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Anisotropic magnetocaloric effect and critical behavior in CrSbSe3
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We report anisotropic magnetocaloric effect and critical behavior in a quasi-one-dimensional ferromagnetic
CrSbSe3 single crystal. The maximum magnetic entropy change −�Smax

M is 2.16 J kg−1 K−1 for the easy a axis
(2.03 J kg−1 K−1 for the hard b axis) and the relative cooling power RCP is 163.1 J kg−1 for the easy a axis
(142.1 J kg−1 for the hard b axis) near Tc with a magnetic field change of 50 kOe. The magnetocrystalline
anisotropy constant Ku is estimated to be 148.5 kJ m−3 at 10 K, decreasing to 39.4 kJ m−3 at 70 K. The rescaled
�SM (T, H ) curves along all three axes collapse onto a universal curve, respectively, confirming the second-order
ferromagnetic transition. Further critical behavior analysis around Tc ∼ 70 K gives that the critical exponents
β = 0.26(1), γ = 1.32(2), and δ = 6.17(9) for H ‖ a, while β = 0.28(2), γ = 1.02(1), and δ = 4.14(16) for
H ‖ b. The determined critical exponents suggest that the anisotropic magnetic coupling in CrSbSe3 is strongly
dependent on orientations of the applied magnetic field.
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I. INTRODUCTION

Low-dimensional ferromagnetic (FM) semiconductors,
holding both ferromagnetism and semiconducting character,
form the basis for nanospintronics application. Recently, the
two-dimensional (2D) CrI3 and Cr2Ge2Te6 have attracted
much attention since the discovery of intrinsic 2D magnetism
in mono- and few-layer devices [1–4]. Intrinsic magnetic or-
der is not allowed at finite temperature in the low-dimensional
isotropic Heisenberg model by the Mermin-Wagner theorem
[5]; however, a large magnetocrystalline anisotropy removes
this restriction; for instance, the presence of a magnetically
ordered state in the 2D Ising model. The enhanced fluctuations
in a 2D limit make symmetry-breaking order unsustainable;
however, by gapping the low-energy modes through the intro-
duction of anisotropy, order could be established by providing
stabilization of long-range correlations in a 2D limit. Given
the reduced crystal symmetry in low-dimensional magnets, an
intrinsic magnetocrystalline anisotropy can be expected and
points to possible long-range magnetic order in atomic-thin
limit.

In ternary chromium trichalcogenides, Cr(Sb, Ga)X3 (X =
S, Se, Te) displays a quasi-one-dimensional crystal structure.
This is different from Cr(Si, Ge)Te3 that features a layered
structure and a van der Waals bond along the c axis. In
Cr(Sb, Ga)X3, the CrX6 octahedra form infinite, edge-sharing,
double rutile chains. The neighboring chains are linked by Sb
or Ga atoms. The FM semiconductor CrSbSe3 has attracted
considerable attention [6–9]. A band gap of 0.7 eV was
determined by resistivity and optical measurements [8]. The
Cr in CrSbSe3 exhibits a high spin state with S = 3/2, and
orders ferromagnetically below the Curie temperature Tc of
71 K [8]. The FM state in CrSbSe3 is fairly anisotropic with
the a axis being the easy axis and the b axis being the hard
axis. The critical analysis where magnetic field was applied
along the a axis suggests that the ferromagnetism in CrSbSe3

cannot be simply described by the mean-field theory [10,11].
This invites the detailed investigation on its anisotropic critical
behavior.

The magnetocaloric effect can give additional insight into
the magnetic properties, and it could be also used to as-
sess magnetic refrigeration potential [12–20]. Bulk CrSiTe3

exhibits anisotropic entropy change (−�Smax
M ) with the val-

ues of 5.05 and 4.9 J kg−1 K−1 at 50 kOe for out-of-plane
and in-plane fields, respectively, with the magnetocrystalline
anisotropy constant Ku of 65 kJ m−3 at 5 K [14]. The
values of −�Smax

M are about 4.24 J kg−1 K−1 (out-of-plane)
and 2.68 J kg−1 K−1 (in-plane) at 50 kOe for CrI3 with a
much larger Ku of 300 ± 50 kJ m−3 at 5 K [21]. The large
magnetocrystalline anisotropy is important in preserving FM
in the 2D limit.

