic lengthscale of the system (on which
noncollinear magnetic structures can form). The last term in
Eq. (1) represents the Dzyaloshinskii-Moriya interaction with
ED = mn∇ · m − m · ∇mn. Such a kind of DMI originates
from the inversion symmetry breaking at the film interface;
it is typical for ultrathin films [27–29] or bilayers [37], and
can result in formation of Néel (hedgehog) skyrmions [8,38].
The magnetostatic contribution is not included explicitly into
our model since, in ultrathin films, it can be reduced as the
renormalization of the anisotropy Ku → Keff = Ku − 2πM2

s
[39–41], leading to an effective anisotropy constant. In Eq. (1)
it is assumed that the magnetization profile is uniform along
the direction of the normal to the surface. The magnetiza-
tion dynamics is described by the Landau-Lifshitz-Gilbert
equation

∂t m = γ0

Ms

[
m × δE

δm

]
+ η[m × ∂t m], (2)

where γ0 is gyromagnetic ratio and η is the Gilbert damping.
Our model system is a magnetic film with a curvilinear

defect of rotational symmetry is considered. To this end
we describe our film as a surface of revolution σ(s, χ ) =
r(s)(x̂ cos χ + ŷ sin χ ) + z(s)ẑ. Here χ ∈ [0, 2π ) is the az-
imuthal angle and s � 0 is the radial distance along the
surface. The pair of functions [42] determine the shape of
the surface as shown in Fig. 1(d): r(s) and z(s) denote the
distance to the point of the surface with coordinate s from the
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FIG. 1. Skyrmion states of Gaußian bumps (4) obtained for
various bump amplitudes A = −2, 5, 15 and fixed width r0 = 8 and
dimensionless DMI constant d = 0.98. (a) Stable skyrmion profile
	(s) obtained for the bump with A = 5 by means of numerical solu-
tion of Eq. (3) (solid line) and micromagnetic simulations (green hol-
low dots) compared to the skyrmion profile on the planar film (dashed
line). (a′) The magnetization profile obtained from micromagnetic
simulations. (b) and (b′) illustrate the cases when the bump generates
a repulsive potential resulting in the skyrmion displacement from
the central point. The origin of the pinning/repulsive potentials is
qualitatively sketched on inset (c): in comparison to the planar case
(A = 0), the magnetization inside the dashed oval is more uniform
(costs less exchange energy) and less uniform (costs more exchange
energy) for the cases A > 0 and A < 0, respectively. Arrows in (a′),
(b), (b′), and (c) show the magnetization. Panel (d) shows the bump
profile, the geometrical definition of the parameter s, and functions
r(s), z(s).

axis of revolution ẑ and from the xy-plane, respectively. The
curvilinear properties of the surface σ are represented by the
principal curvatures k1 = z′′/r′, k2 = z′/r. The prime denotes
the derivatives with respect to s throughout the entire paper.
Note that k1(0) = k2(0) = z′′(0).
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FIG. 2. Skyrmion radius as a function of the bump amplitudes
for several different bump widths. The solid and dashed parts of the
lines correspond to the stable and unstable regimes, respectively. The
skyrmion radius rs is defined by the equation 	(rs) = π/2, where
the skyrmion profile is obtained by means of numerical solutions of
Eq. (3).

III. STATIC SKYRMIONS

Utilizing the constraint |m| = 1 by means of the angular
parametrization m = sin θ (ŝ cos φ + χ̂ sin φ) + n̂ cos θ with
n = [ŝ × χ̂] being the unit normal, one can show that Eq. (2)
has the static skyrmion solution in form of θ = 	(s) for φ =
� = 0. The skyrmion profile is determined by the following
equation [32]:

∇2
s 	 − sin 	 cos 	
 + r′

r
sin2 	(d − 2k2) = H′, (3)

where, d = D/
√

AKu is the dimensionless DMI constant,
H = k1 + k2 is the mean curvature, and 
 = 1 + r−2 − 2k2

2 +
dH. In Eq. (3) and in the following all distances are measured
in units of the magnetic length �. The radial part of the
Laplace operator reads as ∇2

s f = r−1(r f ′)′. Equation (3) is
solved with boundary conditions 	(0) = π , 	(∞) = 0. Note
that these boundary conditions correspond to the case of a
relatively small curvature, when the multiplet of states are not
allowed for the skyrmions [32]. Only singlet skyrmion states
are therefore considered in this paper.

