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Weakly coupled Ising chains provide a condensed-matter realization of confinement. In these systems,
kinks and antikinks bind into mesons due to an attractive interaction potential that increases linearly with
the distance between the particles. While single mesons have been directly observed in experiments, the role
of the multiparticle continuum and bound states of mesons in the excitation spectrum is far less clear. Using
time-dependent density-matrix renormalization group methods, we study the dynamical structure factors of one-
and two-spin operators in a transverse-field two-leg Ising ladder in the ferromagnetic phase. The propagation of
time-dependent correlations and the two-spin excitation spectrum reveal the existence of interchain bound states,
which are absent in the one-spin dynamical structure factor. We also identify two-meson bound states that appear
at higher energies, above the thresholds of several two-meson continua.
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I. INTRODUCTION

Over the last few decades, the phenomenon of confinement
has attracted considerable interest in both theoretical and
experimental condensed-matter physics [1–27]. Akin to quark
confinement via the strong force in quantum chromodynam-
ics (QCD), the elementary excitations of some quasi-one-
dimensional magnets form bound states due to interacting po-
tentials that increase with the distance between the particles.
As a consequence, free particles cannot be directly observed
in the excitation spectrum. Well-established examples include
the ferromagnetic Ising chain in a weak longitudinal field,
the antiferromagnetic XXZ chain with an easy-axis staggered
field [4–8], and weakly coupled chains [12–23]. In the Ising
chain, for instance, the elementary excitations in the ordered
phase are kinks in the magnetization profile, and the external
longitudinal field creates a linear potential that binds kinks
and antikinks. We shall refer to such bound states as mesons,
in analogy with bound states of a quark and an antiquark in
QCD. Even in the absence of an external magnetic field, a
finite interchain coupling plays the role of the confining po-
tential [13]. In addition, confined states arise in the transverse-
field Ising chain with long-range interactions [8,24–26] and in
1+1 dimensional quantum electrodynamics [28,29].

Hallmark signatures of confinement can be observed in
dynamical properties of quantum many-body systems in real
time as well as in the frequency domain. In the real-time do-
main, even a weak confining potential has been shown to lead
to dramatic changes in quench dynamics, such as nonthermal-
ization, strong suppression of the light cone that bounds the
propagation of correlations, and multifrequency oscillations in
the entanglement entropy and one-point functions [6–11]. The
time evolution after quantum quenches can be experimentally
probed in quantum simulators, see for example Refs. [30–34].

Recently, confinement dynamics was realized in trapped ions
that simulate an Ising-like chain with long-range interac-
tions [26] and on an IBM quantum computer [35]. In the
frequency domain, confinement in magnetic systems can be
inferred from the analysis of dynamical structure factors
(DSFs), which relate to inelastic scattering cross sections and
absorption spectra directly measured in experiments. From
this perspective, the formation of mesons is manifested as a
discrete spectrum that contrasts with the two-particle contin-
uum of the unconfined system [1]. Evidence of confinement
was observed in quasi-one-dimensional compounds such as
CaCu2Co3 [14], CoNb2O6 [15,16], BaCo2V2O8 [18–20],
SrCo2V2O8 [21,22], and Yb2Pt2Pb [23].

In all these materials, the confinement of the elementary
excitations is an intrinsic property that arises due to the inter-
chain coupling. Being weak, the interchain coupling is often
treated within a mean-field approximation as an effective
magnetic field proportional to the local magnetization [13].
This approximation leaves out the interesting possibility of
multiparticle excitations where bound states form not only
between kinks within the same chain, but also between ad-
jacent chains. At weak coupling, such interchain bound states
can occur in transitions promoted by two-spin operators that
act on different chains simultaneously. While inelastic neutron
scattering is described by one-spin DSFs [14,15], excitations
associated with two-spin operators contribute to the cross
section in resonant inelastic x-ray scattering [36,37] and to
the optical conductivity below the Mott gap [38] measured by
terahertz spectroscopy [16,21].

In this paper, we investigate the formation of mesons and
multiparticle bound states in weakly coupled transverse-field
Ising chains beyond the mean-field approximation for the
interchain coupling. For this purpose, we analyze the DSFs
of one- and two-spin operators for a two-leg ladder in the
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ferromagnetic phase. Since the ladder model is nonintegrable,
we use numerical techniques to compute the physical quanti-
ties of interest. To determine the ground-state phase diagram
of the system, we apply the density-matrix renormalization
group (DMRG) [39] and truncated fermionic space approach
(TFSA) [40]. We also apply state-of-the-art time-dependent
density-matrix renormalization group (tDMRG) methods [41]
to compute the dynamical properties. We interpret our results
in terms of the semiclassical picture of massive particles
moving in the presence of a linear interaction potential. In
addition to the mesons observed in the dynamics of ferromag-
netic Ising chains, our high-resolution results show that the
two-leg Ising ladder harbors additional bound states that are
not allowed in a single chain due to the fermionic nature of the
kinks. Furthermore, we find peaks above two-meson continua
which we ascribe to two-meson bound states formed due to a
repulsive meson-meson interaction.