In the present work we investigate the anisotropic magnetic
properties of quasi-one-dimensional CrSbSe3 single crystals.
The magnetocrystalline anisotropy constant Ku is strongly
temperature dependent. It takes a value of ∼148.5 kJ m−3 at
10 K and monotonically decreases to 39.4 kJ m−3 at 70 K for
the hard b axis. The Ku of CrSbSe3 is much larger than that of
Cr2(Si, Ge)2Te6 but comparable with that of Cr(Br, I)3. This
results in anisotropic magnetic entropy change �SM (T, H )
and relative cooling power (RCP), as well as in magnetic
critical exponents β, γ , and δ that point to the nature of
the phase transition. The anisotropic magnetic coupling of
CrSbSe3 is strongly dependent on orientations of the applied
magnetic field, providing an excellent platform for further
theoretical studies of low-dimensional magnetism.

II. EXPERIMENTAL DETAILS

CrSbSe3 single crystals were fabricated by the self-flux
technique starting from an intimate mixture of raw materials
Cr (99.95%, Alfa Aesar) powder, Sb (99.999%, Alfa Aesar)
pieces, and Se (99.999%, Alfa Aesar) pieces with a molar
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ratio of 7 : 33 : 60. The starting materials were sealed in an
evacuated quartz tube and then heated to 800 ◦C and slowly
cooled to 680 ◦C with a rate of 2 ◦C/h. Needlelike single
crystals with lateral dimensions up to several millimeters can
be obtained. The element analysis was performed using an
energy-dispersive x-ray spectroscopy in a JEOL LSM-6500
scanning electron microscope, confirming a stoichiometric
CrSbSe3 single crystal. The powder x-ray diffraction (XRD)
data were taken with Cu Kα (λ = 0.15418 nm) radiation by
a Rigaku Miniflex powder diffractometer. The anisotropy of
magnetic properties was measured by using one single crystal
with a mass of 0.32 mg and characterized by a magnetic prop-
erty measurement system (MPMS-XL5, Quantum Design).
The applied field (Ha) was corrected as H = Ha − NM, where
M is the measured magnetization and N is the demagneti-
zation factor. The corrected H was used for the analysis of
magnetic entropy change and critical behavior.

III. RESULTS AND DISCUSSIONS

Figure 1(a) displays the CrSbSe3 crystal structure. The
material crystallizes in an orthorhombic lattice with space
group Pnma. That is a quasi-one-dimensional structure with
double rutile chains of CrSe6 octahedra that are aligned
parallel to the b axis. As shown in Fig. 1(b), the b axis is
along the long crystal dimension in single crystals. Within the
double chain, the Cr cations form an edge-sharing triangular
arrangement, while the Sb atoms link the adjacent chains. In
the powder XRD pattern [Fig. 1(c)], all peaks can be well in-
dexed by the orthorhombic structure (space group Pnma) with
lattice parameters a = 9.121(2) Å, b = 3.785(2) Å, and c =
13.383(2) Å, in good agreement with a previous report [8].

Figure 1(d) shows the temperature dependence of magne-
tization M(T ) along all three axes measured at H = 1 kOe.

FIG. 1. (a) Crystal structure of CrSbSe3 and (b) representative
single crystals on a millimeter-grid paper. (c) Powder x-ray diffrac-
tion (XRD) pattern of CrSbSe3. (d) Temperature-dependent magne-
tization M(T ) measured in H = 1 kOe with zero-field cooling (ZFC)
and field-cooling (FC) modes along all three axes (left axis) and
inverse average magnetization 1/Mave = 3/(Ma + Mb + Mc ) (right
axis) fitted by the Curie-Weiss law. Inset shows the field-dependent
magnetization M(H ) at 2 K.