An example of a skyrmion profile generated by Eq. (3) for
the case of a Gaussian bump

z = Ae−r2/

(
2r2

0

)
(4)

is shown in Fig. 1(a). As one may note, the skyrmion pinned
on the bump has lager radius as compared to the planar case
for the same intrinsic DMI and other material parameters.
This effect can be interpreted as a result of an enhanced total
DMI due to the curvature-induced effective DMI [24,25,30].
For the case A < 0 (concavity), the curvature-induced DMI
changes its sign decreasing the total DMI. This in turn de-
creases the skyrmion radius, see Fig. 1(b) for A = −2 and
Fig. 2. With further increasing the negative amplitude of
the concavity the intrinsic DMI is fully compensated by the
curvature induced DMI and the skyrmion solution collapses
to a point singularity. This effect was described previously for
skyrmions on spherical shells [30].

For a positive DMI constant, the curvature-induced effec-
tive DMI enhances the intrinsic DMI resulting in the skyrmion
radius increase, see Fig. 2. For d < 4/π , a broad range of
amplitudes 0 < A < Amax(r0, d ) exists, for which the stable
solution is a skyrmion centered on the bump (see Fig. 3 in
Ref. [32], which shows the diagram of skyrmion states on
a Gaussian bump). For small negative A values, the center
point of the bump becomes an unstable equilibrium position
for the skyrmions. This instability effect originates from the
exchange interaction, as qualitatively explained in Fig. 1(c).
Namely, the spatial deformation of the film can reduce, as well
as enlarge, the spatial gradients of the magnetization.

Skyrmions can be again stabilized on the bump center
for large negative A values. However, in this case several
skyrmion solutions (multiplet) may appear, e.g., a doublet
with small and large skyrmion radii, as reported previously in
Ref. [32]. Alternatively, to stabilize skyrmions on the bump
with negative amplitude (concave), one has to consider a
negative DMI constant. This changes the skyrmion helicity to
� = π and reverts the energies of the cases with A > 0 and
A < 0 shown in Fig. 1(c).

If a large-radius skyrmion is centered on the bump, the
magnetization is not uniform in the skyrmion central area.
This is because the magnetization tends to align to the normal
direction due to the easy-normal anisotropy. This is in contrast
to the planar case. With the increase of the amplitude A,
the magnetization nonuniformity increases resulting in an
increase of the exchange energy. Finally, for A > Amax the
central equilibrium becomes unstable and the skyrmion shifts
to the side of the bump, as shown in Fig. 1(b′). This is
in line with the previous predictions [32]. So far from the
Figs. 1(a′), 1(b), and 1(b′) we can conclude that the theoretical
predictions and the full-scale finite element micromagnetic
simulations are in good agreement. For the technical details
of the simulations see Appendix C.

IV. SPECTRUM EVALUATION

In the following let us consider an equilibrium skyrmion
state centered on the bump. To study the spectrum of its linear
excitations, we introduce small deviations in ϑ and ϕ: θ =
	 + ϑ , φ = � + ϕ/ sin 	. For the case of zero damping η =
0, Eq. (2) can be linearized with respect to the excitations and
results in {

∂τϕ = −∇2ϑ + U1ϑ + W ∂χϕ,

−∂τϑ = −∇2ϕ + U2ϕ − W ∂χϑ.
(5)

The dimensionless time is introduced as τ = t�0, where
�0 = 2γ0Ku/Ms. The Laplace operator has the form ∇2 =
∇2

s + r−2∂2
χχ and potentials have the following expressions

[32]:

U1 = cos 2	
 − r′

r
sin 2	(d − 2k2),

U2 = cos2 	
 − 	′2 + k2
2 − k2

1 − 	′(d − 2k1)

− r′

r
sin 	 cos 	(d − 2k2),

W = 2
r′

r2
cos 	 − 1

r
sin 	(d − 2k2). (6)
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FIG. 3. Eigenfrequencies of the localized eigenstates as functions of the bump amplitude A are obtained by means of numerical solution
of EVP (7) for the Gaussian bump (4) with constant width r0 = 8 and are shown by lines. The markers show the eigenfrequencies obtained by
means of micromagnetic simulations. The square-shaped markers correspond to the simulations with the full-scale magnetostatics taken into
account. The value of dimensionless DMI constant is d = 0.98. The quasinormal and skyrmion equilibrium states obtained from Eq. (3) are
shown on panels (a′) and (b′) for a particular bump height A = 5. The magnon excitation frequencies of the quasinormal and skyrmion states
are summarized in (a) and (b) in function of the bump amplitude. Inset (c) is focused to the gyromode (μ = 1). The thin lines are eigenstate
solutions whose functions f and g have a node along the radial coordinate s, see Fig. 5. The gray-shadowed rectangles denote the ranges of
bump amplitudes (A < 0 and A > Amax ≈ 13.77) for which the bump center is not a stable equilibrium position of the skyrmion.