This paper is organized as follows. In Sec. II, we describe
the ground-state phase diagram of the two-leg Ising ladder.
In addition, we present a discussion of the quantum critical
line in terms of the scaling field theory. In Sec. III, we discuss
the semiclassical problem of two massive particles in a linear
potential. In Sec. IV, we present our tDMRG results for
three different DSFs that allow us to assess the role of intra-
and interchain bound states. Finally, we provide concluding
remarks in Sec. V.

II. MODEL AND PHASE DIAGRAM

The Hamiltonian of the ferromagnetic two-leg Ising ladder
in a transverse magnetic field is

H = −J

⎡
⎣∑

j,α

(
σ x

α, jσ
x
α, j+1 + hzσ

z
α, j

) + λ
∑

j

σ x
1, jσ

x
2, j

⎤
⎦, (1)

where σ x,z
α, j are Pauli spin operators acting on site j of leg

α = 1, 2, J is the intrachain exchange coupling, hzJ is the
transverse magnetic field, and λJ is the interchain coupling.
Throughout this paper, we assume λ, hz � 0 and set the
energy scale J = 1 in the numerical results.

For λ = 0, the system consists of two decoupled transverse
field Ising models (TFIMs). The TFIM is exactly solvable
by mapping, via a Jordan-Wigner transformation, to free
fermions with the dispersion relation [42]

ε(k) = 2J
√

(hz − cos k)2 + sin2 k. (2)

In this case, the model in Eq. (1) exhibits a Z2 × Z2 sym-
metry corresponding to an invariance under flipping all the
spins in the same chain, σ x

α, j �→ −σ x
α, j ∀ j. The ground-state

phase diagram for each decoupled chain is characterized by
two phases separated by a quantum critical point at hz = 1.
For hz < 1, the system is ferromagnetically ordered and the
ground state has a twofold degeneracy for each decoupled
chain. In this case, the symmetry is spontaneously broken
and the order parameter corresponds to the magnetization
along the longitudinal direction, 〈σ x

α, j〉 �= 0. On the other
hand, for hz > 1, the system is in the paramagnetic phase with
unbroken symmetry. A well-known extension of the TFIM
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FIG. 1. Ground-state phase diagram of the two-leg Ising ladder
as a function of the interchain coupling λ and the transverse magnetic
field hz. The filled circles are the DMRG points and the black solid
line, which connects those points, is the phase transition line sep-
arating the ferromagnetic phase (in yellow) from the paramagnetic
phase (in blue). The inset shows the fit of our numerical results in
the interval 0 � λ � 0.1 using λc(hz ) = A(hz − h0)β . The estimates
of the exponent β and the coefficient A are 1.8 and 1.7, respec-
tively. The solid green line is the field-theory prediction λc(hz ) =
1.89(hz − 1)7/4.

involves switching on a longitudinal field hx, in which case
the symmetry of the Hamiltonian is explicitly broken and
the ground state is unique for any hz. The evolution of the
elementary excitations on the hz-hx plane is complicated, but
there are no additional critical points [2,40,43].

The situation is quite different in the case of the lad-
der. Switching on the interchain coupling, λ �= 0, lowers the
symmetry from Z2 × Z2 to a single Z2. The limit λ � 1
is particularly simple, as the effective Hamiltonian in the
low-energy subspace is a single Ising chain with parallel spins
in each rung. In fact, the ground-state phase diagram of the
two-leg Ising ladder presents a phase transition line λc(hz )
in the Ising universality class, starting from the critical point
λ = 0, hz = 1. This quantum critical line separates a ferro-
magnetic from a paramagnetic phase on the whole hz-λ plane
[44]. Analogously to the TFIM, the remaining Z2 symmetry
is spontaneously broken in the ferromagnetic phase and the
ground state is twofold degenerate. Meanwhile, the symmetry
is preserved in the paramagnetic phase with a unique ground
state.

The quantum critical line can be accurately determined by
analyzing the scaling behavior of the entanglement entropy
[45]. Following the procedure reported in Ref. [45], we use
DMRG to obtain the finite-size estimates λc(hz, L), where L
is the length of the ladder with open boundary conditions.
To obtain λc(hz ) in the thermodynamic limit, we assume
that λc(hz, L) behaves as λc(hz, L) = λc(hz ) + a/L + b/L2.
We then estimate λc(hz ) from the fit of the numerical data
considering system sizes L = 40, 60, 80, 100, and L = 200.
The result for the critical line is shown in Fig. 1. Estimates
of critical transverse fields were obtained for the isotropic
(λ = 1) N-leg Ising ladders using the same method [46].
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Let us now discuss the model from the scaling field theory
point of view. For λ = 0 and hz = 1, the system can be
described by conformal field theory (CFT) [47]. In this case,
the CFT fixed point is a product of two Ising fixed points with
scaling fields 1α, εα, σα , with α = 1, 2 being the leg index,
corresponding to the identity, energy density, and spin density,
respectively. The respective conformal weights (h, h̄) of these
fields are (0,0), (1/2, 1/2), and (1/16, 1/16). In this context,
for |hz − 1| 	 1 and |λ| 	 1, the ladder can be described by
the following Euclidean action:

S = SCFT
1 + SCFT

2 + m

2π

∫
d2x(ε1 + ε2) + λ̃

∫
d2xσ1σ2,

(3)

where m = 2J (1 − hz ) is the mass and λ̃ = (2/s̄2)J7/4λ is the
rescaled interchain coupling, where s̄ = 21/12e−1/8A3/2 with
Glaisher’s constant A = 1.2824271291 . . . [48]. For conve-
nience, we define the dimensionless (renormalization-group
invariant) combination η ≡ λ̃4/7/|m|.

