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Mean-field theory of interacting triplons in a two-dimensional valence-bond solid:
Stability and properties of many-triplon states
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We study a system of N̄ interacting triplons (the elementary excitations of a valence-bond solid) described
by an effective interacting boson model derived within the bond operator formalism in order to determine the
stability and the properties of many-triplon states. In particular, we consider the square lattice spin-1/2 J1-J2

antiferromagnetic Heisenberg model, focus on the intermediate parameter region where a quantum paramagnetic
phase sets in, and consider the columnar valence-bond solid as a reference state. Within the bond operator theory,
the Heisenberg model is mapped into an effective boson model in terms of triplet operators t . The effective
boson model is studied at the harmonic approximation and the energy of the triplons and the expansion of the
triplon operators b in terms of the triplet operators t are determined. Such an expansion allows us to perform a
second mapping and, therefore, determine an effective interacting boson model in terms of the triplon operators
b. We then consider systems with a fixed number N̄ of triplons and study the stability of many-triplon states
within a mean-field approximation. We show that many-triplon states are stable, the lowest-energy ones are
constituted by a small number of triplons, and the excitation gaps are finite. For J2 = 0.48J1 and 0.52J1, we
also calculate spin-spin and dimer-dimer correlation functions, dimer order parameters, and the bipartite von
Neumann entanglement entropy within our mean-field formalism in order to determine the properties of the
many-triplon state as a function of the triplon number N̄ . We find that the spin and the dimer correlations decay
exponentially and that the entanglement entropy obeys an area law, regardless of the triplon number N̄ . Moreover,
only for J2 = 0.48J1, the spin correlations indicate that the many-triplon states with large triplon number N̄ might
display a more homogeneous singlet pattern than the columnar valence-bond solid. We also comment on possible
relations between the many-triplon states with large triplon number N̄ and gapped spin-liquid states.

DOI: 10.1103/PhysRevB.102.014415

I. INTRODUCTION

A valence-bond solid (VBS) is a quantum paramagnetic
(disordered) phase that can be realized in a quantum spin
system, characterized by the absence of magnetic long-range
order (LRO) but broken lattice symmetries [1]. Such a state
can be viewed as a regular arrangement of singlets that are
formed by a set of neighbor spins in a given lattice. An
interesting example is the columnar VBS state on a square
lattice illustrated in Fig. 1(a): here, nearest-neighbor S = 1/2
spins are combined into a singlet (dimer) state, the unit cell
has two sites, and both translational and rotational lattice
symmetries are broken.

In two-dimensional quantum spin systems, VBS phases
have been studied since the seminal work of Read and
Sachdev [2]. In particular, two-dimensional frustrated quan-
tum antiferromagnets (AFMs) [3] can, in principle, host VBS
phases, since here the interplay between frustration and quan-
tum fluctuations could destroy magnetic long-range order. For
instance, for the square lattice spin-1/2 J1-J2 AFM Heisen-
berg model, it was proposed that the ground state within
the intermediate parameter region 0.4 J1 � J2 � 0.6 J1 could
be either a (dimerized) columnar VBS or a (tetramerized)
plaquette VBS (see Sec. III below for more details). Inter-
estingly, for the same model but on the honeycomb lattice,
density-matrix renormalization-group (DMRG) calculations
[4,5] indicate that the ground state of the model is a dimerized

VBS for J2 � 0.36 J1 [6]. A third example of a frustrated
two-dimensional quantum magnet is the spin-1/2 nearest-
neighbor AFM Heisenberg model on the kagome lattice. Here,
a dimerized VBS with a 36-site unit cell has been proposed
as the ground state [7–9]. Although it has been receiving a
lot of attention in recent years (see, e.g., Ref. [10] and the
references therein), the ground state of the AFM Heisenberg
model on the kagome lattice is still under debate: in addition to
the dimerized VBS with a 36-site unit cell, gapped and gapless
spin-liquid states [11,12] have also been proposed.

In addition to the above frustrated two-dimensional AFMs,
the nonfrustrated J-Q model also hosts a dimerized VBS
phase [13–16]. The J-Q model describes S = 1/2 spins on a
square lattice interacting via a nearest-neighbor AFM Heisen-
berg (J) term and an additional four-spin (Q) term within each
plaquette. Since it is a nonfrustrated quantum spin system,
such a model is free from the so-called sign problem [17],
and therefore, it can be studied within quantum Monte Carlo
(QMC) simulations. It was found that a columnar VBS phase
sets in for small exchange coupling J , while a Néel mag-
netic long-range order phase is stable for large J , with the
Néel-VBS quantum phase transition (QPT) taking place at
Jc = 0.0447 Q [14]. Indeed, QMC simulations for the J-Q
model [13,14,16] indicate that the Néel-VBS is a continuous
QPT, in agreement with the deconfined quantum criticality
scenario [18]: recall that, within the Landau-Ginzburg frame-
work, the Néel-VBS should be a first-order QPT, since the
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FIG. 1. Schematic representations of (a) the columnar VBS ground state and (b) the square lattice spin-1/2 J1-J2 AFM Heisenberg model
(5). The blue ellipses indicate that the spins S1 (open circle) and S2 (filled circle) form a singlet state and τ1 and τ2 are the primitive vectors
of the dimerized lattice D defined by the (blue) singlets. The green rectangle indicates the one-dimensional subsystem A (dimer chain of size
L) considered in the calculations of the entanglement entropy. (c) Brillouin zones of the dimerized (solid line) and the original square (dashed
line) lattices. Here X = (π/2, 0), M = (π/2, π ), and Y = (0, π ). The lattice spacing a of the original square lattice is set to 1.

Néel and the VBS phases are described by two distinct order
parameters.

The elementary excitations of a dimerized VBS phase cor-
respond to singlets turned into triplets, the so-called triplons
[1]. Such excitations can be analytically described, for in-
stance, within the bond operator representation [19], where
spin operators are expanded in terms of singlet (s) and triplet
(t) boson operators. This formalism follows the ideas of
the Holstein-Primakoff representation for spins [20], which
describes fluctuations (spin waves) above a (semiclassical)
ground state with magnetic long-range order. The bond op-
erator representation, however, describes fluctuations above
a quantum paramagnetic ground state. For a VBS phase, the
bond operator formalism allows us to map a spin Hamiltonian
into an interacting Hamiltonian in terms of triplet operators
t , as exemplified below. From the lowest-order (quadratic)
terms of the interacting triplet Hamiltonian, we determine the
triplon (boson) operators b in terms of the triplet operators
t and find the triplon spectrum. The effects of the cubic and
quartic triplet-triplet interactions can be perturbatively taken
into account (as done, e.g., in Refs. [21,22], respectively,
for dimerized and tetramerized VBS phases), and therefore,
corrections to the (harmonic) energy of the triplons can be
determined. In particular, the procedure employed in Ref. [21]
allows us to systematically determine an interacting boson
model for the triplons.

In this paper, we study the effective interacting boson
model for the triplons b derived within the bond operator
formalism for a given VBS (reference) state but, instead of fol-
lowing the procedure employed in Refs. [21,22], we consider
systems with a fixed number N̄ of triplons b and determine
the stability and the properties of possible many-triplon states
within a mean-field approximation. The first motivation for
our paper is to check whether a state with a large number
N̄ of triplons b could restore some of the lattice symmetries
broken when the VBS state sets in: Once a given number of
triplons are excited above the VBS ground state, the triplon-
triplon interaction could yield two-triplon bound states with
total spin zero; the new ground state should also be formed
by a set of singlets, similar to the VBS state, but it should
no longer display the original VBS pattern; indeed, short
(nearest-neighbor) and long singlets might be present, and,

therefore, some of the lattice symmetries might be restored.
The second motivation for our paper is to verify whether such
a many-triplon state could describe a (gapped) spin-liquid
phase: If so, then the procedure discussed in this paper could
be employed to study spin-liquid phases within the bond
operator formalism, i.e., it would be an alternative to the
Schwinger boson formalism [20] that is used to analytically
describe gapped spin-liquid phases [23].

In order to determine the stability of many-triplon states
and their possible relation with gapped spin-liquid phases, we
consider, in particular, the spin-1/2 J1-J2 AFM Heisenberg
model on the square lattice, since, in principle, it can host a
VBS phase. Moreover, we concentrate on a columnar VBS
phase, which is considered as the reference state. In addition
to discussing the stability of possible many-triplon states, we
also determine its features in terms of the triplon number
N̄ : the corresponding spin-spin and dimer-dimer correlation
functions, dimer order parameters, and the bipartite von-
Neumann entanglement entropy are determined within our
mean-field formalism.