The solution of Eq. (5) is ϑ = f (s) cos(ωτ + μχ + η), ϕ =
g(s) sin(ωτ + μχ + η), where μ ∈ Z is the azimuthal wave
number and η is an arbitrary phase. The eigenfrequencies ω

and the corresponding eigenfunctions f , g are determined by
the following generalized eigenvalue problem (EVP):

Ĥψ = ωσ̂1ψ. (7)

Here ψ = ( f , g)T,

Ĥ =
(

−∇2
s + μ2

r2 + U1 μW

μW −∇2
s + μ2

r2 + U2

)
, (8)

and σ̂1 is the first Pauli matrix. In the limited case of a planar
film (k1 ≡ k2 ≡ 0 and r′ ≡ 1) the formulated eigenvalue prob-
lem coincides with that formulated previously in Ref. [33] for
planar skyrmions.

An example of numerical solution of EVP is shown in
Fig. 3. The eigenfunctions and their properties are listed in
Appendix A. To find out the influence of the curvature on
the magnon spectrum, Gaussian bumps with constant width r0

and varying bump amplitudes A have been considered. Only
spatially localized eigenstates are investigated. For the ground
state, which is the quasinormal magnetization, a number of
resonances located closely to the bottom edge of the magnon
continuum appears, see Fig. 3(a). The strong asymmetry of
the spectra with respect to the change of sign of A (and the
sign of H) is related to the corresponding change of sign
of the effective curvature induced DMI. This effect is also
responsible for the strong asymmetry in the skyrmion radius,
see Fig. 1 and the discussion above. For more details about
the influence of DMI on the magnon spectra see Ref. [43].
In the planar thin-film limit A → 0 all localized states with
μ 
= −1 disappear. At the specific point of A = 0 the coun-
terclockwise (CCW) mode μ = −1 transforms to the Kittel
mode with ω−1 = 1 and f = g = const. [44]. A close relation

of the CCW localized mode and Kittel mode was previously
indicated in Ref. [45].

The presence of the curvature significantly enriches the
spectrum of the localized magnon states, see Fig. 3(b). By
means of the comparison to the previously studied skyrmion
spectrum for a planar films, the following curvature-induced
effects can be distinguished. (i) First of all, it should be
noted that due to the breaking of the translation symmetry
the translational skyrmion mode (μ = 1) is transformed to
the gyromode with small but nonzero frequency ω1, see
Fig. 3(c). The cases ω1 > 0 and ω1 < 0 describe clockwise
and counterclockwise skyrmion gyrations, respectively. The
latter case corresponds to the repulsive effective potential or
in other words—to the unstable equilibrium position at the
bump center. (ii) With increasing curvature higher modes with
μ = ±2 (elliptic modes) and μ = 3 are generated. (iii) In
contrast to the planar case the additional quantization of the
localized modes in the radial direction is possible, see Fig. 5.
In Fig. 3, the corresponding eigenfrequencies are shown by
thin lines. (iv) Curvature leads to significant lowering of the
CCW mode with μ = −1, making feasible its experimental
study [45]. In part, the effect of the frequency lowering can be
attributed to the increase of the the skyrmion radius, see Fig. 2.
Previously it was shown [33,46] that the eigenfrequencies of
the localized skyrmion modes goes down with increase of
skyrmion radius.

V. COLLECTIVE VARIABLE APPROACH FOR
THE GYROMODE

Let us consider the low curvature limit 1 � |H|rs �
|K|r2

s , where K is the Gaussian curvature and rs is the
skyrmion radius defined as 	(rs) = π/2. In this particular
case the motion of the skyrmion can be described using
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the rigid particle assumption, modeling the curvature as a
perturbative potential that has no influence on the skyrmion
profile. In terms of the above-introduced dimensionless units
for the length and time, the corresponding Thiele equation
(see Appendix B for the derivation) reads as

[n × ∂τ R] = ∂E
∂R

+ η̄∂τ R, (9)

taking into account that the topological charge of the con-
sidered skyrmion on the plane is Ntop = −1. The topological
charge is a crucial quantity for the skyrmion dynamics in
terms of collective coordinates because it determines the am-
plitude of the gyrovector. One can show (see Appendix B) that
in the limit case of small curvature, the gyrovector amplitude
approaches its planar value, see Eq. (B19). Thus, the planar
topological charge can be used in this limit. The general-
ization of the skyrmion topological charge for an arbitrary
curvature is an open question. In Ref. [30], the degree Q of the
map σ �→ S2 realized by the unit field m on σ was proposed
for such a generalization. Although Q is an integer number
which is invariant with respect to the continuous deformation
of the magnetization, it is important to note that Q is not
reflecting the dynamical properties of skyrmions in terms of
the collective coordinates. This is reflected by Eq. (B5), see
also the discussion after Eq. (B12) in Appendix B.