The spin-spin coupling in Eq. (3) was studied in Ref. [49].
The phase transition with both the mass term and the spin-spin
coupling can be captured in the field theory as predicted in
the context of the two-frequency sine-Gordon model [44]
and later analyzed in Refs. [50,51]. However, to the best
of our knowledge, this has not been studied from the point
of view of the coupled Ising field theory. Starting from the
paramagnetic phase with a given mass, say |m| = 1, one hits
the phase transition line (η = ηc) by increasing the interchain
coupling. In the paramagnetic phase with η < ηc, the ground
state is unique. The low-energy spectrum of a system with
finite volume R exhibits a mass gap with small exponential
corrections in R. At the critical point, the energy levels of the
finite-volume system scale with 1/R. Finally, for η > ηc in the
ferromagnetic phase, the ground state is twofold degenerate
up to an exponentially small energy splitting. The evolution
of the finite-size spectrum with increasing η can be analyzed
using the tensor product extension of the TFSA [40]. Using
TFSA, we have obtained λ̃c ≈ 0.61 for |m| = 1. In addition,
we are able to identify the low-lying spectrum of the Ising
fixed point (see Fig. 2).

Based on the above scaling field theory arguments, one
can fit the DMRG data using λc(hz ) = A(hz − h0)β . The exact
critical field at λ = 0 is h0 = 1. The exact exponent β =
7/4 is fixed by the scaling dimensions of the fields, via the
relation with the renormalization-group-invariant parameter
η. In addition, using the rescaled critical coupling λ̃c ≈ 0.62
for |m| = 1, we extract the coefficient ATFSA ≈ 1.89 from
TFSA data. By performing a fit of the DMRG results using the
interval λ ∈ [0.025, 0.09], we obtain βDMRG ≈ 1.8, ADMRG ≈
1.7 and hDMRG

0 ≈ 0.99 (see the inset in Fig. 1). We note
that the fitted exponent varies by about 5% and the prefactor
by about 10% if we choose different intervals in the range
λ ∈ [0, 0.1]. Since the values of hz − 1 used here are not
exceptionally small, we believe that more robust and precise
fitting parameters could be obtained by incorporating higher-
order corrections, associated with irrelevant operators in the
field theory, to the expression for λc(hz ). Note that in the
vicinity of the Ising critical point, |hz − 1| 	 1, our results
show remarkable agreement with the field-theory prediction.
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FIG. 2. The rescaled energy gaps R(ei − e0 )/(2π ) at |m| = 1
and λ̃ = 0.61 against the dimensionless volume |m|R from TFSA.
The dashed horizontal lines show the weights of low-lying Ising
CFT states. Here L−n are Virasoro generators. Note that for larger
volumes and higher states, the TFSA is less reliable due to truncation
errors [52–55]. The lines with slopes are related to the high-energy
spectrum and they do not play any role in the phase transition.

III. SEMICLASSICAL SOLUTION

We now focus on the low-energy excitations of the ferro-
magnetic two-leg Ising ladder in the regime of weak inter-
chain coupling. For comparison with the tDMRG results in
Sec. IV, in the following we discuss the confinement effect
based on the mean-field theory picture and the analogy of the
Ising ladder with the TFIM in a weak longitudinal magnetic
field.

Let us recall the basic phenomenology of confinement
in the Ising chain [1,2,4]. In the absence of a longitudinal
field, the ferromagnetic Ising chain has two degenerate ground
states, and the elementary excitations of the system are free
domain walls (kinks) interpolating between them. For small
but finite hx, the degeneracy is broken and an energy-density
difference between the two ground states is observed, so that
one of them becomes a “false” one. If we imagine a two-kink
configuration on a “true” ground-state background, it is clear
that it acquires additional energy proportional to the distance
between the kinks, which then become confined and form
mesons.

In the case of two weakly coupled chains, one can treat one
chain as a source of a longitudinal magnetic field on the other:
for nonoverlapping segments of ground-state configurations,
the system is in a “false” ground state. Thus, kink confinement
can take place in two different ways, as illustrated in Fig. 3.
The energy cost of the region with opposite magnetization for
spins on the same rung is proportional to the distance between
either a kink and an antikink in the same chain [see Fig. 3(a)],
or between two kinks in different chains [see Fig. 3(b)]. The
former case of an intrachain bound state between a kink and an
antikink is the familiar meson [2]. We shall refer to the latter
case as an interchain bound state. Note that, in contrast with
mesons, the interchain bound states are topologically charged
as they interpolate between two different ground states.
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(a)

λ

x

(b)

λ

x

FIG. 3. Schematic representation of the (a) intrachain and (b) in-
terchain mesons on the ferromagnetic two-leg Ising ladder. An
effective potential proportional to the separation x between the kinks
is induced in the region where the spins are aligned along opposite
directions.