FIG. 2. (a)–(c) Typical initial isothermal magnetization curves
measured along all three axes with temperature ranging from 10
to 100 K. (d)–(f) The corresponding calculated magnetic entropy
change −�SM (T ) at various fields change.

There is no bifurcation seen between the zero-field-cooling
(ZFC) and field-cooling (FC) curves, indicating the high
quality of the single crystal. The M(T ) curves are nearly
isotropic at high temperature but show an obvious anisotropic
magnetic response for fields applied along different axes at
low temperature. For H ‖ a, a rapid increase near 70 K in
M(T ) on cooling corresponds well to the reported param-
agnetic (PM) to FM transition [8]. For H ‖ b and H ‖ c,
an anomalous peak feature is observed, which is also seen
in Cr2(Si, Ge)2Te6 and Cr(Br, I)3 with a large magnetocrys-
talline anisotropy [22–24]. The inverse average magnetization
1/Mave = 3/(Ma + Mb + Mc) can be well fitted from 200
to 300 K by using the Curie-Weiss law, which generates
an effective moment of 4.6(1)μB/Cr and a positive Weiss
temperature of 125(1) K, in line with the values reported
for CrSbSe3 polycrystals [6,7]. The anisotropic magnetization
isotherms measured at T = 2 K [inset in Fig. 1(d)] show a
similar saturated magnetization Ms at 3 μB/Cr, consistent with
expectation of S = 3/2 for Cr3+, but different saturated fields
Hs of 1, 18, and 12 kOe for the a, b, and c axes, respectively,
close to the values in the previous reports [8,9].

To further characterize the anisotropic magnetic properties
of CrSbSe3, the isothermal magnetization with fields up to 50
kOe applied along each axis from 10 to 100 K are presented
in Figs. 2(a)–2(c). At high temperature, the curves have
linear field dependence. With decreasing temperature, the
curves bend with negative curvatures, indicating a dominant
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FM interaction. Based on the classical thermodynamics and
Maxwell’s relation, the magnetic entropy change �SM (T, H )
is given by [25,26]

�SM =
∫ H

0

[
∂S(T, H )

∂H

]
T

dH =
∫ H

0

[
∂M(T, H )

∂T

]
H

dH,

(1)

where [∂S(T, H )/∂H]T = [∂M(T, H )∂T ]H is based on
Maxwell’s relation. For magnetization measured at small tem-
perature and field intervals,

�SM =
∫ H

0 M(Ti+1, H )dH − ∫ H
0 M(Ti, H )dH

Ti+1 − Ti
. (2)

The calculated −�SM (T, H ) are presented in Figs. 2(d)–
2(f). All the curves exhibit a peak feature near Tc. Peaks
broaden asymmetrically on both sides with increasing field.
The maximum of −�SM (T, H ) reaches 2.16 J kg−1 K−1,
2.11 J kg−1 K−1, and 2.03 J kg−1 K−1 for the a, b, and c
axes, respectively. It should be noted that all the values of
−�SM (T, H ) for the easy a axis are positive; however, the
values for the hard b and c axes are negative at low tem-
peratures in low fields stemming from a strong temperature-
dependent magnetic anisotropy [18].