The total energy of the system E = E/E0 is measured
in units of E0 = 8πAL, the position vector R = σ(X 1, X 2)
determines the skyrmion center, which has the curvilinear
coordinates X 1 and X 2 on the surface. In the considered small
curvature limit one can show that (see Appendix B)

E ≈ C H(X 1, X 2) + E0, (10)

where energy E0 is independent on the collective coordi-
nates (X 1, X 2). The constant C is determined by the equi-
librium skyrmion profile 	pl(s) for the case of a pla-
nar film, namely C = C1 + C2d , where constants C1 and
C2 have form C1 = 1

4

∫ ∞
0 [	pl(s) − sin 	pl(s) cos 	pl(s)]ds,

C2 = 1
4

∫ ∞
0 s sin2 	pl(s)ds. Note that both exchange and

DMI interactions make contribution to the first term in
Eq. (10). The normalized damping constant η̄ = C0η in Eq. (9)
is also determined by the planar skyrmion profile: C0 =
1
4

∫ ∞
0 [(∂s	pl)2 + s−2 sin2 	pl]s ds. Note that the energy ex-

pression (10) is correct for Néel skyrmions only. For the
case of a Bloch skyrmion one should take into account the
quadratic terms in the curvature, which are neglected in the
current study, see Appendix B 3 for details.

To handle Eq. (9), one should note that ∂τ R = gα∂τ X α

and ∂E
∂R = gα ∂E

∂X α , where gα = ∂ασ, α ∈ {1, 2} is the tangent
curvilinear basis and gα is the corresponding dual basis.

Applying Eqs. (9) and (10) for the surface of rotation
σ = σ(s, χ ), one can show that the trajectory of motion of
the skyrmion center s = s(χ ) is determined by the following
relation:

s(χ )∫
s0

ds′

r(s′)
= η̄(χ − χ0), (11)

where (s0, χ0) is the initial skyrmion position. In the vicinity
of the central point s = 0 the trajectory in Eq. (11) is ap-
proximated by a spiral s(χ ) ≈ s0eη̄(χ−χ0 ). The velocity of the

FIG. 4. Frequency of the skyrmion gyromotion in the vicinity of
the center of the low-amplitudes bumps in Eq. (4) for three different
bump radii are obtained in three different ways: (i) by means of
numerical solution of EVP in Eq. (7) for μ = 1 (solid lines), (ii) by
means of the collective variable approximation (13) (dashed lines),
and (iii) by means of micromagnetic simulations (markers). For all
cases d = 0.98 which results in C ≈ 1.556. The inset demonstrates
the slope in the point A = 0, the dashed line corresponds to the
approximation dωG/dA|A=0 ≈ 4C/r4

0 .

skyrmion therefore is

v = −CH′(s)

1 + η̄2

[
η̄

r′(s)

r(s)
ŝ + χ̂

]
. (12)

As it follows from Eq. (12), the skyrmion is immobile on
a surface with constant mean curvature (e.g., surface of a
sphere, minimal surface). The central point s = 0 is a station-
ary point which is stable (unstable) if H′′(0) > 0 [H′′(0) <

0]. This result supports the qualitative explanations of the
skyrmion stability shown in Fig. 1(c).

For zero damping the skyrmion rotates around the station-
ary point with constant frequency ωG = CH′(s0)/r(s0), which
is determined by the initial skyrmion displacement. Here the
positive frequency sign corresponds to the clockwise rotation.
In the limiting case of infinitesimal displacements s0 → 0,
the skyrmion gyration is described by the magnon mode with
μ = 1, which was discussed in the previous section. In this
case

ω1 = ωG ≈ CH′′(0). (13)

For the Gaussian bump (4) one has H′′(0) = 4A
r4

0
(1 + A2

r2
0

).
The corresponding comparison of the collective variable ap-
proach predictions in Eq. (13) for ωG, the numerical cal-
culations for ω1, and the gyromode frequencies from mi-
cromagnetic simulations for three different bump radii are
shown in Fig. 4. Please note the good agreement between
the collective coordinates and the EVP solutions. The small
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FIG. 5. Eigenfunctions of the localized modes shown in Fig. 3(b) for the bump amplitude A = 12. μ and ν denote the azimuthal and radial
quantum numbers, respectively.

deviation of the slopes dωG/dA|A=0 and dω1/dA|A=0, which
appear for small r0 can be explained by the fact that the
energy approximation (10), as well as the magnitude of
the gyrovector (B19) used in Eq. (9), were obtained under
the assumption that the metric is constant within the skyrmion
area. This approximation is violated if the skyrmion radius rs

is comparable to the bump width r0.