The system can now be modeled by a mean-field Hamil-
tonian in analogy with the TFIM in a longitudinal field. We
write the effective, mean-field two-kink Hamiltonian as [2]

H2k = ε(k1) + ε(k2) + χ |x2 − x1|, (4)

where the dispersions ε(ki ) are given in Eq. (2), x1,2 are the
positions of the kinks, and χ = 2λ〈σ x〉2 [56], with 〈σ x〉 =
(1 − h2

z )1/8 being the order parameter of the ferromagnetic
TFIM [48].

The Hamiltonian in Eq. (4) was studied in detail in Ref. [4].
In particular, one can use Bohr-Sommerfeld semiclassical
quantization to obtain the dispersion relations of the bound
states. Using the conservation of the total meson momentum
P = k1 + k2, the problem is reduced to solving the equations
[2,4]

2E (P, ν)k −
∫ k

−k
d p�(p, P) = πχ

(
ν + 1

2

)
,

�(k, P) = E (P, ν), (5)

where �(k, P) = ε(k + P/2) + ε(k − P/2) and k ∈ [0, π ].
For mesons, i.e., intrachain bound states, the quantum number
ν must be an odd integer to obtain antisymmetric wave func-
tions with respect to exchanging the positions of the kinks.
This constraint stems from the Pauli exclusion principle for
kinks in the same chain. We denote the corresponding me-
son dispersion relations by En(P) = E (P, ν = 2n − 1), with
n = 1, 2, 3, . . . . By contrast, there is no such constraint for
interchain bound states, in which the kinks carry different
leg indices, and symmetric wave functions are allowed. Thus,
the quantum number ν can assume any integer values. The
dispersion relations for interchain bound states are denoted
by E ′

n(P) = E (P, ν = n − 1), with n = 1, 2, 3, . . . . Note that
E ′

2n(P) = En(P), which means that, within the mean-field
approximation of Eq. (4), interchain bound states with an-
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FIG. 4. Finite-size energy gaps in the ferromagnetic phase for
λ̃ = 0.03 from TFSA. The ground state is doubly degenerate (hori-
zontal lines at 0 energy). The lines with fitted slope 0.111 correspond
to the two degenerate false vacua. Using the analytical energy density
χ = 2λs̄2 ≈ 0.112, we also indicate the meson masses obtained from
the semiclassical approximation mn ≈ 2m − znχ

2/3.

tisymmetric wave functions are degenerate with intrachain
bound states.

The integral equation in Eqs. (5) can be solved numerically,
giving the dispersion relations En(P) and E ′

n(P). The mini-
mum of each dispersion determines the corresponding particle
masses, which we denote by mn = En(P = 0) for mesons
and m′

n = E ′
n(P = 0) for interchain bound states. The lightest

bound state of all is the first interchain one, with mass m′
1. We

have checked the predictions of the semiclassical solution by
calculating the meson masses using the TFSA. The procedure
is the same as for the Ising model in a longitudinal field [1,2].
We report the finite size spectrum in the case of λ̃ = 0.03 in
the ferromagnetic phase in Fig. 4. At small χ and for energies
near 2m, as considered in this figure, the meson masses are
well approximated by mn = 2m − znχ

2/3, where zn is the nth
zero of the Airy function. Better approximations can be used
in the general case, see Refs. [2,3,5,57].

Some comments are in order. For low energies, Eqs. (5) are
only valid for sufficiently small values of the total momentum.
It breaks down when the second derivative ∂2�(k, P)/∂k2 at
k = 0 becomes negative and the classically allowed regions no
longer correspond to the domain of integration used in Eqs. (5)
[4]. Moreover, for large values of ν there is no solution to
Eqs. (5) because the total momentum cannot be arbitrarily
large semiclassically [6]. To circumvent these problems, we
consider solutions of the two-body problem on a lattice de-
scribed by the Hamiltonian

H lat
2k =

∑
j1, j2

∑
r�0

tr (| j1 + r, j2〉〈 j1, j2| + | j1, j2 + r〉〈 j1, j2|

+| j1, j2〉〈 j1 + r, j2| + | j1, j2〉〈 j1, j2 + r|)
+

∑
j1, j2

χ | j2 − j1| | j1, j2〉〈 j1, j2|, (6)

where j1 and j2 denote the positions of the kinks. The pa-
rameter χ in the interaction potential is taken from the field
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theory, as in Eq. (4), and a small number of nonzero hopping
parameters tr are fixed so as to approximate the exact kink
dispersion. The eigenstates of the Hamiltonian in Eq. (6) have
wave functions of the form 〈 j1, j2|�〉 = eiP( j1+ j2 )/2φ( j2 −
j1), where P is the center-of-mass momentum and φ(x) is
the normalizable wave function for the relative coordinate.
Solving the Schrödinger equation for φ(x) numerically on
a finite lattice, we find that this approach is in excellent
agreement with the semiclassical solution in the momentum
range where Eqs. (5) holds, but it also provides the bound
state dispersion relations in the vicinity of P = π . We will
use these dispersion relations to analyze the tDMRG results
in Sec. IV B.