Based on a generalized scaling analysis [27], the normal-
ized magnetic entropy change, �SM/�Smax

M , estimated for
each constant field, is scaled to the reduced temperature t as
defined in the following equations:

t− = (Tpeak − T )/(Tr1 − Tpeak ), T < Tpeak, (3)

t+ = (T − Tpeak )/(Tr2 − Tpeak ), T > Tpeak, (4)

where Tr1 and Tr2 are the lower and upper reference tem-
peratures at half-width full maximum of �SM/�Smax

M . As
we can see, the normalized �SM/�Smax

M near Tc collapses
onto a universal curve at the indicated fields for all three
axes [Figs. 3(a)–3(c)], indicating the second-order PM-FM
transition in CrSbSe3. The ineligible deviation at low tem-
peratures along the hard b axis is mostly contributed by the
magnetocrystalline anisotropy effect. Based on the Stoner-
Wolfarth model [28], the magnetocrystalline anisotropy con-
stant Ku can be estimated from the saturation regime in the
isothermal magnetization curves. Within this model the value
of Ku in a single domain state is related to the saturation
magnetization Ms and the saturation field Hs with μ0 is the
vacuum permeability:

2Ku

Ms
= μ0Hs. (5)

When H ‖ b, the anisotropy becomes maximal. We estimated
the Ms by using a linear fit of M(H ) above 20 kOe for H ‖ b,
which monotonically decreases with increasing temperature
[inset in Fig. 3(d)]. Then we determined the Hs as the inter-
section point of two linear fits: one being a fit to the saturated
regime at high field, and the other being a fit of the unsaturated
linear regime at low field. The values of Hs share a similar
temperature dependence [inset in Fig. 3(d)], resulting in a
strongly temperature-dependent Ku [Fig. 3(d)]. The calculated
Ku is ∼148.5 kJ m−3 at 10 K for CrSbSe3, which is much

FIG. 3. (a)–(c) Normalized magnetic entropy change �SM as
a function of the reduced temperature t along all three principal
crystallographic axes of CrSbSe3. Insets show the evolution of the
reference temperatures T1 and T2. (d) Temperature dependence of the
magnetocrystalline anisotropy constant Ku, the saturation field Hs,
and the saturation magnetization Ms (insets) estimated from the hard
b axis below Tc for CrSbSe3. (e) Field dependence of the maximum
magnetic entropy change −�Smax

M and the relative cooling power
(RCP) with power-law fitting in solid lines along all three axes for
CrSbSe3.

larger than that of Cr2(Si, Ge)2Te6 [18], and comparable with
that of Cr(Br, I)3 [21].

Another parameter to characterize the potential magne-
tocaloric effect of materials is the RCP [29]:

RCP = −�Smax
M δTFW HM, (6)

where the FWHM denotes the full width at half maximum
of −�SM curve. The RCP corresponds to the amount of heat
which could be transferred between cold and hot parts of the
refrigerator in an ideal thermodynamic cycle. The calculated
RCP values of CrSbSe3 reach maxima at 50 kOe of 163.1
J kg−1, 142.1 J kg−1, and 154.1 J kg−1 for the a, b, and c axes,
respectively [Fig. 3(e)]. In addition, the field dependence of
−�Smax

M and RCP can be well fitted by using the power-law
relations −�Smax

M = aHn and RCP = bHm [Fig. 3(e)] [30].
For a second-order PM-FM phase transition, the spon-

taneous magnetization (Ms) below Tc, the initial magnetic
susceptibility (χ−1

0 ) above Tc, and the field-dependent mag-
netization (M) at Tc can be characterized by a set of critical
exponents β, γ , and δ, respectively [31]. The mathematical
definitions of the exponents from magnetization measurement
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FIG. 4. The Arrott plot of M2 vs H/M (a)–(c) and the modified
Arrott plot of M1/β vs (H/M )1/γ (d)–(f) with indicated β and γ for
the a, b, and c axes, respectively.

are given below:

Ms(T ) = M0(−ε)β, ε < 0, T < Tc, (7)

χ−1
0 (T ) = (h0/m0)εγ , ε > 0, T > Tc, (8)