A. Overview of the results

Within the bond operator formalism, we first map the
square lattice spin-1/2 AFM Heisenberg model [Eq. (5)]
into an effective boson model in terms of triplet operators t
[Eqs. (8) and (11)–(14)], which is studied at the harmonic
approximation, and then perform a second mapping that
yields an effective boson model in terms of triplon operators
b [Eq. (34)], which is studied at a mean-field approximation.
Our main findings are the following:
(a) Harmonic approximation for effective boson model I:
We calculate the ground-state energy of the columnar VBS
[Fig. 3(a)] in terms of J2/J1 and the energy of the triplons
(Fig. 4). We find that the columnar VBS is stable for
0.30 J1 � J2 � 0.63 J1 and that the excitation spectra are
gapped (Fig. 5).
(b) Mean-field approximation for effective boson model II:
We find that many-triplon states are stable as long as the
triplon number N̄ � N̄Max,2 (Fig. 6), the lowest-energy ones
are constituted by a small number of triplons [Figs. 3(b) and
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6], and the excitation spectra above the many-triplon states are
gapped (Figs. 4 and 5).
(c) Properties of the many-triplon states: For J2 = 0.48J1

and 0.52J1, we find that the spin-spin (Figs. 7 and 8) and
the dimer-dimer (Fig. 9) correlation functions decay expo-
nentially and that the bipartite von Neumann entanglement
entropies (Fig. 11) obey an area law, regardless the triplon
number N̄ . Interestingly, the spin-spin-correlation function
Cx(r) [Figs. 7(a) and 8(a)] and the dimer-dimer correlation
function Dxx(r) (Fig. 9) indicate that the many-triplon states
with large triplon number N̄ might display a more homo-
geneous singlet pattern than the columnar VBS only for
J2 = 0.48J1. Our analysis indicates that, within the quantum
paramagnet (disordered) parameter region of the square lattice
J1-J2 model, configurations with J2 � 0.51J1 and J2 � 0.51J1

display distinct features as recently found by numerical calcu-
lations [24–27].
(d) Possible relation with spin-liquid phases: The results
for the dimer order parameters (Fig. 10) and the bipartite
von Neumann entanglement entropies (Fig. 11) indicate that
many-triplon states with large triplon number N̄ do not de-
scribe a gapped spin-liquid phase for the square lattice J1-J2

model when a columnar VBS is considered as a reference
state.

The reader not interested in technical details may skip
Secs. II–VII and go straight to Sec. VIII.

B. Outline

Our paper is organized as follows. In Sec. II, we briefly
summarize the bond operator representation [19] for spin
operators. A short review about the square lattice spin-1/2
J1-J2 AFM Heisenberg model is presented in Sec. III. In
Sec. IV, an effective boson model in terms of the triplet
operators t for the columnar VBS phase is derived and it
is studied within the (lowest-order) harmonic approximation.
Here, we define the triplon operators b in terms of the triplet
operators t and determine the energy of the triplons. An
effective interacting boson model for the triplon operators
b is derived in Sec. V. We then consider systems with a
fixed number N̄ of triplons, discuss the stability of the many-
triplon states, and determine the excitation spectra within a
mean-field approximation. In Sec. VI, spin-spin and dimer-
dimer correlation functions and dimer order parameters of
the columnar VBS ground state and the many-triplon state
with different values of the triplon number N̄ are determined.
Section VII is devoted to the calculation of the bipartite von
Neumann entanglement entropy of the columnar VBS ground
state and the many-triplon states. Here a one-dimensional
(line) subsystem is considered, a choice that allows us to ana-
lytically determine the entanglement entropies. We comment
on possible implications of our results for the J1-J2 model and
provide a brief summary of our main findings in Sec. VIII.
Some details of the results discussed in the main text are
presented in the Appendices.

II. BOND OPERATOR REPRESENTATION

We start by briefly reviewing the bond operator represen-
tation for spins introduced by Sachdev and Bhatt [19]. Our
summary closely follows the lines of Ref. [28].

Let us consider the Hilbert space of two S = 1/2 spins, S1

and S2, which is made out of a singlet and three triplet states:

|s〉 = 1√
2

(|↑ ↓〉 − |↓ ↑〉), |tx〉 = 1√
2

(|↓ ↓〉 − |↑ ↑〉),

|ty〉 = i√
2

(|↑ ↑〉 + |↓ ↓〉), |tz〉 = 1√
2

(|↑ ↓〉 + |↓ ↑〉). (1)

One can define a set of boson operators, s† and t†
α , with α = x,

y, z, which, respectively, creates singlet and triplet states out
of a fictitious vacuum |0〉, i.e.,

|s〉 = s†|0〉 and |tα〉 = t†
α |0〉, (2)

with α = x, y, z. In order to remove unphysical states from the
enlarged Hilbert space, the constraint

s†s +
∑

α

t†
αtα = 1 (3)

should be introduced. Then, one calculates the matrix ele-
ments of each component of the two spin operators within the
basis |s〉 and |tα〉; i.e., one determines 〈s|Sμ

α |s〉, 〈s|Sμ
α |tβ〉, and

〈tγ |Sμ
α |tβ〉, with μ = 1, 2 and α, β, γ = x, y, z. The set of

results allows us to conclude that the components of the spin
operators S1 and S2 can be expressed in terms of the boson
operators s† and t†

α as

S1,2
α = ± 1

2 (s†tα + t†
αs ∓ iεαβγ t†

βtγ ), (4)

where εαβγ is the completely antisymmetric tensor with
εxyz = 1 and the summation convention over repeated in-
dices is considered. One then generalizes the bond operator
representation (4) for the lattice case, and, therefore, a spin
Hamiltonian can be easily written in terms of the boson
operators s†

i and t†
i α .

III. THE J1-J2 SQUARE LATTICE ANTIFERROMAGNET
HEISENBERG MODEL

To study a system of interacting triplons, we consider, in
particular, the spin-1/2 J1-J2 AFM Heisenberg model on the
square lattice:

H = J1

∑
〈i j〉

Si · S j + J2

∑
〈〈i j〉〉

Si · S j, (5)

where Si is a spin-1/2 operator at site i and J1 > 0 and
J2 > 0 are, respectively, the nearest-neighbor and next-
nearest–neighbor exchange couplings [see Fig. 1(b)].

It is well known [22–27,29–41] that, at temperature
T = 0, the model (5) has a semiclassical Néel magnetic
LRO phase with ordering wave vector Q = (π, π ) for
J2 � 0.4 J1, a collinear magnetic LRO phase with Q = (π, 0)
or (0, π ) for J2 � 0.6 J1, and a quantum paramagnetic phase
for 0.4 J1 � J2 � 0.6 J1. The nature of the quantum param-
agnetic phase is still under debate. Indeed, several proposals
have been made for the ground state of the model (5) within
this intermediate parameter region: a (dimerized) columnar
VBS [Fig. 1(a)], where both translational and rotational lat-
tice symmetries are broken [34,35]; a (dimerized) staggered
VBS [36]; a (tetramerized) plaquette VBS, where only the
translational lattice symmetry is broken [22,24,37]; a mixed
columnar-plaquette VBS [38]; and gapless [25,39–41] and
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gapped [23] spin-liquid ground states. Moreover, while there
are indications that the quantum paramagnetic-collinear is
a first-order QPT, it is not clear whether the Néel-quantum
paramagnetic QPT is a first-order or a continuous transition
[42].

In the following, we concentrate on the intermediate pa-
rameter region 0.4 J1 � J2 � 0.6 J1 and, in particular, con-
sider the columnar VBS phase [Fig. 1(a)].

IV. EFFECTIVE BOSON MODEL I

In this section, we consider the bond operator representa-
tion (4) and derive an effective boson Hamiltonian in terms of
the triplet operators ti α to describe the columnar VBS phase
of the Heisenberg model (5).

We start by rewriting the Hamiltonian (5) in terms of the
underline dimerized lattice D defined by the singlets (dimers)
as shown in Fig. 1(a):

H =
∑
i∈D

J1
(
S1

i · S2
i + S1

i · S1
i+2 + S2

i · S2
i+2 + S2

i · S1
i+1

)

+ J2
(
S1

i · S2
i+2 + S2

i · S1
i+2

)
+ J2

(
S2

i · S1
i+1+2 + S2

i · S1
i+1−2

)
. (6)

Here, i is a site of the dimerized lattice D, which has two spins
per unit cell (S1

i and S2
i ), and the index n = 1, 2 corresponds

to the dimer nearest-neighbor vectors τn:

τ1 = 2ax̂, τ2 = aŷ, (7)

with a being the lattice spacing of the original square lattice.
Hereafter, we set a = 1.