IV. DYNAMICAL STRUCTURE FACTORS

We are interested in the DSFs of one- and two-spin opera-
tors for the two-leg Ising ladder described by the Hamiltonian
in Eq. (1). We focus on the parameter regime deep in the
ferromagnetic phase, where the elementary excitations can be
pictured as domain walls created in pairs by the σ z operator.
The DSF for the spin operator on leg α = 1 is defined as

Szz(q, ω) = 1

L

∫ ∞

−∞
dteiωt

L∑
j, j′

e−iq( j− j′ )Czz( j, j′, t ), (7)

with the time-dependent correlations

Czz( j, j′, t ) = 〈�0|σ z
1, j (t )σ z

1, j′ (0)|�0〉
−〈�0|σ z

1, j |�0〉〈�0|σ z
1, j′ |�0〉. (8)

Here, |�0〉 is the ground state and σ z
1, j (t ) = eiHtσ z

1, je
−iHt is

the operator σ z
1, j evolved in real time. We can write Szz(q, ω)

in the Lehmann representation as

Szz(q, ω) = 2π

L

∑
l>0

|〈�l |σ z
q |�0〉|2δ(ω − El + E0), (9)

where σ z
q = ∑

j e−iq jσ z
1, j , |�l〉 are eigenstates of H with

energy El , and E0 is the ground-state energy. In the weak cou-
pling regime, 0 < λ 	 1, we expect Szz(q, ω) to be dominated
by excited states in which two kinks created in leg α = 1 form
an intrachain meson with total momentum P = q.

For two-spin operators, we consider two distinct DSFs
defined as

S4z
sl/dl(q, ω) = 1

L

∫ +∞

−∞
dt eiωt

L∑
j, j′

e−iq( j− j′ )C4z
sl/dl( j, j′, t ),

(10)
where

C4z
sl/dl( j, j′, t ) = 〈�0|Osl/dl

j (t )Osl/dl
j′ (0)|�0〉

−〈�0|Osl/dl
j |�0〉〈�0|Osl/dl

j′ |�0〉 (11)

are the time-dependent correlation functions for the operators

Osl
j = σ z

1, jσ
z
1, j+2, (12)

Odl
j = σ z

1, jσ
z
2, j . (13)

The labels sl and dl in Eqs. (10)–(13) indicate that the opera-
tors act on two sites located in the same leg or different legs,

respectively. The DSFs S4z
sl/dl(q, ω) admit spectral decomposi-

tions analogous to Eq. (9). In a simple classical picture of the
ferromagnetic phase, the action of Osl

j on the fully polarized
state creates four domain walls in the same chain. On the
other hand, Odl

j creates two domain walls in each chain. We
then expect these DSFs to have significant spectral weight
associated with four-kink excitations, which form two mesons
or two interchain bound states for 0 < λ 	 1. Note, however,
that two-kink excitations are also allowed by selection rules.
They are in fact present as contributions in which the four-
point function in Eq. (11) factorizes into two-point functions,
due to the nonzero expectation value of the σ z operator for
hz �= 0.

Since the Ising ladder is nonintegrable, we have used
the adaptive tDMRG [41] to compute the DSFs of open
ladders. While this method is most efficient at treating one-
dimensional systems with nearest-neighbor interactions, it is
also possible to use tDMRG to investigate narrow ladders. To
do so, we enlarge the local Hilbert space by combining the
rung sites into a supersite, so the Suzuki-Trotter decomposi-
tion can be applied exactly in the nonrenormalized DMRG
sites.

To investigate the effects of a weak interchain coupling
on the energy spectrum, we will discuss the cases of λ = 0
and λ = 0.1. Our tDMRG results were obtained by setting
the ladder length L = 160 and the transverse magnetic field
hz = 0.5. The time-dependent correlations were computed by
keeping up to 200 states per DMRG block. The temporal
Fourier transforms in Eqs. (7) and (10) were performed in
the time interval −tmax < t < tmax, where tmax is maximum
time obtained by tDMRG. To set the maximum time, we have
to take into account two limitations. The first one is due to
the finite length of the ladder. Since we are not interested
in boundary effects, tmax is such that the propagation of the
correlations does not reach the edges of the chains, i.e., tmax <

L/(2v), where v is the maximal velocity that defines the light
cone. The second limitation is the numerical errors generated
by the truncation procedure and the order of the Suzuki-
Trotter decomposition. In our computations, the error related
to the truncation procedure is smaller than 10−7 and the time
evolution was carried out with second-order Suzuki-Trotter
decomposition using a time step δt = 0.1. The maximum
time we have considered is in the interval tmax ∈ [50, 90]. We
present our numerical results in the following.