M = DH1/δ, T = Tc, (9)

where ε = (T − Tc)/Tc; M0, h0/m0, and D are the critical
amplitudes [32]. For the original Arrott plot, β = 0.5 and
γ = 1.0 [33]. Based on this, the magnetization isotherms M2

vs H/M should be a set of parallel straight lines. The isotherm
at the critical temperature Tc should pass through the origin.
As shown in Figs. 4(a)–4(c), all curves in the Arrott plot of
CrSbSe3 are nonlinear, with a downward curvature, indicat-
ing that the Landau mean-field model is not applicable to
CrSbSe3. From the Banerjee criterion [34], the first- (second-)
order phase transition corresponds to a negative (positive)
slope. Thus, the downward slope confirms it is a second-order
PM-FM transition in CrSbSe3. In the more general case, the
Arrott-Noaks equation of state provides a modified Arrott
plot [35]:

(H/M )1/γ = aε + bM1/β, (10)

where ε = (T − Tc)/Tc and a and b are fitting constants.
Figures 4(d)–4(f) present the modified Arrott plots for all three
axes with a self-consistent method [36,37], showing a set of
parallel quasistraight lines at high field.

FIG. 5. (a) Temperature dependence of the spontaneous magne-
tization Ms (left) and the inverse initial susceptibility χ−1

0 (right)
with solid fitting curves for CrSbSe3. Inset shows the log10M vs
log10H at 70 K with linear fitting curve. (b) Kouvel-Fisher plots of
Ms(dMs/dT )−1 (left) and χ−1

0 (dχ−1
0 /dT )−1 (right) with solid fitting

curves for CrSbSe3.

To obtain the anisotropic critical exponents β, γ , and δ, the
linearly extrapolated Ms(T ) and χ−1

0 (T ) against temperature
are plotted in Fig. 5(a). According to Eqs. (7) and (8), the
solid fitting lines give that β = 0.26(1) and γ = 1.32(2) for
the easy a axis, close to the reported values (β = 0.25 and
γ = 1.38) [8]. For the b axis, β = 0.28(2) and γ = 1.02(1),
while for the c axis, β = 0.26(1) and γ = 1.14(5). This lies
between the values of the theoretical tricritical mean-field
model (β = 0.25 and γ = 1.0) and the three-dimensional
(3D) Ising model (β = 0.325 and γ = 1.24) [38,39]. The
value of β is outside of the window 0.1 � β � 0.25 for a 2D
magnet [40], suggesting a 3D magnetic behavior for quasi-1D
CrSbSe3. According to Eq. (9), the M(H ) at Tc should be a
straight line in log-log scale with the slope of 1/δ. Such fitting
yields δ = 6.17(9), 4.14(16), and 5.35(17), for the a, b, and
c axes, respectively, which agrees well with the calculated
values from β and γ based on the Widom relation δ = 1 +
γ /β [41]. The self-consistency can also be checked via the
Kouvel-Fisher method [42], where Ms(T )/[dMs(T )/dT ]−1

and χ−1
0 (T )/[dχ−1

0 (T )/dT ]
−1

plotted against temperature
should be straight lines with slopes 1/β and 1/γ , respectively.
The linear fits to the plots [Fig. 5(b)] yield β = 0.26(1) and
γ = 1.33(2) for the a axis, β = 0.32(2) and γ = 1.03(1) for
the b axis, and β = 0.25(1) and γ = 1.19(4) for the c axis,
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TABLE I. The values of magnetic entropy change (−�Smax
M ) and

relative cooling power (RCP) at field change of 50 kOe. Critical
exponents of CrSbSe3 along the a, b, and c axes, recpectively. The
MAP, KFP, and CI represent the modified Arrott plot, the Kouvel-
Fisher plot, and the critical isotherm, respectively.