VI. CONCLUSION

We presented an analysis on the influence of the curvature
on the spectrum of localized magnon eigenmodes of ferro-
magnetic skyrmions. We demonstrated that the curvature in-
duces modes with higher azimuthal quantum numbers, which
are absent for skyrmions in planar films. Additionally, modes
with radial quantum numbers can appear for the skyrmions
pinned on a bump.

Interestingly, the translational mode of the skyrmion is
transformed into the gyromode by the curvature and has
nonzero frequency proportional to the second derivative of
the mean curvature at the bump center ωG ∝ H′′(0). For small
amplitude Gaußian bumbs (4) the following simple relation
is found: ωG ∝ A/r4

0 . We showed that these analytical esti-
mations can be obtained with the Thiele equation, which we
generalized for the case of skyrmions on an arbitrary curvilin-
ear shell. Furthermore, we demonstrated that Néel skyrmions
experience the curvature-induced driving force proportional to
the gradient of the mean curvature.
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APPENDIX A: EIGENFUNCTIONS

Some examples of eigenfunctions f (s) and g(s) of local-
ized eigenmodes are shown in Fig. 5. In contrast to the local-
ized modes of the planar skyrmion, the additional quantization
in radial direction (ν > 0) takes place for the skyrmion on a
bump.

Eigenfunctions f and g satisfy orthogonality condition (for
given μ)∫ ∞

0
[ fμ,ν (s)gμ,ν ′ (s) + fμ,ν ′ (s)gμ,ν (s)]r(s)ds = δν,ν ′ , (A1)

which is similar as for the case of a planar skyrmion [33].

APPENDIX B: CURVILINEAR GENERALIZATION OF
THIELE EQUATION

1. General three-dimensional case

Assume that magnetization m(r, t ) in some three-
dimensional (3D) space domain r can be presented in form
m = m(r, X 1(t ), X 2(t ), . . . , ) where X i(t ) are some collective
variables. Multiplying the Landau-Lifshitz equation (2) first
by ∂m/∂X i × (. . . ) then by m · (. . . ) and then integrating
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over the space domain r one obtains the well-known [47,48]
collective variable equation

Gi j∂t X
j = ∂E

∂X i
+ ηDi j∂t X

j, (B1)

where

Gi j = Ms

γ0

∫
r

m ·
(

∂m
∂X i

× ∂m
∂X j

)
dV, (B2a)

Di j = Ms

γ0

∫
r

∂m
∂X i

· ∂m
∂X j

dV, (B2b)

with dV being the volume element. Let us assume now that
there exists a curvilinear frame of reference {ξ 1, ξ 2, ξ 3} in r

such that the magnetization dynamics can be presented in the
form of a traveling wave

mi = mi(ξ 1 − X 1, ξ 2 − X 2, ξ 3 − X 3). (B3)

Here m = mig̃i, where g̃i = ∂ir is covariant (tangent) basis
[49] induced by the parametrization r = r(ξ 1, ξ 2, ξ 3). The
shortening ∂i = ∂ξ i is used here and below. Note that the
traveling-wave model formulated for the Cartesian coordi-
nates and for Cartesian magnetization components describes
only translations in 3D space and do not describe possible
soliton rotations. These last can be taken into account by
introducing a curvilinear frame of reference whose local basis
rotates together with the soliton.

Since the equation (B1) is derived in coordinate-
independent way, it keeps its form for any frame of reference.
The tensors (B2) now read

Gi j = Ms

γ0

∫
r

εklnmk∂im
l∂ jm

ndV, (B4a)

Di j = Ms

γ0

∫
r

g̃kl∂im
k∂ jm

ldV. (B4b)

Here g̃kl = g̃k · g̃l is the metric tensor and εkln = √|g̃|εkln is
the Levi-Civita tensor, with g̃ = det ||g̃i j || and εkln being the
Levi-Civita symbol. We also took into account that ∂X i mk =
−∂imk . It is important to note that derivatives in Eq. (B4) are
not covariant and for this reason generally

εklnmk∂im
l∂ jm

n 
= m · [∂im × ∂ jm]. (B5)

The equality in Eq. (B5) takes place only for Euclidian metric
when g̃kl are coordinate independent, e.g., for Cartesian frame
of reference.