A. Decoupled chains

Let us first discuss the integrable case λ = 0, correspond-
ing to two decoupled TFIMs. The energy spectrum of the
system can be completely understood from the dispersion
relation of free kinks in Eq. (2). In Fig. 5, we show the
region in the (q, ω) plane associated with two- and four-kink
excitations, which determine the support of Szz(q, ω) and
S4z

sl/dl(q, ω). Note that the two-kink continuum starts off at � =
2m = 4J (1 − hz ), whereas the four-particle continuum starts
at 2�. The width of the continua depends on the bandwidth
of the kink dispersion, which is governed by the transverse
field. The upper threshold of the two-kink continuum is given
by �2,u(q) = 2ε(π − q/2) and the lower threshold of the
four-kink continuum by �4,l(q) = 4ε(q/4). Thus, we could
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(four) kinks. The solid lines indicate the lower and upper thresholds
of the continua.

avoid their overlap by requiring �4,l(0) > �2,u(0), which is
verified for hz < 1/3. However, a smaller hz also implies
narrower bands for the kinks and slower dynamics. This re-
quires longer simulation times, making the computation of the
DSFs unpractical from the tDMRG point of view. Hereafter
we shall consider hz = 0.5, as illustrated in Fig. 5. In this
case, the two- and four-kink continua overlap for momentum
q < q0 ≈ 0.74π but they are separated by a gap for q > q0.

In Fig. 6, we show the DSFs computed by tDMRG for
λ = 0 and hz = 0.5. The support of Szz(q, ω) is precisely
the two-kink continuum shown in Fig. 5. By contrast, the
DSFs S4z

sl/dl(q, ω) exhibit two- and four-kink contributions (see
Figs. 6 and 7). Despite the different spectral weight distribu-
tions, S4z

dl (q, ω) and S4z
sl (q, ω) display the same support, with

a significant weight above the two-kink continuum. Note the
clear separation between the two- and four-kink continua at
q = π .

B. Weakly coupled chains

We now consider a weak interchain coupling λ = 0.1. This
coupling introduces an effective linear potential that confines
the kinks of the Ising chains into bound states. As a result,
the two-kink continuum must break up into a series of single-
meson peaks. On the other hand, the four-kink continuum
probed by the two-spin DSFs may turn into a continuum of
two propagating bound states but it may also give rise to
two-meson bound states. Moreover, in the two-leg ladder we
can have both mesons and interchain bound states, and the
latter should only be revealed in the DSF S4z

dl (q, ω).
The signatures of the mesons can be directly observed in

the DSF of the one-spin operator. Indeed, in Fig. 8 we see
a discrete energy spectrum related to the excitations created
by one spin flip. Our numerical results show a remarkable
agreement with the meson dispersion relations calculated as
discussed in Sec. III, even in the regime where the semiclas-
sical approximation breaks down. The inset of Fig. 8 shows
the line shape of Szz(q, ω) for q = 0, where we compare the
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FIG. 6. DSFs for the decoupled two-leg Ising ladder with hz =
0.5, as a function of q and ω. The top panel shows the one-spin
DSF Szz(q, ω), whose support corresponds to the two-kink contin-
uum. The two-spin DSFs S4z

dl (q, ω) (middle) and S4z
sl (q, ω) (bottom)

contain two-kink and four-kink contributions.

peak frequencies with the predicted meson masses mn. Note
that the frequency resolution is limited by the finite time tmax

reached by tDMRG, which accounts for the finite width of the
meson peaks.

To interpret our numerical results for S4z
dl (q, ω), let us first

discuss the case of an open ladder with only one kink in
each leg. In this case, the kinks are confined due to the linear
potential associated with the region where the chains present
opposite local magnetization, as shown in Fig. 3(b). These
confined states are interchain bound states. As discussed in
Sec. III, now the two-kink wave function is not required to be
antisymmetric, because the kinks are distinguished by their
leg degree of freedom. Thus, we also take into account the
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FIG. 9. Real part of the time-dependent correlations
Czz( j, L/2, t ) (top) and C4z

dl ( j, L/2, t ) (bottom) as a function
of j and t . The solids lines are straight lines whose slope is the
maximal kink velocity vkink = 2hz = 1. The dashed lines are straight
lines with slope vintra for Czz( j, L/2, t ) and vinter for C4z

dl ( j, L/2, t ).
The values of vintra and vinter were acquired from the bound state
dispersion relations.

symmetric solutions. An important feature is that the first
(lightest) interchain bound state has lower energy and higher
velocity than the lightest meson. Note that single interchain
bound states do not exist in ladders with periodic boundary
conditions, nor in the bulk spectrum of open ladders, be-
cause local operators can only create pairs of kinks in one
or both legs. In particular, the DSF S4z

dl (q, ω) must contain
contributions from excited states with at least two interchain
bound states. However, one can still detect interchain bound
states by analyzing the propagation of perturbations in the
time-dependent correlations as well as the lower threshold of
the two-particle continuum.