−�Smax
M RCP

(J kg−1 K−1) (J kg−1) Tc β γ δ

H ‖ a 2.16 163.1
MAP 70.2(1) 0.26(1) 1.32(2) 6.08(12)
KFP 70.2(1) 0.26(1) 1.33(2) 6.12(12)
CI 6.17(9)
H ‖ b 2.03 142.1
MAP 70.1(2) 0.28(2) 1.02(1) 4.64(22)
KFP 70.3(2) 0.32(2) 1.03(1) 4.22(17)
CI 4.14(16)
H ‖ c 2.11 154.1
MAP 69.8(2) 0.26(1) 1.14(5) 5.38(2)
KFP 69.8(2) 0.25(1) 1.19(4) 5.76(2)
CI 5.35(17)

respectively, very close to the values obtained from the mod-
ified Arrott plot. All the critical exponents obtained from
different methods are listed in Table I. It seems that the critical
behavior of CrSbSe3 is much different along the different axes
and cannot be described by any single model. However, it is
clear that 3D critical behavior dominates in quasi-1D CrSbSe3

and the strong magnetocrystalline anisotropy in CrSbSe3

plays an important role in the origin of anisotropic critical
exponents.

Scaling analysis can be used to estimate the reliability
of the obtained critical exponents. According to a scaling
hypothesis, the magnetic equation of state in the critical region
obeys a scaling relation can be expressed as

M(H, ε) = εβ f±(H/εβ+γ ), (11)

where f+ for T > Tc and f− for T < Tc, respectively, are the
regular functions. In terms of the variable m ≡ ε−βM(H, ε)
and h ≡ ε−(β+γ )H , renormalized magnetization and renor-
malized field, respectively, Eq. (10) reduces to a simple form:

m = f±(h). (12)

It implies that for a true scaling relation with the proper
selection of β, γ , and δ, the renormalized m versus h data will
fall onto two different universal curves: f+(h) for temperature

FIG. 6. Scaling plots of renormalized m = M|ε|−β vs h =
H |ε|−(β+γ ) above and below Tc for CrSbSe3.

above Tc and f−(h) for temperature below Tc. Using the values
of β and γ obtained from the Kouvel-Fisher plot, we have
constructed the renormalized m vs h plots in Fig. 6. It is clearly
seen that all the experimental data collapse onto two different
branches: one above Tc and another below Tc, confirming
proper treatment of the critical regime.

IV. CONCLUSIONS

In summary, we have studied in detail the anisotropic mag-
netocaloric effect and critical behavior of a CrSbSe3 single
crystal. The second-order nature of the PM-FM transition
near Tc = 70 K has been verified by the scaling analysis of
magnetic entropy change �SM . A large magnetocrystalline
anisotropy constant Ku is estimated to be 148.5 kJ m−3 at
10 K, comparable with that of Cr(Br, I)3. A set of critical
exponents β, γ , and δ along each axis estimated from various
techniques match reasonably well and follow the scaling
equation, indicating a 3D magnetic behavior in CrSbSe3.
Further neutron-scattering and theoretical studies are needed
to shed more light on the anisotropic magnetic coupling in low
dimensions.

ACKNOWLEDGMENTS

This work was supported by the U.S. DOE-BES, Division
of Materials Science and Engineering, under Contract No.
DE-SC0012704 (BNL).

[1] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R.
Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire,
D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. D.
Xu, Nature (London) 546, 270 (2017).

[2] M. A. McGuire, G. Clark, S. KC, W. M. Chance, G. E. Jellison,
Jr., V. R. Cooper, X. Xu, and B. C. Sales, Phys. Rev. Materials
1, 014001 (2017).

[3] C. Gong, L. Li, Z. L. Li, H. W. Ji, A. Stern, Y. Xia, T. Cao, W.
Bao, C. Z. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie,
J. Xia, and X. Zhang, Nature (London) 546, 265 (2017).

[4] M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Chem.
Mater. 27, 612 (2015).

[5] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[6] V. Volkov, G. V. Tendeloo, J. V. Landuyt, S. Amelinckx, E.

Busheva, G. Shabunina, T. Aminov, and V. Novotortsev, J. Solid
State Chem. 132, 257 (1997).