An effective model in terms of the singlet si and triplet
tiα boson operators can be obtained by substituting the bond
operator representation (4) generalized to the lattice case into
the Hamiltonian (6). It is easy to show that the Hamiltonian
(6) assumes the form

H = H0 + H2 + H3 + H4, (8)

where the Hn terms contain n triplet operators [for details,
see Eq. (A1)]. Moreover, we consider the constraint (3) on
average via a Lagrange multiplier μ, i.e., we add the following
term to the Hamiltonian (8):

−μ
∑

i

(s†
i si + t†

iαtiα − 1).

Within the bond operator formalism, the columnar VBS
ground state [Fig. 1(a)] can be viewed as a condensate of the
singlets si. Therefore, one sets

s†
i = si = 〈s†

i 〉 = 〈si〉 → √
N0 (9)

in the Hamiltonian (8) and ends up with an effective boson
Hamiltonian only in terms of the triplet boson operators tiα . As
discussed below, the constants N0 and μ are self-consistently
determined for a fixed value of the ratio J2/J1 of the exchange
couplings.

Finally, considering the Fourier transform,

t†
iα = 1√

N ′
∑
k∈BZ

e−ik·Ri t†
kα, (10)

where Ri is a vector of the dimerized lattice D, N ′ = N/2
is the number of dimers (N is the number of sites of the
original square lattice), and the momentum sum runs over
the dimerized first Brillouin zone [Fig. 1(c)], we find that, in
momentum space, the four terms Hn of the Hamiltonian (8)
read

H0 = −3

8
J1NN0 − 1

2
μN (N0 − 1), (11)

H2 =
∑

k

[
Akt†

kαtkα + 1

2
Bk(t†

kαt†
−kα + H.c.)

]
, (12)

H3 = 1

2
√

N ′ εαβλ

∑
p,k

ξk−p t†
k−pαt†

pβtkλ + H.c., (13)

H4 = 1

2N ′ εαβλεαμν

∑
q,p,k

γk t†
p+kβt†

q−kμtqνtpλ, (14)

with the coefficients Ak, Bk, ξk, and γk given by

Ak = 1
4 J1 − μ + Bk, (15)

Bk = − 1
2 N0[J1 cos(2kx ) − 2(J1 − J2) cos(ky)

+ J2 cos(2kx + ky) + J2 cos(2kx − ky)], (16)

ξk = −√
N0[J1 sin(2kx ) + J2 sin(2kx + ky)

+ J2 sin(2kx − ky)], (17)

γk = − 1
2 [J1 cos(2kx ) + 2(J1 + J2) cos ky

+J2 cos(2kx + ky) + J2 cos(2kx − ky)]. (18)

We should mention that the results presented in this section
and in Sec. IV A below were previously quoted in Appendix
D from Ref. [22]. Here, however, we derive them in detail
following, e.g., the lines of Ref. [28].

Harmonic approximation

Let us consider the effective boson model (8) in the lowest-
order (harmonic) approximation. Here, we only keep the
terms of the Hamiltonian (8) up to the quadratic order in the
boson operators tkα:

HHM
2 ≈ H0 + H2. (19)

Since the Hamiltonian HHM
2 is quadratic in the triplet opera-

tors tkα , it can be diagonalized by the Bogoliubov transforma-
tion

tkα = ukbkα − vkb†
−kα,

t†
−kα = ukb†

−kα − vkbkα. (20)

We find that

HHM
2 = EHM

0 +
∑
k α

ωkb†
kαbkα, (21)
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FIG. 2. Parameters N0 and μ as functions of J2/J1 for the colum-
nar VBS ground state (harmonic approximation) determined from
the numerical solutions of the self-consistent equations (25).

where

EHM
0 = −3

8
J1NN0 − 1

2
μN (N0 − 1) + 3

2

∑
k

(ωk − Ak )

(22)
is the ground-state energy,

ωk =
√

A2
k − B2

k (23)

is the energy of the triplons (the elementary excitations above
the VBS ground state |VBS〉), and the coefficients uk and vk
of the Bogoliubov transformation (20) read

u2
k, v

2
k = 1

2

(
Ak

ωk
± 1

)
and ukvk = Bk

2ωk
. (24)

The constants μ and N0 are calculated from the saddle-point
conditions ∂EHM

0 /∂N0 = 0 and ∂EHM
0 /∂μ = 0, and, there-

fore, we find a set of self-consistent equations,

μ = −3J1

4
+ 3

2N0

1

N ′
∑

k

Bk

(
Ak − Bk

ωk
− 1

)
,

N0 = 1 − 1

N ′
∑
k α

〈t†
kαtkα〉 = 1 + 3

2N ′
∑

k

(
1 − Ak

ωk

)
, (25)

that are solved for a fixed value of the ratio J2/J1. Note
that, once the constants μ and N0 are calculated, the ground-
state energy (22) and the triplon dispersion relation (23) are
completely determined.

The numerical solutions of the set of self-consistent
equations (25) are shown in Fig. 2, where the parameters
μ and N0 are plotted as a function of J2/J1. One sees
that N0 and μ monotonically increase with J2/J1 up to
J2 = 0.55 J1. Moreover, one notices that, within the har-
monic approximation, the columnar VBS phase is stable for
0.30 J1 � J2 � 0.63 J1, i.e, a parameter region larger than the
one (0.4 J1 � J2 � 0.6 J1) expected for the disordered phase
of the model (5) (see Sec. III). Such a feature of the harmonic
approximation was found in our previous studies [21,22,28].

Figure 3(a) shows the ground-state energy (22) in terms
of the ratio J2/J1. Similar to the parameters μ and N0,
the ground-state energy EHM

0 monotonically increases with
J2/J1, but up to J2 = 0.57 J1. For comparison, the ground-
state energy of the plaquette VBS phase determined within
a harmonic approximation [22] is also included. One sees
that, within the corresponding harmonic approximations, the
(tetramerized) plaquette VBS ground state has lower energy
than the (dimerized) columnar VBS one. Finally, we should
mention that EHM

0 of the columnar VBS ground state was
also previously reported in Ref. [22]. However, we found a
mistake in our previous numerical code, and, therefore, the
results shown in Fig. 3(a) are indeed the correct ones.

The triplon excitation spectrum ωk [Eq. (23)] of the colum-
nar VBS phase for J2 = 0.48 J1 is shown in Fig. 4(a). As
expected for a disordered phase, the triplon excitation spec-
trum is gapped. Moreover, one notices that the triplon gap

0.3 0.35 0.4 0.45 0.5 0.55 0.6
J2/J1

-0.56

-0.52

-0.48

-0.44

E
0/N

J 1
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N = 0.10 N
N = 0.20 N
VBS
plaquette

(a)

0 0.05 0.1 0.15 0.2
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-0.44

E
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J 1

J2 = 0.48 J1

J2 = 0.50 J1

J2 = 0.52 J1

(b)

FIG. 3. (a) The energies E0 [Eq. (42)] per site in terms of J2/J1 of the many-triplon state (47) with the triplon number N̄ = N̄GS (thick solid
black line), N̄ = 0.10 N (dashed magenta line), and N̄ = 0.20 N (dashed green line). The corresponding harmonic results for the columnar
VBS ground state EHM

0 [Eq. (22)] (thin solid red line) and for the plaquette VBS ground state [22] (dot-dashed blue line) are also included.
(b) The energies E0 [Eq. (42)] per site in terms of N̄/N of the many-triplon state (47) for J2 = 0.48 J1 (solid black line), J2 = 0.50 J1 (dashed
red line), and J2 = 0.52 J1 (dot-dashed green line).
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FIG. 4. Triplon dispersion relations ωk [Eq. (23)] of the columnar VBS phase at the harmonic approximation (dashed black lines) and the
dispersion relations �̄k [Eq. (43)] of the elementary excitations above the many-triplon state (47) within a mean-field approximation (solid
lines) along paths in the dimerized Brillouin zone [Fig. 1(c)] for (a) J2 = 0.48 J1 and (b) J2 = 0.52 J1. Results for four different values of N̄
are shown: N̄ = N̄GS (solid black line), N̄ = 0.10 N (solid red line), N̄ = 0.15 N (solid green line), and N̄ = 0.20 N (solid blue line).