In Fig. 9, we show the time-dependent correlations
Czz( j, L/2, t ) and C4z

dl ( j, L/2, t ). To check whether the max-
imal velocities of the bound states coincide with the ones
that bound the light cones, we have computed the dispersions
following the procedure described previously. Recall that the
dispersion E ′

1(P) of the lightest interchain bound state is
calculated by taking the symmetric ground state wavefunction
in the diagonalization of the Hamiltonian in Eq. (6). For hz =
0.5 and λ = 0.1, we find that the maximal intrachain- and
interchain-bound-state velocities are vintra ≈ 0.66 and vinter ≈
0.83. As expected, our results indicate that the fastest particle
observed in Czz( j, L/2, t ) and C4z

dl ( j, L/2, t ) are the lightest
meson and interchain bound states, respectively.
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dl (q, ω) in Fig. 11.

Another way to identify the interchain bound state is to
look at the continuum of excitations in S4z

dl (q, ω). Since the
dispersion of the lightest interchain bound state is below
the intrachain ones, the lower threshold of the continuum
must correspond to scattering states of two lightest interchain
bound states. Similar to our analysis of the two-kink con-
tinuum in the decoupled case, we can use the bound-state
dispersions to construct the two-particle continua. We label
them by the corresponding masses: here, m′

n1
+ m′

n2
, with

n1, n2 � 1, denotes the continuum defined by one interchain
bound state with dispersion E ′

n1
(P) and another one with

dispersion E ′
n2

(P). Note that there is no upper threshold in the
total two-bound-state continuum, and the separation between
different m′

n1
+ m′

n2
continua is not sharply defined once they

overlap and the bound states can decay into lighter particles.
Nevertheless, this classification will prove useful in the inter-
pretation of the two-spin DSFs.

The m′
1 + m′

1 and m′
1 + m′

2 continua are represented in
Fig. 10. The lowest excitation occurs at the frequency ω =
2m′

1, corresponding to the energy cost of creating two inter-
chain bound states with momentum q = 0. For λ = 0.1 and
hz = 0.5, we find m′

1 = E ′
1(0) ≈ 2.39. This mass is consistent

with the lower threshold of the continuum present in the
DSF S4z

dl (q, ω) calculated by tDMRG (see Fig. 11). At q = 0,
the peaks that appear below and slightly above 2m′

1 can be
identified with single-meson excitations, which descend from
the two-kink continuum and have the same frequencies ob-
served in Szz(q, ω). Remarkably, for all values of q the spectral
weight associated with the excitation of two bound states
vanishes as the frequency approaches the lower threshold of
the m′

1 + m′
1 continuum, and there is no evidence for a bound

state of two interchain bound states below the continuum.
A prominent feature in the line shape of the DSF S4z

dl (q, ω)
for q = 0, see the bottom panel in Fig. 11, is the steep
rise in the intensity as the frequency increases above 2m′

1,
terminating in a highly asymmetric peak near the upper

0 0.25 0.5 0.75 1

q/π

2

4

6

8

10

12

ω

0

1

2

3

4

5

6

S
4
z

d
l
(q

,ω
)

λ = 0.1

0

2

4

6

2 4 6 8 10 12 14

0

0.2

0.4

6.2 6.4 6.6 6.8 7

S
4
z

d
l
(q

,ω
)

ω

q = 0
q = π

λ = 0.1

2m1

S
4

z
d
l
(π

,
ω
)

ω

FIG. 11. Top: Two-spin DSF S4z
dl (q, ω) for λ = 0.1 and hz = 0.5,

as a function of q and ω. The solid red lines are the lower and upper
thresholds of the two-interchain-bound-state continuum m′

1 + m′
1.

The pink lines are the thresholds of the continuum m′
1 + m′

2. Bottom:
Constant-momentum cuts of the DSF at q = 0 and q = π . The green
arrow indicates the lower threshold of the continuum for q = 0, given
by twice the mass of the lightest interchain bound state. For q = π ,
there is a pronounced peak above the m′

1 + m′
1 continuum. The inset

is a zoom in of a frequency interval around this peak. The predictions
for the lower and upper thresholds of the m′

1 + m′
1 continuum at

q = π are ω ≈ 6.38 and ω ≈ 6.58, respectively.

threshold of the m′
1 + m′

1 continuum. By contrast, for q = π

the m′
1 + m′

1 continuum covers only a narrow frequency range,
in agreement with the result in Fig. 10, and has a rather small
spectral weight. However, we observe a sharp peak above the
m′

1 + m′
1 continuum. The amplitude of this peak is even higher

than that of the first meson peak in S4z
dl (q = π,ω). To track the

evolution of the new peak, in Fig. 12 we show the line shapes
of S4z

dl (q, ω) for different values of momentum. As one moves
from q = 0 to q = π , the peak appears to split off from the
continuum below it. For this reason, and because the width
is within the frequency resolution of the tDMRG simulations,
we interpret this peak as a bound state of two interchain bound
states.