Since tensor Gi j is by definition antisymmetric, one can
write Gi j = εi jkGk . By means of the gyrovector G = g̃kGk

one can rewrite Eq. (B1) in a common Thiele form

[∂t R × G] = ∂E

∂R
+ ηD∂t R. (B6)

Here we introduced the notation g̃i∂t X i = ∂t R, which defines
R as a vector of the soliton position

R = r(X 1, X 2, X 3). (B7)

We also introduced the notation

∂E

∂R
= g̃i ∂E

∂X i
, (B8)

which is consistent with Eq. (B7), here g̃i are vectors of the
dual basis. Indeed, using Eq. (B7) one can write ∂E/∂X i =
(∂E/∂R) · (∂R/∂X i ) = (∂E/∂R) · g̃i. Multiplying this equa-
tion by g̃i and using the identity a = g̃i(a · g̃i ) one obtains
Eq. (B8). The damping tensor is D = Di j g̃i ⊗ g̃ j [50]. Com-
ponents of the gyrovector can be expressed as follows [51]

Gi = 1
2εi jkG jk . (B9)

Note that all quantities in this equation generally depend on
X 1, X 2, X 3.

2. Thin curvilinear shell

Let us consider the space domain in form of curvilinear
shell of thickness L

r(ξ 1, ξ 2, ξ 3) = σ(ξ 1, ξ 2) + n(ξ 1, ξ 2)ξ 3, (B10)

where σ(ξ 1, ξ 2) is the central shell surface, ξ 3 ∈ [−L/2, L/2],
and n = g1 × g2/

√|g| is the unit normal to the surface.
Here gα = ∂ασ = limξ 3→0 g̃α is the covariant (tangent) ba-
sis on the surface. Here and below Greek indices take
values {1, 2}, while Latin indices take the values {1, 2, 3}.
g = det ||gαβ ||, with gαβ = gα · gβ being the surface metric
tensor.

Let magnetization in r satisfies the condition (B3) and does
not depend on ξ 3. Consequently, the total energy E does not
depend on X 3. In this case one can easily show that the Thiele
equation (B6) is fulfilled if X 3 ≡ 0 [52], i.e.,

R = σ(X 1, X 2). (B11)

Since magnetization does not depend on ξ 3, according to
Eqs. (B9) and (B4a) one has G = G3g̃3 = Gn, where G = G3

is the amplitude of the gyrovector

G = Ms

γ0

L√
|g(X 1, X 2)|

∫
σ

√
|g(ξ 1, ξ 2)|

∣∣∣∣∣∣
m1 m2 m3

∂1m1 ∂1m2 ∂1m3

∂2m1 ∂2m2 ∂2m3

∣∣∣∣∣∣ dS

+ (higher terms in L), (B12)

where dS = √|g|dξ 1dξ 2 is the element of the surface area.
For a constant magnetization (in the curvilinear frame of
reference), the integrand in Eq. (B12) vanishes as well as the
left-hand side of Eq. (B5). However, the right-hand side of
Eq. (B5) generally does not vanish, e.g., it is the Gaussian
curvature for the normal magnetization (m1 = m2 = 0, m3 =
1). The linear in L part of the dissipative tensor is D =
Dαβgα ⊗ gβ , where

Dαβ = Ms

γ0
L

∫
σ

(gμν∂αmμ∂βmν + ∂αm3∂βm3)dS. (B13)

Here we also utilized the independence of magnetization
on ξ 3.

If the basis vectors g1 and g2 are orthogonal then
one can introduce the angular parametrization for the
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magnetization:
√

g11m1 = sin θ cos φ,
√

g22m2 = sin θ sin φ,
and m3 = cos θ . In this case one obtains

G = Ms

γ0

L√
|g(X 1, X 2)|

∫
σ

√
|g(ξ 1, ξ 2)| G · dS, (B14a)

G = sin θ [∇θ × ∇φ]

+ sin θ sin φ cos φ

[
∇θ × ∇ ln

√
g11

g22

]

+ sin2 θ cos θ
[∇φ × (

cos2 φ∇ ln
√

g11

+ sin2 φ∇ ln
√

g22
)] + sin2θ cos θ sin φ cos φ

×[∇ ln
√

g11×∇ ln
√

g22], (B14b)

where ∇ = gα∂α is the surface del operator and dS = ndS.
For the case of the Euclidean (coordinate independent) metric
the expression (B14) transforms into the familiar [53,54]
formula

GE = Ms

γ0
L

∫
σ

sin θ [∇θ × ∇φ] · dS. (B15)

However, in general the case of the non-Euclidean metric the
amplitude of the gyrovector can deviate from the value of
Eq. (B15).

For angular parametrization the elements of the dissipative
tensor (B13) are as follows:

Dαβ = Ms

γ0

L

2

∫
σ

[
∂αθ∂βθ + sin2 θ

(
∂αφ∂βφ

+ cos2 φ ∂α ln
√

g11 ∂β ln
√

g11

+ sin2 φ ∂α ln
√

g22 ∂β ln
√

g22
)

− sin 2θ∂αθ
(
cos2 φ∂β ln

√
g11 + sin2 φ∂β ln

√
g22

)
− sin2 θ sin 2φ∂αφ∂β ln

√
g22

g11
+ (α ↔ β )

]
dS.