(the minimum of the dispersion relation ωk) is located at the
Y = (0, π ) point of the first Brillouin zone [Fig. 1(c)]. Indeed,
we find that these two features hold for the parameter region
0.30 J1 � J2 � 0.50 J1. Similarly, for the parameter region
0.50 J1 � J2 � 0.63 J1, we also find a finite triplon excitation
gap, but here it is associated with the  point (the center
of the first Brillouin zone), as exemplified in Fig. 4(b) for
J2 = 0.52 J1. The complete behavior of the triplon gap as a
function of J2/J1 is shown in Fig. 5. We should note that,
for the first and second parameter regions mentioned above,
the momenta associated with the triplon gap are, respectively,
equal to the ordering wave vectors Q of the Néel and collinear
magnetic long-range ordered phases that set in for small and
large J2 (see Sec. III). As discussed, e.g., in Refs. [21,22], the
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J2/J1
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0.2

0.4

0.6

0.8

1

Δ/
J 1

ωY
ωΓ
ΩY
ΩM

FIG. 5. Harmonic excitation gap (dashed lines) of the columnar
VBS phase and the excitation gap (solid lines) above the many-
triplon state (47) with N̄ = N̄GS as a function of J2/J1. ωY (black
dashed line) and ω (green dashed line) are, respectively, the energies
ωk [Eq. (23)] of the triplon at the Y = (0, π ) and the  points of
the dimerized Brillouin zone; �̄Y (solid red line) and �̄M (solid
dark green line) are, respectively, the energies �̄k [Eq. (43)] of
the elementary excitations above the many-triplon state (47) with
N̄ = N̄GS at the Y = (0, π ) and the M = (π/2, π ) points of the
dimerized Brillouin zone.

vanishing of the triplon gap defines a quantum phase transition
to a magnetic ordered phase. Here, the triplon gap determined
within the harmonic approximation decreases as we approach
the critical couplings J2c = 0.30 J1 and 0.63 J1, but it does not
vanish.

As mentioned in Sec. I, the effects of the cubic [Eq. (13)]
and the quartic [Eq. (14)] triplet-triplet interactions can be per-
turbatively taken into account and corrections to the harmonic
results obtained. In particular, such effects could decrease
the triplon excitation gap and, eventually, it could vanish at
different critical couplings J2c. In this case, the closing of the
triplon gap determines the region of stability of the VBS phase
which, in general, is smaller than the one determined within
the harmonic approximation (see, e.g., Fig. 10 of Ref. [21]
and Fig. 7 of Ref. [22]). Since a careful determination of the
critical couplings J2c is not in the scope of this paper, we will
not employ the perturbative treatment described above. In the
following, we discuss the many-triplon states based on the
harmonic results.

V. EFFECTIVE BOSON MODEL II

Once the triplon operators bkα are defined in terms of
the triplet operators tkα [Eq. (20)] and the triplon spectrum
(23) and the triplon vacuum |VBS〉 are determined within the
harmonic approximation, we now consider a system with a
fixed number N̄ of triplons.

We start by expressing the effective boson model (8) in
terms of the boson operators bkα , i.e., we derive an effective
boson model for the triplons b. With the aid of the Bogoliubov
transformation (20), one shows that the cubic term (13) can be
written in terms of the b operators as [21]

H3 = 1

2
√

N ′
∑
k,p

∑
α,β,γ

′
�1(k, p)(b†

k−pαb†
pβbkγ + H.c.)

+ 1

2
√

N ′
∑
k,p

�2(k, p)(b†
k−pxb†

pyb†
−kz + H.c.). (26)

Here, the sum over α, β, and γ has only three components,
(α, β, γ ) = (x, y, z), (z, x, y), and (y, z, x), and the renormal-
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ized vertex �1(k, p) reads

�1(k, p) = (ξk−p − ξp)(uk−pupuk + vk−pvpvk )

+ (ξk + ξp)(vk−pupvk + uk−pvpuk )

− (ξk−p + ξk )(vk−pupuk + uk−pvpvk ), (27)

with ξk being the bare cubic vertex (17) and uk and
vk being the Bogoliubov coefficients (24). The vertex
�2(k, p) = −�1(k, p) with the replacements uk ↔ vk.

Following the same procedure for the quartic term (14),
one shows, after normal ordering, that

H4 = E40 + H24 + H44, (28)

where

E40 = 3

N ′
∑
k,p

γk−p
(
ukvkupvp − v2

kv
2
p

)
, (29)

H24 =
∑

k

[
A(4)

k b†
kαbkα + 1

2
B(4)

k (b†
kαb†

−kα + H.c.)

]
, (30)

and

H44 = 1

2N ′ εαβλεαμν

∑
q,p,k

[1(p, q, k) b†
p+kβb†

q−kμb†
−qνb†

−pλ + H.c.

+2(p, q, k) b†
p+kβb†

q−kμb†
−qνbpλ + H.c.

+3(p, q, k) b†
p+kβb†

q−kμbqνbpλ

+4(p, q, k) b†
p+kβb†

−pλb−q+kμbqν]. (31)

Here, the coefficients A(4)
k and B(4)

k are given by

A(4)
k = 2

N ′
∑

p

γk−p
[
2ukvkupvp − (

u2
k + v2

k

)
v2

p

]
,

B(4)
k = 2

N ′
∑

p

γk−p
[
2ukvkv

2
p − (

u2
k + v2

k

)
upvp

]
, (32)

and the functions i(p, q, k) read

1(p, q, k) = γk up+kuq−kvqvp,

2(p, q, k) = 2γk(vp+kuq−kvqvp − up+kuq−kvqup),

3(p, q, k) = γk(up+kuq−kuqup + vp+kvq−kvqvp (33)

−up+kvq−kvqup − vp+kuq−kuqvp),

4(p, q, k) = 2γk up+kvq−kuqvp,

with γk being the bare quartic vertex (18) and uk and vk
being the Bogoliubov coefficients (24). We refer the reader
to Eq. (B6) for alternative expressions for the constant E40

and the coefficients A(4)
k and B(4)

k that are useful in the self-
consistent problem discussed in the next section.

Therefore, the effective (interacting) boson model for the
triplons b (considering the columnar VBS as a reference state)
assumes the form

H = HHM
2 + H3 + H4, (34)

where HHM
2 is the (quadratic) harmonic Hamiltonian (21), and

the cubic H3 and quartic H4 terms are, respectively, given by
Eqs. (26) and (28).

Mean-field approximation

In this section, we study systems with a fixed number N̄
of triplons described by the Hamiltonian (34). In particular,
we neglect the cubic term H3 and consider the quartic term
H4 within a mean-field approximation. The idea is to verify
whether a ground state formed by a certain number of triplons
(the many-triplon state) is stable, in addition to determine the
corresponding excitation spectrum.

It is easy to show that, within a mean-field approximation,
the quartic term H44 [Eq. (31)] assumes the form

HMF
44 = E44 +

∑
kα

[
�1,kb†

kαbkα + 1

2
�2,k(b†

kαb†
−kα + H.c.)

]
,

(35)

where the constant E44 [Eq. (B7)] and the coefficients �1,k
[Eq. (B8)] and �2,k [Eq. (B9)] are defined in terms of the bare
quartic vertex γk [Eq. (18)], the Bogoliubov coefficients uk
and vk [Eq. (24)], and the normal (hk) and anomalous (h̄k)
expectation values:

hk ≡ 〈b†
kαbkα〉, h̄k ≡ 〈bkαb−kα〉. (36)

Due to the fact that the quartic term H44 does not conserve
the number of particles, one should include not only hk but
also h̄k. Moreover, we consider both normal and anomalous
expectation values independent of α, since the triplon energy
(23) and the quartic vertices i(p, q, k) [Eq. (33)] do not
depend on the index α.

From Eqs. (21), (29), (30), and (35), we then find that the
mean-field Hamiltonian for a system of N̄ triplons is given by

H = HMF − μ̄N̄,

H = HHM
2 + E40 + H24 + HMF

44 − μ̄N̄,

H = EHM
0 + E40 + E44

+
∑
kα

[
Ākb†

kαbkα + 1

2
B̄k(b†

kαb†
−kα + H.c.)

]
. (37)

Here, the coefficients Āk and B̄k read

Āk = ωk + A(4)
k + �1,k − μ̄,

B̄k = B(4)
k + �2,k, (38)

with ωk being the harmonic triplon energy (23), the coeffi-
cients A(4)

k and B(4)
k given by Eq. (32), and the coefficients

�1,k and �2,k, respectively, given by Eqs. (B8) and (B9).
Moreover, μ̄ is the chemical potential related to the total
number of triplons b, i.e.,

N̄ =
∑
k α

b†
kαbkα. (39)

The Hamiltonian (37) can be diagonalized by a Bogoliubov
transformation similar to the transformation (20):

bkα = ūkakα − v̄ka†
−kα,

b†
−kα = ūka†

−kα − v̄kakα. (40)

We then arrive at

H = E0 +
∑
k α

�̄ka†
kαakα, (41)
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where

E0 = EHM
0 + E40 + E44 + 3

2

∑
k

(�̄k − Āk ) (42)

is the energy of the many-triplon state |�0〉 [see Eq. (47)
below],

�̄k =
√

Ā2
k − B̄2

k (43)

is the energy of the elementary excitations above the many-
triplon state |�0〉, and the coefficients ūk and v̄k of the
Bogoliubov transformation (40) are given by

ū2
k, v̄

2
k = 1

2

(
Āk

�̄k
± 1

)
and ūkv̄k = B̄k

2�̄k
. (44)

From Eqs. (40) and (44), one shows that the normal hk and
anomalous h̄k expectation values (36) assume the form

hp = 〈b†
pαbpα〉 = v̄2

p = 1

2

(
−1 + Āk

�k

)
,

h̄p = 〈bpαb−pα〉 = −v̄pūp = − B̄p

2�p
. (45)

Moreover, considering the condition (39) on average, Eq. (45)
yields

N̄

N
= 3

4N ′
∑

k

(
−1 + Āp

�p

)
, (46)

where N is the number of sites of the original square lat-
tice. Importantly, only systems with N̄ � N/2 should be
considered.