On general grounds, we expect mesons to interact via a
short-range potential, since, unlike the linear potential re-
sponsible for kink confinement, the interaction energy does
not increase with the distance between mesons. The same is
true for interchain bound states in the two-leg ladder. The
presence of a bound state of two interchain bound states,
or rather an antibound state, above the m′

1 + m′
1 continuum
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suggests that their interaction is predominantly repulsive. The
effective scattering amplitude in the Bethe-Salpeter equation
that describes the bound-state formation must be a function of
the momenta of the interchain bound states, and also depend
on the internal wave function φ(x) for the relative coordinates
between kinks, but we do not attempt to calculate it here. It is
important to note that the formation of bound states of bound
states should not be restricted to the m′

1 + m′
1 continuum, but

may occur for all m′
n1

+ m′
n2

excitations. Thus, one possible
explanation for the irregular line shape of S4z

dl (q, ω) above
the m′

1 + m′
1 continuum is that it stems from a series of

overlapping two-particle continua and the associated bound
states with finite lifetimes. This is consistent with a second
peak found just above the m′

1 + m′
2 continuum, see Figs. 10

and 11.
Finally, let us discuss the tDMRG results for S4z

sl (q, ω).
In contrast to S4z

dl (q, ω), the spectrum of S4z
sl (q, ω) does not

contain interchain bound states because the two spin flips
are performed on the same leg. For this reason, only the
antisymmetric wave functions are allowed in the solutions of
Eqs. (5) and (6). Indeed, from the propagation of the time-
dependent correlation shown in Fig. 13, we confirm that the
fastest particle in this case is the lightest intrachain bound state
with maximal velocity vintra ≈ 0.66.

Figure 14 shows the results for S4z
sl (q, ω). The first remark

is that this DSF also exhibits single-meson peaks at the same
frequencies as the one-spin DSF. However, in this case the
amplitude of the meson peaks for q = 0 is a nonmonotonic
function of frequency, behaving similarly to the two-kink
contribution in S4z

sl (q = 0, ω) for the decoupled ladder (see
Fig. 7). In addition, the lower threshold of the two-meson
continuum at ω = 2m1 is not apparent in the line shape
for q = 0. The reason is that the spectral weight vanishes
more rapidly than in the case of S4z

dl (q, ω) as the frequency
approaches the lower threshold of the m1 + m1 continuum.
This was already noticeable in the DSF for decoupled chains
in Fig. 7 and follows from the stronger effect of the Pauli
exclusion principle when all four kinks propagate in the same
leg. Also in Fig. 14, we show the line shape of S4z

sl (q, ω) for
q = π . Again, we observe a series of peaks above the upper
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thresholds of the mn1 + mn2 continua and attribute them to
bound states of two mesons with finite lifetimes. The multiple
peaks can be discerned more clearly in this case as they are
more widely separated than in S4z

dl (q, ω), since here we have
only half as many continua of two propagating bound states.
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V. CONCLUSIONS

We have studied the formation of intra- and interchain
bound states in the ferromagnetic phase of the transverse-field
two-leg Ising ladder. First, we mapped out the phase diagram
of the model using DMRG and analyzed the critical line
using the scaling field theory and the truncated fermionic
space approach. We then used the adaptive tDMRG method
to calculate three different DSFs. The one-spin DSF probes
excitations with two domain walls, or kinks, in the same leg
of the two-leg Ising ladder. The other two DSFs, defined for
two-spin operators, probe excitations with four kinks, either
all in the same leg or two pairs in different legs.

The spectrum of the one-spin operator is completely de-
scribed by the confinement of kinks and antikinks into single
mesons. A family of excitations, which we call interchain
bound states, appears in the spectrum of the two-spin operator
acting on both legs. The lightest interchain bound state has
a smaller mass than the lightest meson because its wave
function is not required to vanish when the two kinks are
in the same rung, but in different legs. As a consequence,
the interchain bound states determine the lower threshold of
the two-particle continuum. The two-spin DSFs also exhibit a
series of higher-energy peaks associated with bound states of
bound states, which are two-meson bound states in the case
where spin operators act on sites within the same chain.

Our results should be relevant to the interpretation of exper-
iments on weakly coupled Ising chains. In fact, the existence
of a hierarchy of bound states was proposed based on the
experiments reported in Ref. [16]. It would be interesting to
quantify the contribution from different two-spin operators to
the absorption spectra measured by terahertz spectroscopy and
investigate the role of the two-meson continuum and of the
interchain bound states.

Finally, we would like to briefly comment on the general-
ization of our results to N-leg ladders and three-dimensional
arrays of weakly coupled chains, as found in real materials.

The interchain bound state can be generalized to bound states
of N kinks, but creating them with a significant amplitude
requires an operator that acts simultaneously on N spins in
different chains. The resulting excitation can be interpreted as
a domain wall whose energy increases with N . On the other
hand, we may consider the fate of interchain bound states
composed of two kinks or two antikinks when we increase the
number of coupled chains. In this case, the neighboring chains
which are not excited introduce a linear potential that confines
pairs of interchain bound states with opposite topological
charges. As a result, while the two-meson continuum survives
in the presence of more chains, we expect the continuum
of two interchain bound states to be completely replaced by
bound states of bound states.

Note added. Recently, we became aware of a related work
by Lagnese et al. [58], who independently developed the idea
of intrachain and interchain bound states in a different ladder
system.
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