(B16)

For a Euclidean metric Eq. (B16) is reduced to the familiar
formula

DE
αβ = Ms

γ0
L

∫
σ

(∂αθ∂βθ + sin2 θ∂αφ∂βφ)dS. (B17)

3. Skyrmion in thin curvilinear shell

Let us assume that we were able to introduce an orthogonal
frame of reference {ξ 1, ξ 2} on the surface, such that the
skyrmion motion can be described by means of the following
Ansatz:

θ = 	pl

(√
g11(ξ 1 − X 1)2 + g22(ξ 2 − X 2)2

)
, (B18a)

φ = arctan
√

g22(ξ 2 − X 2)√
g11(ξ 1 − X 1)

+ φ0, (B18b)

where 	pl(r) is the skyrmion profile on a plane. The use of
the Ansatz (B18) means that we consider curvature as a small
perturbation, which does not change the skyrmion profile.

To obtain the value of the gyrovector G, one should sub-
stitute Eq. (B18) into Eq. (B14). If the size of the area of lo-
calization of the function 	pl(r)—the skyrmion radius rs—is

comparable to the typical lengthscale of change of the metric,
then one should expect the deviation of G from its planar
value. However, if the skyrmion radius is small, rs � 1/|H|
and rs � |H|/|K|, then one can assume that gαα (ξ 1, ξ 2) ≈
gαα (X 1, X 2) and ∂βgαα (ξ 1, ξ 2) ≈ ∂βgαα (X 1, X 2) within the
skyrmion core. In this case one can make a change of variables√

g11(ξ 1 − X 1) = r cos χ ,
√

g22(ξ 2 − X 2) = r sin χ in the in-
tegral

∫
σ

dS and utilize the spatial localization of the function
sin 	pl. Now, after the integration over χ in Eq. (B14a) all
terms in Eq. (B14b) but the first one are integrated out. Finally,
Eq. (B12) is reduced to Eq. (B15) and one obtains the same
result as for the planar case, namely,

G = Ms

γ0
L4πNtop, (B19)

with Ntop being topological charge of the planar skyrmion.
Using the same technique one obtains for the dissipative

tensor

Dαβ = Ms

γ0
L4π

[
C0gαβ + C2

(
�1

α1�
1
β1 + �2

α2�
2
β2

)]
, (B20)

where C0 = 1
4

∫ ∞
0 [(∂r	pl)2 + r−2 sin2 	pl]r dr, C2 =

1
4

∫ ∞
0 sin2 	plr dr, and �

γ

αβ denote the Christoffel symbol of
the second kind. Thus, for the surface with the non-Euclidean
metric the dissipative tensor is generally nondiagonal even
for a small-radius skyrmion. Note that in the limiting case
rs → 0 one has C0 → 1 and C2 → 0.

For the dimensionless time and coordinates introduced in
the main text, one writes Thiele Eq. (B6) in form (9) if the
gyrovector amplitude (B19) is used for Ntop = −1, and the
term with C2 is neglected in the damping tensor (B20). This
last corresponds to the assumption C2 � C0.

Let us estimate the curvature-induced corrections to the
energy of the skyrmion. To estimate the exchange energy
Ex = AL

∫
ExdS we use the previously derived [24] expres-

sion for the exchange energy density

Ex = [∇θ − �]2 + [sin θ (∇φ − �) − cos θ∂φ�]2. (B21)

Here � = gαbαβmβ

|| (φ). Where bαβ is the second fundamental

form and mβ

|| = mβ (θ = π/2) are the magnetization com-
ponents for the strictly tangential magnetization, namely,
m1

||(φ) = cos φ/
√

g11 and m2
||(φ) = sin φ/

√
g22, and � is the

vector of spin connection [24,55]. Using the Ansatz (B18) and
applying the same method as for derivation of the gyrovector,
one obtains

Ex = E0
x + 8πALC1H cos φ0 + O(H2, K, |�|2). (B22)

Here E0
x is the exchange energy of the planar skyrmion, H

and K are the mean and Gaussian curvatures, respectively, and

C1 = 1
4

∞∫
0

[	pl − sin 	pl cos 	pl]dr. Note that the curvature-

induced corrections are essentially different for Néel and
Bloch skyrmions: for a Bloch skyrmion (φ0 = ±π/2) the en-
ergy (B22) does not have the contribution linear in curvature.
To evaluate the quadratic corrections, one should introduce
the Riemann normal coordinates [56,57] centered on the
skyrmion. In this case, the spin connections are determined
only by the Gaussian curvature of the surface and not by the
curvature of the curvilinear frame of reference itself. Since
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we are interested in the dynamics of the Néel skyrmion, we
limit ourselves only with the main term in Eq. (B22) with
cos φ0 = 1.