We determine the normal and anomalous expectation
values (45) and the chemical potential μ̄ related to the con-
dition (46) for fixed values of the triplon number N̄ and the
ratio J2/J1 of the exchange couplings by numerically solving
the self-consistent problem defined by Eqs. (B13)–(B15). We
refer the reader to Appendix B for the details of the self-
consistent procedure. Importantly, for a given value of the
ratio J2/J1, we consider the values of the parameter N0 and
the Lagrange multiplier μ determined within the harmonic
approximation for the columnar VBS state (Fig. 2), since it
is the reference state that defines the triplons b.

Before discussing the numerical results, a few remarks here
about the nature of the many-triplon state |�0〉 are in order:
It is possible to show that the expectation values (45) are
consistent with the state

|�0〉 = C
∏

k

exp(−φkb†
−kαb†

kα )|VBS〉, (47)

where φk = v̄k/ūk with ūk and v̄k being the Bogoliubov
coefficients (44), the normalization constant C−2 = ∏

k ū2
k,

and |VBS〉 is the vacuum for the triplons b. Therefore, the
many-triplon state (within our mean-field approximation) is a
BCS-like state that correlates pairs of triplons b with momenta
k and −k and the same index α = x, y, z. Importantly, |�0〉
does not describe a triplon-pair condensate, since here there is
no U (1) symmetry to be broken. Indeed, both the Hamiltonian
(34) and the ground state (47) only preserve a Z2 symmetry:
bk → −bk.
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FIG. 6. The parameters N̄Max,1 (dashed green line), N̄Max,2 (thick
solid red line), and N̄GS (thin solid blue line) as a function of
J2/J1 determined from the numerical solutions of the self-consistent
problem (B13)–(B15).

For a fixed value of the ratio J2/J1, we find numerical
solutions for the self-consistent problem (B13)–(B15) only
for N̄ � N̄Max,1, where the values of the parameter N̄Max,1

as a function of J2/J1 are shown in Fig. 6. Importantly,
for 0.48J1 � J2 � 0.54J1, we find solutions for the self-
consistent problem with

NTriplet = 1

N ′
∑
k α

〈t†
kαtkα〉 > 1.

Taking into account the additional condition NTriplet < 1, we
define the parameter N̄Max,2 (see Fig 6), and, therefore, we
only consider solutions of the self-consistent problem with
N̄ � N̄Max,2.

For a given value of the ratio J2/J1 of the exchange cou-
plings, the energy E0 [Eq. (42)] of the many-triplon state (47)
has a nonmonotonic behavior as N̄ increases [Fig. 3(b)] and, in
particular, it reaches a minimum value at N̄ = N̄GS, where the
values of N̄GS as a function of J2/J1 are displayed in Fig. 6.
One notices that N̄GS < 0.056 N , where N is the number
of sites of the original square lattice, i.e, the lowest-energy
many-triplon state (47) has a small number of triplons b. The
behavior of the energy (42) for N̄ = N̄GS as a function of J2/J1

is shown in Fig. 3(a). Interestingly, one sees that, for a given
value of J2/J1, the ground-state energy E0 of the many-triplon
state with N̄ = N̄GS is smaller than the ones of the columnar
[Eq. (22)] and plaquette [22] VBSs both determined at the
corresponding harmonic levels.

Figure 4 shows the energy of the elementary excita-
tions �̄k [Eq. (43)] above the many-triplon state (47) with
N̄ = N̄GS for J2 = 0.48J1 [Fig. 4(a)] and J2 = 0.52J1

[Fig. 4(b)]. Apart from the momenta close to the X point,
one sees that, for both values of the model parameter J2,
�̄k > ωk, where ωk is the corresponding (harmonic) triplon
energy (23). In particular, for J2 = 0.48J1, the excitation gap
is located at the Y point, the same momentum associated
with the triplon gap of the corresponding columnar VBS
state [dashed black line, Fig. 4(a)]. On the other hand, for
J2 = 0.52J1, the excitation gap is located at the M point,
different from the corresponding columnar VBS state the
triplon gap of which is associated with the  point [dashed
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black line, Fig. 4(b)]. Indeed, one finds that the features
described above for J2 = 0.48J1 hold for the parameter region
J2 � 0.51J1, while the ones found for J2 = 0.52J1 hold for
the parameter region J2 > 0.51J1. The complete behavior of
the excitation gap above the many-triplon state with N̄ = N̄GS

as a function of J2/J1 and a comparison with the (harmonic)
excitation gap of the columnar VBS ground state are shown in
Fig. 5.

In addition to the lowest-energy many-triplon state (47)
with N̄ = N̄GS, we also consider (high-energy) triplon states
with larger numbers of triplons, N̄ > N̄GS. In particular, in
Fig. 3(a), we show the energy (42) of the many-triplon
state for N̄ = 0.10 N and 0.20 N in terms of J2/J1. As al-
ready mentioned, for a given value of the ratio J2/J1, the
energy (42) increases with the number of triplons N̄ when
N̄ > N̄GS. Figure 4 also displays the spectra of the elementary
excitations �̄k [Eq. (43)] above the many-triplon state (47) for
N̄ = 0.10 N , 0.15 N , and 0.20 N and J2 = 0.48J1 [Fig. 4(a)]
and J2 = 0.52J1 [Fig. 4(b)]. Apart from the region around
the X point, the excitation spectra for N̄ > N̄GS have the
same (qualitatively) features of the corresponding ones for
N̄ = N̄GS. Moreover, we notice that, as N̄ increases from N̄GS

to 0.20 N , the excitation gap decreases and, in particular, it
decreases faster for J2 = 0.48J1 than for J2 = 0.52J1. Indeed,
the excitation gap almost vanishes as N̄ approaches N̄Max,1.
However, recall that, for the region 0.48J1 � J2 � 0.54J1, we
should only consider solutions of the self-consistent problem
(B13)–(B15) with N̄ � N̄Max,2.

VI. CORRELATION FUNCTIONS

To further characterize the many-triplon states (47), we
calculate spin-spin and dimer-dimer correlation functions and
dimer order parameters. We concentrate on two model con-
figurations, J2 = 0.48J1 and 0.52J1, since they exemplified the
two distinct regions identified in Sec. V A (J2 � 0.51J1 and
J2 > 0.51J1) and they are deep in the quantum paramagnetic
region of the J1-J2 model (5) (see Sec. III), where the har-
monic results are more reliable. In addition to the (lowest-
energy) many-triplon state (47) with N̄ = N̄GS, we also
consider states with N̄ > N̄GS. Moreover, comparisons with
the corresponding harmonic results for the columnar VBS
state |VBS〉 are also made.

A. Spin-spin-correlation functions

The spin-spin-correlation functions Cα (r) are defined as

Cα (r) = 〈Si · Si+rα̂〉, (48)

where Si is a spin-1/2 operator at the site i of the original
square lattice and α̂ = x̂, ŷ (recall that we set the lattice
spacing of the original square lattice a = 1). In terms of the
spin operators S1

i and S2
i of the dimerized lattice D [see

Fig. 1(a)], the spin-spin-correlation functions (48) assume the
form

Cx(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈(
S1

i

)2〉
, r = 0,〈

S1
i · S2

i

〉
, r = 1,〈

S1
i · S1

j

〉
, r = |R j − Ri| � 2,〈

S1
i · S2

j

〉
, r = |R j − Ri| + 1 � 3,

(49)

with R j − Ri = 2( j − i)x̂ and Ri being a vector of the
dimerized lattice D, and

Cy(r) = 〈
S1

i · S1
j

〉
, r = |R j − Ri|, (50)

with R j − Ri = ( j − i)ŷ.
It is possible to show that〈(

S1
i

)2〉 = 3
4 ,

〈
S1

i · S2
i

〉 = − 3
4 (N0 − I1,ii ),

〈
S1

i · S1
j

〉 = 3
2 [|I1,i j |2 − |I2,i j |2 + N0(I1,i j + I2,i j )], (51)