[7] D. A. Odink, V. Carteaux, C. Payen, and G. Ouvrard, Chem.
Mater. 5, 237 (1993).

[8] T. Kong, K. Stolze, D. Ni, S. K. Kushwaha, and R. J. Cava,
Phys. Rev. Materials 2, 014410 (2018).

014425-5

https://doi.org/10.1038/nature22391
https://doi.org/10.1103/PhysRevMaterials.1.014001
https://doi.org/10.1038/nature22060
https://doi.org/10.1021/cm504242t
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1006/jssc.1997.7438
https://doi.org/10.1021/cm00026a015
https://doi.org/10.1103/PhysRevMaterials.2.014410


YU LIU, ZHIXIANG HU, AND C. PETROVIC PHYSICAL REVIEW B 102, 014425 (2020)

[9] Y. Sun, Z. Song, Q. Tang, and X. Luo, J. Phys. Chem. C 124,
11110 (2020).

[10] Y. Liu and C. Petrovic, Phys. Rev. B 97, 014420 (2018).
[11] G. T. Lin, X. Luo, F. C. Chen, J. Yan, J. J. Gao, Y. Sun, W. Tong,

P. Tong, W. J. Lu, Z. G. Sheng, W. H. Song, X. B. Zhu, and Y. P.
Sun, Appl. Phys. Lett. 112, 072405 (2018).

[12] Y. Liu and C. Petrovic, Phys. Rev. B 97, 174418 (2018).
[13] X. Yu, X. Zhang, Q. Shi, S. Tian, H. Lei, K. Xu, and H. Hosono,

Front. Phys. 14, 43501 (2019).
[14] W. Liu, Y. Dai, Y.-E. Yang, J. Fan, L. Pi, L. Zhang, and Y.

Zhang, Phys. Rev. B 98, 214420 (2018).
[15] J. Yan, X. Luo, F. C. Chen, J. J. Gao, Z. Z. Jiang, G. C. Zhao,

Y. Sun, H. Y. Lv, S. J. Tian, Q. W. Yin, H. C. Lei, W. J. Lu, P.
Tong, W. H. Song, X. B. Zhu, and Y. P. Sun, Phys. Rev. B 100,
094402 (2019).

[16] Y. K. Fu, Y. Sun, and X. Luo, J. Appl. Phys. 125, 053901 (2019).
[17] Y. Sun and X. Luo, Phys. Status Solidi B 256, 1900052

(2019).
[18] Y. Liu and C. Petrovic, Phys. Rev. Materials 3, 014001 (2019).
[19] Y. Liu, J. Li, J. Tao, Y. Zhu, and C. Petrovic, Sci. Rep. 9, 13233

(2019).
[20] W. Liu, Y. Wang, J. Fan, L. Pi, M. Ge, L. Zhang, and Y. Zhang,

Phys. Rev. B 100, 104403 (2019).
[21] N. Richter, D. Weber, F. Martin, N. Singh, U. Schwingen-

schlögl, B. V. Lotsch, and M. Kläui, Phys. Rev. Materials 2,
024004 (2018).

[22] Y. Liu, L. Wu, X. Tong, J. Li, J. Tao, Y. Zhu, and C. Petrovic,
Sci. Rep. 9, 13599 (2019).

[23] L. D. Casto, A. J. Clune, M. O. Yokosuk, J. L. Musfeldt, T. J.
Williams, H. L. Zhuang, M. W. Lin, K. Xiao, R. G. Hennig,
B. C. Sales, J. Q. Yan, and D. Mandrus, APL Mater. 3, 041515
(2015).

[24] S. Selter, G. Bastien, A. U. B. Wolter, S. Aswartham, and B.
Büchner, Phys. Rev. B 101, 014440 (2020).

[25] V. Pecharsky and K. Gscheidner, J. Magn. Magn. Mater. 200,
44 (1999).