Let us now consider the DMI energy ED = DL
∫

EDdS with
density [30,32]

ED = 2∂αθ mα
|| (φ) sin2 θ − H cos2 θ. (B23)

Applying the same procedure as for the exchange energy one
obtains

ED = E0
D + 8πDLC2H + const., (B24)

where constant C2 is determined above.
Within the used approximation the anisotropy energy of the

skyrmion is a constant independent of the skyrmion position.
Collecting now Eqs. (B22) and (B24), and passing to the di-
mensionless coordinates and curvature H = �H , one obtains
expression (10) for the normalized energy.

APPENDIX C: FINITE ELEMENT
MICROMAGNETIC SIMULATIONS

To support the theoretical predictions and numerical calcu-
lations presented in the paper we performed full-scale finite
element micromagnetic simulations. The static equilibrium
states of the skyrmions on the Gaussian bumps as well as
their excitations were obtained by the numerical integration of
the Landau-Lifshitz-Gilbert equation using our finite element
micromagnetic simulator TETRAMAG [34]. The following ma-
terial parameters were considered to mimic a Pt/Co/AlOx
layer structure: A = 1.6 × 10−11 J/m being the exchange con-
stant, μ0Ms = 1.38 T the saturation magnetization, and Ku =
1.3 × 106 J/m3 for the uniaxial anisotropy constant pointing
along the surface normal. The effective anisotropy constant
for the renormalized magnetostatic case was set to Keff =
Ku − 2πM2

s = 5.1 × 105 J/m3. The magnetic length is there-
fore � =

√
A/Keff = 5.6 nm.

To study the skyrmion excitations a Gaussian bump defined
by Eq. (4) with a thickness of 1 and 200 nm in diameter
was used. The bump amplitude and radius varies in the
simulations. The static skyrmion profiles were calculated
with a Gilbert damping α = 0.5, while the skyrmion dy-
namics is simulated with α = 0.02. The energy contribution
from the intrinsic DMI is implemented into our micromag-
netic simulator TETRAMAG in the following form: EDMI =
mn∇ · m − m · ∇mn with the corresponding effective field

HDMI = − 2D
MS

[n∇ · m − ∇(m · n)], where n is the surface
normal vector, m = M/Ms the unit magnetization vector, mn

the surface normal component of the magnetization vector
field, and D = 2.8 × 10−3 J/m2 (d = 0.98) being the DMI
constant.

Simulations with the full-scale magnetostatics were made
for the anisotropy and DMI constants Ku = 1.6 MJ/m3 and
D = 9.4 mJ/m2. The other material parameters are the same
as described above. This corresponds to the magnetic length
� = 1.67 nm and the quality factor Q = Ku/(2πM2

s ) = 8.6.
The simulated shell thickness was h = 0.5 nm. Keeping the
geometrical parameters A and r0 unchanged (in dimensionless
units) we significantly increase the total size of the simulated
sample.

The following fields have been used to excite the different
magnon modes of the skyrmion localized to the center of the
Gaussian bump.

(1) The skyrmion gyromotion (corresponding to the mode
with the azimuthal quantum number μ = 1) is excited by
applying an inhomogeneous external magnetic field B =
ẑB0xH(L −

√
x2 + y2)/L, L = 50 nm and B0 = 50 mT; the

H(•) is the Heaviside step function.
(2) The breathing mode (μ = 0) is excited with a uniform

magnetic field, B = ẑB0 applied for a time duration of about
150 ps and field strength of B0 = 50 mT.

(3) The CCW gyrotropic mode (μ = −1) was excited with
a uniform field B = x̂B0 applied for 200 ps and field strength
of B0 = 50 mT.

(4) The elliptical mode (μ = 2) was excited by
an inhomogeneous external magnetic field pulse B =
ẑB0 cos(2χ )H(L −

√
x2 + y2) applied for a time duration

of 200 ps and field strength of B0 = 50 mT.
(5) To achieve the excitation of modes with azimuthal

mode number μ = 3 we applied the following field pulse B =
ẑB0 cos(3χ )H(L −

√
x2 + y2)

√
x2 + y2/L for a time period of

50 to 100 ps, depending on the bump amplitude and the fields
strength was set to B0 = 50 mT.

To determine the mode frequencies we performed a fast
Fourier transform of the magnetization of every single dis-
cretization node over a relatively long time interval (minimum
ten periods of simulations). The power spectra obtained from
the eigenvalue problem [Eq. (7)] and with the collective vari-
ables approach in Eq. (13) are in perfect agreement with that
calculated with the full-scale finite element micromagnetic
simulations.
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