〈
S1

i · S2
j

〉 = 3
2 [|I1,i j |2 − |I2,i j |2 − N0(I1,i j + I2,i j )],

with i �= j. Here, the parameter N0 is determined within the
harmonic approximation for the columnar VBS state |VBS〉
[Eq. (25)], as already mentioned in Sec. V A. The integrals
I1,i j and I2,i j are given by

I1,i j = 1

N ′
∑

k

cos[k · (Ri − R j )] f (k),

I2,i j = 1

N ′
∑

k

cos[k · (Ri − R j )] f̄ (k), (52)

with N ′ = N/2, and the functions f (k) and f̄ (k) being defined
as

f (k) ≡ 〈t†
kαtkα〉, f̄ (k) ≡ 〈t†

kαt†
−kα〉. (53)

With the aid of the Bogoliubov transformation (20), one
shows that, for the columnar VBS state |VBS〉 within the
harmonic approximation, the functions f (k) and f̄ (k) read

f (k) = v2
k = 1

2

(
−1 + Ak

�k

)
,

f̄ (k) = −vkuk = − Bk

2�k
, (54)

with uk and vk being the Bogoliubov coefficients (24).
Similarly, using both Bogoliubov transformations (20) and
(40), one finds that, for the many-triplon state (47),

f (k) = (ukv̄k + vkūk )2

= 1

2ωk�̄k
(AkĀk + BkB̄k − ωk�̄k ), (55)

f̄ (k) = −(ukv̄k + vkūk )(ukūk + vkv̄k )

= − 1

2ωk�̄k
(AkB̄k + BkĀk ), (56)

with ūk and v̄k being the Bogoliubov coefficients (44).
Figure 7 shows, for J2 = 0.48J1, the spin-spin Cx(r)

[Fig. 7(a)] and Cy(r) [Fig. 7(b)] correlation functions of the
columnar VBS ground state (dashed black lines) and of the
many-triplon state (47) (solid lines) with different values of
the triplon number N̄ . One notices that, for the columnar VBS
state, both spin-spin correlation functions decay exponen-
tially, as expected for a phase with a finite (triplet) excitation
gap. Moreover, the correlation length associated with Cx(r) is
larger than the one related to Cy(r). Such distinct behaviors
found for the Cx(r) and the Cy(r) correlation functions are re-
lated to the symmetries of the columnar VBS state: Recall that
we consider, in particular, a columnar VBS state with dimers
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FIG. 7. Spin-spin-correlation functions (odd distances r) (a) Cx (r) [Eq. (49)] and (b) Cy(r) [Eq. (50)] of the many-triplon state (47) for
J2 = 0.48 J1. Mean-field results for different values of the triplon number N̄ (solid lines) are shown: N̄ = N̄GS (black), N̄ = 0.10 N (red), N̄ =
0.12 N (green), N̄ = 0.14 N (blue), N̄ = 0.16 N (magenta), N̄ = 0.18 N (orange), and N̄ = 0.20 N (dark green). The corresponding harmonic
results for the columnar VBS ground-state |VBS〉 are also included (dashed black line).

along the x direction. Similarly, for the many-triplon state, the
two spin-spin-correlation functions also decay exponentially,
regardless of the triplon number N̄ . For the columnar VBS
ground state and the many-triplon states with N̄ � 0.12 N , the
correlation lengths associated with the correlation function
Cx(r) are approximately equal while, for N̄ � 0.14 N , the
correlation length increases with N̄ . Such features might be
related to the fact that the excitation gap above the colum-
nar VBS ground state and the ones above the many-triplon
state with N̄GS � N̄ � 0.10 N are approximately equal [see
Fig. 4(a)] while, for N̄ > 0.10 N , the excitation gap above
the many-triplon state decreases as N̄ increases. On the other
hand, for N̄ < 0.14 N , the correlation length associated with
the correlation function Cy(r) seems to be less sensitive to
the excitation gap, since it always increases with the triplon
number N̄ . Again, these different features displayed by the
Cx(r) and the Cy(r) correlation functions of the many-triplon
state with N̄ < 0.14 N might be due to the symmetries of the
columnar VBS (reference) state. Interesting, for larger values
of the triplon number N̄ , the behaviors of the Cx(r) and the
Cy(r) correlation functions are quite similar, indicating that,
in this case, the many-triplon states should display a more
homogeneous singlet pattern than the columnar VBS ground
state.

The spin-spin Cx(r) and Cy(r) correlation functions of
the columnar VBS ground state and the many-triplon state
(47) with different values of the triplon number N̄ for
J2 = 0.52J1 are shown in Figs. 8(a) and 8(b), respectively.
Similar to the configuration J2 = 0.48J1, both correlation
functions exponentially decay with the distance r. Interest-
ingly, for the many-triplon state, the correlation lengths as-
sociated with the correlation function Cx(r) are independent
of the triplon number N̄ and they are almost equal to the
corresponding one of the columnar VBS ground state. Again,
this feature might be related to the fact that the excitation gap
above the many-triplon state slowly decreases with the triplon
number N̄ and they are close to the excitation gap above the
columnar VBS ground state [see Fig. 4(b)]. On the other hand,
the correlation length associated with the correlation function

Cy(r) increases with N̄ , similar to the behavior found for
J2 = 0.48J1. Differently from the configuration J2 = 0.48J1,
here the behaviors of the Cx(r) and the Cy(r) correlation
functions do not indicate that the many-triplon states with
large N̄ are constituted by a more homogeneous singlet pattern
than the corresponding columnar VBS state.

B. Dimer-dimer correlation functions

The dimer-dimer correlation functions Dαβ (i, j) are de-
fined as

Dαβ (i, j) = 〈Bα (i)Bβ ( j)〉 − 〈Bα (i)〉〈Bβ ( j)〉, (57)

where the dimer operator Bα (i) reads

Bα (i) = Si · Si+α̂, (58)

with Si being a spin-1/2 operator at the site i of the original
square lattice and α̂ = x̂, ŷ. Similar to the spin-spin-
correlation functions (48), we rewrite the dimer-dimer cor-
relation functions (57) in terms of the spin operators S1

i and
S2

i of the dimerized lattice D. In particular, the dimer-dimer
correlation function Dxx(r) assumes the form

Dxx(r) = 〈(
S1

i · S2
i

)(
S2

l · S1
j

)〉 − 〈(
S1

i · S2
i

)〉〈(
S2

l · S1
j

)〉
, (59)

for r = |R j − Ri| − 1, and

Dxx(r) = 〈(
S1

i · S2
i

)(
S1

j · S2
j

)〉 − 〈(
S1

i · S2
i

)〉〈(
S1

j · S2
j

)〉
, (60)

for r = |R j − Ri|, with R j − Ri = 2( j − i)x̂, R j − Rl = 2x̂,
and Ri being a vector of the dimerized lattice D. Here, it is
also possible to express Dxx(r) in terms of the integrals (52):

Dxx(r) = − 3
8 N0(I1,i j + I2,i j )(I1,il + I2,il )

+ 3
4 I1, jl (I1,i j I1,li + I2,i j I2,li )

− 3
4 I2, jl (I1,i j I2,li + I2,i j I1,li ), (61)

for r = |R j − Ri| − 1, and

Dxx(r) = 3
16 [|I1,i j |2 + |I2,i j |2], (62)
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FIG. 8. Spin-spin-correlation functions (odd distances r) (a) Cx (r) [Eq. (49)] and (b) Cy(r) [Eq. (50)] of the many-triplon state (47) for
J2 = 0.52 J1. Mean-field results for different values of the triplon number N̄ (solid lines) are shown: N̄ = N̄GS (black), N̄ = 0.10 N (red), N̄ =
0.12 N (green), N̄ = 0.14 N (blue), N̄ = 0.16 N (magenta), N̄ = 0.18 N (orange), and N̄ = 0.20 N (dark green). The corresponding harmonic
results for the columnar VBS ground-state |VBS〉 are also included (dashed black line).

for r = |R j − Ri|, with the parameter N0 being determined
within the harmonic approximation for the columnar VBS
state [see Eq. (25)]. Therefore, with the aid of Eqs. (52)–(56),
we can determine the dimer-dimer correlation function Dxx(r)
of the columnar VBS state and the many-triplon state (47).

The dimer-dimer correlation function Dxx(r) of the colum-
nar VBS ground state and of the many-triplon state (47) with
different values of the triplon number N̄ for J2 = 0.48J1 are
shown in Fig. 9(a). Similar to the columnar VBS state, the
dimer-dimer correlation function of the many-triplon states
decays exponentially, regardless of the value of the triplon
number N̄ . Such a behavior indicates that the singlet exci-
tation gap above the many-triplon state is finite. Moreover,
the correlation length associated with Dxx(r) increases with
the triplon number N̄ . These features are quite similar to
the ones found for the spin-spin correlation function Cx(r)
[Fig. 7(a)], although the dimer correlation decays faster
than the corresponding spin one and the dimer correlation
length always increases with the triplon number N̄ , even for
N̄ � 0.12 N .