[26] J. Amaral, M. Reis, V. Amaral, T. Mendonc, J. Araujo, M. Sa,
P. Tavares, and J. Vieira, J. Magn. Magn. Mater. 290-291, 686
(2005).

[27] V. Franco and A. Conde, Int. J. Refrig. 33, 465 (2010).
[28] E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc., London

A 240, 599 (1948); reprinted in IEEE Trans. Magn. 27, 3475
(1991).

[29] K. A. Gschneidner, Jr., V. K. Pecharsky, A. O. Pecharsky,
and C. B. Zimm, Mater. Sci. Forum 315-317, 69
(1999).

[30] V. Franco, J. S. Blazquez, and A. Conde, Appl. Phys. Lett. 89,
222512 (2006).

[31] H. E. Stanley, Introduction to Phase Transitions and Critical
Phenomena (Oxford University Press, London, 1971).

[32] M. E. Fisher, Rep. Prog. Phys. 30, 615 (1967).
[33] A. Arrott, Phys. Rev. 108, 1394 (1957).
[34] S. K. Banerjee, Phys. Lett. 12, 16 (1964).
[35] A. Arrott and J. Noakes, Phys. Rev. Lett. 19, 786

(1967).
[36] W. Kellner, M. Fähnle, H. Kronmüller, and S. N. Kaul, Phys.

Status Solidi B 144, 397 (1987).
[37] A. K. Pramanik and A. Banerjee, Phys. Rev. B 79, 214426

(2009).
[38] K. Huang, Statistical Machanics, 2nd ed. (Wiley, New York,

1987).
[39] J. C. LeGuillou and J. Zinn-Justin, Phys. Rev. B 21, 3976

(1980).
[40] A. Taroni, S. T. Bramwell, and P. C. W. Holdsworth, J. Phys.:

Condens. Matter 20, 275233 (2008).
[41] B. Widom, J. Chem. Phys. 41, 1633 (1964).
[42] J. S. Kouvel and M. E. Fisher, Phys. Rev. 136, A1626

(1964).

014425-6

https://doi.org/10.1021/acs.jpcc.0c02101
https://doi.org/10.1103/PhysRevB.97.014420
https://doi.org/10.1063/1.5019286
https://doi.org/10.1103/PhysRevB.97.174418
https://doi.org/10.1007/s11467-019-0883-6
https://doi.org/10.1103/PhysRevB.98.214420
https://doi.org/10.1103/PhysRevB.100.094402
https://doi.org/10.1063/1.5079911
https://doi.org/10.1002/pssb.201900052
https://doi.org/10.1103/PhysRevMaterials.3.014001
https://doi.org/10.1038/s41598-019-49654-4
https://doi.org/10.1103/PhysRevB.100.104403
https://doi.org/10.1103/PhysRevMaterials.2.024004
https://doi.org/10.1038/s41598-019-50000-x
https://doi.org/10.1063/1.4914134
https://doi.org/10.1103/PhysRevB.101.014440
https://doi.org/10.1016/S0304-8853(99)00397-2
https://doi.org/10.1016/j.jmmm.2004.11.337
https://doi.org/10.1016/j.ijrefrig.2009.12.019
https://doi.org/10.1098/rsta.1948.0007
https://doi.org/10.1109/TMAG.1991.1183750
https://doi.org/10.4028/www.scientific.net/MSF.315-317.69
https://doi.org/10.1063/1.2399361
https://doi.org/10.1088/0034-4885/30/2/306
https://doi.org/10.1103/PhysRev.108.1394
https://doi.org/10.1016/0031-9163(64)91158-8
https://doi.org/10.1103/PhysRevLett.19.786
https://doi.org/10.1002/pssb.2221440135
https://doi.org/10.1103/PhysRevB.79.214426
https://doi.org/10.1103/PhysRevB.21.3976
https://doi.org/10.1088/0953-8984/20/27/275233
https://doi.org/10.1063/1.1726135
https://doi.org/10.1103/PhysRev.136.A1626