For J2 = 0.52J1, we also found that the correlation
function Dxx(r) of both columnar VBS ground state and
many-triplon states decays exponentially [see Fig. 9(b)].
Differently from the configuration J2 = 0.48J1, here the cor-
relation length associated with Dxx(r) is independent of the
triplon number N̄ and it is close to the correlation length of the
columnar VBS state. Again, these features are quite similar
to the ones found for the corresponding spin-spin-correlation
function Cx(r) [Fig. 8(a)], apart from the fact that the dimer
correlations decay faster than the corresponding spin ones.

C. Dimer order parameters

Let us now consider the following dimer order parameters:

O1 = 〈
S1

i · S2
i

〉
,

O2 = 〈
S2

i · S1
j

〉
, R j − Ri = 2ax̂,

O3 = 〈
S1

i · S1
j

〉
, R j − Ri = aŷ,

O4 = 〈
S1

i · S2
j

〉
, R j − Ri = aŷ, (63)

0 10 20 30
r

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

D
xx

(r
)

NGS

N = 0.10 N
N = 0.12 N
N = 0.14 N
N = 0.16 N
N = 0.18 N
N = 0.20 N
VBS

(a)

0 5 10 15
r

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

D
xx

(r
)

NGS

N = 0.10 N
N = 0.12 N
N = 0.14 N
N = 0.16 N
N = 0.18 N
N = 0.20 N
VBS

(b)

FIG. 9. Dimer-dimer correlation function (odd distances r) Dxx (r) [Eq. (59)] of the many-triplon state (47) for (a) J2 = 0.48 J1 and (b) J2 =
0.52 J1. Mean-field results for different values of the triplon number N̄ (solid lines) are shown: N̄ = N̄GS (black), N̄ = 0.10 N (red), N̄ = 0.12 N
(green), N̄ = 0.14 N (blue), N̄ = 0.16 N (magenta), N̄ = 0.18 N (orange), and N̄ = 0.20 N (dark green). The corresponding harmonic results
for the columnar VBS ground-state |VBS〉 are also included (dashed black line).
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FIG. 10. (a) Schematic representation of the dimer order parameters (63) for the square lattice. Dimer order parameters (63) of the many-
triplon state (47) as a function of the ratio N̄/N are shown for (b) J2 = 0.48 J1 and (c) J2 = 0.52 J1. The solid symbols are the harmonic results
for the columnar VBS ground state while the open symbols are the mean-field results for the (lowest-energy) many-triplon state (47) with
N̄ = N̄GS.

where S1
i and S2

i are spin operators at the site i of the
dimerized lattice D and Ri is the vector associated with the
site i. The four dimer order parameters Oi are illustrated in
Fig. 10(a). With the aid of Eq. (51), one sees that the dimer
order parameters (63) can be written in terms of the integrals
I1,i j and I2,i j [Eq. (52)], and, therefore, they can be easily
calculated for both the columnar VBS state and many-triplon
state (47).

Figure 10 shows the behavior of the dimer order parameters
(63) as a function of the triplon number N̄ for J2 = 0.48 J1

[Fig. 10(b)] and J2 = 0.52 J1 [Fig. 10(c)]. The results for
the columnar VBS ground state are indicated by the solid
symbols, while the results for the (lowest-energy) many-
triplon state with N̄ = N̄GS are indicated by the open ones.
As expected, for the columnar VBS ground state, we found
that |O1| > |O2| ≈ |O3| ≈ |O4| while, for the lowest-energy
many-triplon state with N̄ = N̄GS, we have |O1| ≈ |O3| >

|O2| ≈ |O4|; i.e., apart from the value of the dimer order
parameter O3 (see discussion below), such a state might
display the same features of the columnar VBS state. For
a large triplon number N̄ , in particular, N̄ ∼ 0.17, we no-
tice that |O1| ≈ |O2| ≈ |O4| ∼ 0.46 for J2 = 0.48 J1, while
|O1| ≈ |O4| ∼ 0.45 > |O2| for J2 = 0.52J1. Therefore, the
dimer order parameters indicate that the many-triplon states
with large N̄ might display a more homogeneous singlet
pattern for J2 = 0.48 J1 than for J2 = 0.52 J1. Recall that such
features are in agreement with the ones found for the spin-spin
Cx(r) and Cy(x) correlation functions (see Sec. VI A).

Finally, concerning the behavior of the dimer order pa-
rameter O3 with the triplon number N̄ , it is not clear, at the
moment, the reason O3 increases so fast with N̄ . We believe
it could be an artifact of the approximations involved in our
mean-field calculations. Indeed, such an artifact could also
affect the behavior of the spin-spin correlation function Cy(r):
Recall that the correlation length associated with Cy(r) seems
to be less sensitive to the excitation gap than the correlation
length related to the correlation function Cx(r) (see Sec. VI A).

VII. ENTANGLEMENT ENTROPY

In this section, we calculate the bipartite von Neumann
entanglement entropy S of the columnar VBS and the many-

triplon states. In particular, we follow the procedure from
Ref. [28], that was recently employed to calculate the entan-
glement entropies of the ground state of spin-1/2 dimerized
Heisenberg AFMs on a square lattice.

The bipartite entanglement entropy of the ground state |�〉
of a system S is defined, for instance, as the von Neumann
entropy [43,44]:

S = S (ρA) = −Tr(ρA ln ρA), (64)

where A is a subsystem (arbitrary size and shape), Ā
is its complement such that the system S = A ∪ Ā, and
ρA = TrĀ|�〉〈�| is the reduced density matrix of the subsys-
tem A. For a generic quadratic Hamiltonian written in terms of
boson operators, it is possible to show that the entanglement
entropy (64) assumes the form

S =
NA∑

m=1

∑
ε=±1

ε

(
μm + ε

2

)
ln

(
μm + ε

2

)
, (65)

where μ2
m are the eigenvalues of the so-called correlation

matrix C [for the definition, see Eq. (41) of Ref. [28]]
and NA < N is the number of sites of the subsystem A. In
particular, for a one-dimensional (line) subsystem A [a spin
chain of size L, see Fig. 1(b)], the eigenvalues μ2

m of the corre-
lation matrix can be analytically calculated. For the columnar
VBS ground state described by the harmonic Hamiltonian
(19), we have

μ2
m =

⎛
⎝ 1

Ny

∑
ky

Am,ky

ωm,ky

⎞
⎠

2

−
⎛
⎝ 1

Ny

∑
ky

Bm,ky

ωm,ky

⎞
⎠

2

, (66)

where the index m = 1, 2, · · · and NA is related to the momen-
tum kx parallel to the system-subsystem boundary:

kx = −π

2
+ 2π (m − 1)

L + 2
, (67)

with N ′ = NANy and NA = (L + 2)/2. Moreover, Ak
[Eq. (15)] and Bk [Eq. (16)] are the coefficients of the
harmonic Hamiltonian (19), and ωk is the energy of the
triplons (23). Similarly, for the many-triplon state (47)
described by the mean-field Hamiltonian (37), the eigenvalues
of the correlation matrix are also given by Eq. (66), but
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FIG. 11. The von Neumann entanglement entropy S as a function of the size L of the (line) subsystem A of the many-triplon state (47) for
(a) J2 = 0.48 J1 and (b) J2 = 0.52 J1. Results for different values of the triplon number N̄ (solid lines) are shown: N̄ = N̄GS (black), N̄ = 0.10 N
(red), N̄ = 0.12 N (green), N̄ = 0.14 N (blue), N̄ = 0.16 N (magenta), N̄ = 0.18 N (orange), and N̄ = 0.20 N (dark green). The corresponding
harmonic results for the columnar VBS ground-state |VBS〉 are also included (dashed black line).

with the replacements Ak → Āk, Bk → B̄k [Eq. (38)], and
ωk → �̄k [Eq. (43)].

The bipartite von Neumann entanglement entropy S in
terms of the subsystem size L of the columnar VBS ground
state and the many-triplon state with different values of the
triplon number N̄ for J2 = 0.48 J1 and J2 = 0.52 J1 are shown
in Figs. 11(a) and 11(b), respectively. As expected for a two-
dimensional gapped phase [45], we find that the entanglement
entropy is dominated by an area law for both columnar VBS
and many-triplon states: We fit the data shown in Figs. 11(a)
and 11(b) with the curve,

S = aL + b ln L + c, (68)

and find that the coefficient b < 10−5 (see Table I for details).
Moreover, for a given subsystem size L, we notice that the
entanglement entropy increases as the triplon number N̄ in-
creases. Such a feature is similar to the one found for the
square lattice dimerized Heisenberg AFMs [see Figs. 6(a)
and 6(b) of Ref. [28]]: As the dimerization decreases and the
system approaches the Néel-VBS quantum phase transition,
the number of triplets t increases, and, therefore, the entan-
glement entropy increases although it seems not to diverge at
the quantum critical point.

TABLE I. Coefficients a, b, and c obtained by fitting the von
Neumann entanglement entropies S shown in Figs. 11(a) and 11(b)
with the curve (68).

J2 = 0.48 J1 J2 = 0.52 J1

N̄ a b c a b c

VBS 0.05 1.82×10−5 0.05 0.04 1.18×10−8 0.04
N̄GS 0.07 4.28×10−5 0.12 0.08 4.05×10−5 0.12
0.10 0.11 7.51×10−7 0.18 0.12 2.14×10−8 0.18
0.12 0.13 8.17×10−9 0.21 0.14 6.64×10−9 0.21
0.14 0.15 5.93×10−9 0.23 0.15 5.16×10−9 0.23
0.16 0.16 5.03×10−9 0.25 0.17 4.69×10−9 0.25
0.18 0.17 5.02×10−9 0.27 0.18 5.19×10−9 0.27
0.20 0.18 4.79×10−9 0.28 0.19 4.49×10−9 0.29

VIII. SUMMARY AND DISCUSSION

The bond operator representation for spin operators intro-
duced by Sachdev and Bhatt [19] is an interesting formalism
that allows us to analytically describe a VBS phase of a
Heisenberg model. Not only dimerized VBS phases (as the
columnar VBS one discussed in this paper) could be described
within this formalism, but it could also be employed to study
VBS phases with larger unit cells, such as the tetramerized
plaquette VBS [22,37]. Indeed, the bond operator formalism
is quite suitable for the description of a VBS phase: In this
case, it is possible to identify a singlet pattern (reference state)
and label the different spins that constituted each singlet (unit
cell); although each spin within the unit cell has a distinct
representation in terms of the bosonic bond operators [see,
e.g., Eq. (4)], the mapping from a spin Hamiltonian to an
effective boson one is well defined, since the singlets are
regularly distributed in space.

It would be interesting to apply the bond operator
formalism to describe another set of quantum paramagnetic
phases, the spin liquids. It would be an alternative to the
Schwinger boson formalism [20] that is usually employed to
analytically study spin-liquid phases [23]. However, such an
application is rather difficult to implement: In this case, it
is not possible to define an initial singlet pattern (reference
state), and, therefore, a mapping from a Heisenberg model
to an effective boson one is not well defined. In contrast,
in the Schwinger boson formalism, all spin operators have
the same expansion in terms of the boson operators, and,
therefore, a mapping from a spin model to a boson one can
be done without a reference state (the initial singlet pattern).
As mentioned in Sec. I, one motivation to study a system
within a fixed number of triplons b above a VBS ground
state is to check whether the possible many-triplon state could
restore the lattice symmetries broken when the VBS phase
sets in as well as to check whether such a many-triplon state
could describe a spin-liquid phase. If so, then the formalism
discussed here could be used to describe (gapped) spin-liquid
phases within the bond operator representation [19]. Impor-
tantly, while the Schwinger boson formalism is based on
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spinon degrees of freedom, the bond operator one would be
based on spinon-pair ones, i.e., the boson operators a defined
in Eq. (40).

For the square lattice spin-1/2 J1-J2 AFM Heisenberg
model with the columnar VBS as a reference state, our mean-
field results indicate that the many-triplon state (47) is stable,
although the lowest-energy one has a quite small number of
triplons N̄ = N̄GS (see Fig. 6). Therefore, we would expect
that the columnar VBS ground state and the many-triplon
state with N̄ = N̄GS would have similar features. Indeed, for
J2 = 0.48J1 and 0.52J1, we found that the spin-spin Cx(r)
[Figs. 7(a) and 8(a)] and the dimer-dimer Dxx(r) (Fig. 9)
correlation functions of both states decay exponentially with
correlation lengths approximately equal. Such features are
related to the fact that the excitation gaps of both states are
quite close (see Fig 5). On the other hand, the correlation
length associated with the spin-spin correlation function Cy(r)
of the columnar VBS state is smaller than the one of the
lowest-energy many-triplon state [see Figs. 7(b) and 8(b)].
Moreover, although the excitation gaps above the two states
are approximately equal, the corresponding excitation spectra
are indeed distinct, as exemplified for J2 = 0.48J1 [Fig. 4(a)]
and J2 = 0.52J1 [Fig. 4(b)]. In particular, the momenta associ-
ated with the excitation gap are equal for both columnar VBS
and lowest-energy many-triplon states only for J2 � 0.51J1.

In addition to the lowest-energy many-triplon state with
N̄ = N̄GS, we also study (high-energy) many-triplon states
with N̄ > N̄GS for configurations deep in the disorder region of
the model (5), where our mean-field results are more reliable.
For J2 = 0.48J1 and 0.52J1, we found that the excitation
gaps are finite, they decrease with the triplon number N̄ , and
they are located at the Y (J2 = 0.48J1) and M (J2 = 0.48J1)
points of the first Brillouin zone (Fig. 4). Moreover, we also
found that the spin-spin (Figs. 7 and 8) and the dimer-dimer
(Fig. 9) correlation functions of the many-triplon states decay
exponentially, regardless of the triplon number N̄ . In fact, the
behavior of the spin-spin-correlation functions indicates that,
only for J2 = 0.48J1, the many-triplon states with large triplon
number N̄ might display a more homogeneous singlet pattern
than the columnar VBS state. Interestingly, DMRG calcula-
tions also found distinct features for the model parameters
J2 = 0.48J1 and 0.52J1: Gong et al. [24] found evidences for a
gapless phase for 0.44 J1 < J2 < 0.50 J1 and a plaquette VBS
ground state for 0.50 J1 < J2 < 0.61 J1; the calculations of
Wang and Sandvik [25] indicated that a gapless spin-liquid
phase sets in for 0.46 J1 < J2 < 0.52 J1 while a (columnar)
VBS ground state sets in for 0.52 J1 < J2 < 0.62 J1. Although
a proper comparison between our results and the DMRG ones
is rather difficult, our procedure seems to be able to distin-
guish the parameter regions J2 � 0.51J1 and J2 � 0.51J1 of
the square lattice J1-J2 model. One should also mention a quite
recent variational calculation based on Gutzwiller-projected
fermionic wave functions [26] and results based on machine-
learning methods [27] that agree with the findings of Ref. [25].

Monte Carlo simulations were employed to calculate the
spin-spin and the dimer-dimer correlation functions of the
(nearest-neighbor) resonating-valence-bond (RVB) state on
the square lattice [46,47]. It was found that the spin cor-
relations decay exponentially while the dimer ones decay
algebraically with an exponent α ∼ 1.2. Such a behavior

is similar to the classical dimer model, although the dimer
correlations of the RVB state decay more slowly than the ones
of the classical dimer model (α = 2.0). Interesting, Monte
Carlo calculations for the nearest-neighbor RVB state but on
the triangular and kagome lattices [48,49] and for a RVB state
on the square lattice the longest valence bonds of which are
between next-nearest neighbors [49] found that both spin and
dimer correlations decay exponentially. Comparing with our
mean-field results for the many-triplon state (47), one sees
that it displays the same features of the next-nearest-neighbor
RVB state on the square lattice. Since the spin correlations
for J2 = 0.48J1 also indicate that the many-triplon states with
large N̄ may be characterized by a more homogeneous singlet
pattern than the columnar VBS ground state, we would expect
that, in this case, the many-triplon state could describe a
spin-liquid phase.

To further characterize the many-triplon states with large
N̄ , we determined the behavior of the dimer order parameters
(63) with the triplon number N̄ (Fig. 10). For J2 = 0.48J1, we
found that the dimer order parameters seem not to converge to
the same value as N̄ increases, although |O1| ≈ |O2| ≈ |O4| ∼
0.46 when N̄ ∼ 0.17. Such a behavior of the dimer order
parameters indicates that the many-triplon states with large N̄
do not correspond to a spin-liquid state: In a spin-liquid phase,
the dimer order parameters are approximately equal, as found,
e.g., for the nearest-neighbor RVB state on the kagome lattice
in Ref. [48]; for the many-triplon state, we would expect that a
transition from a columnar VBS state to a spin-liquid one as N̄
increases may be signaled by a convergence of the dimer order
parameters to a single value, i.e., |O1| ∼ |O2| ∼ |O3| ∼ |O4|
for N̄ > N̄c, a feature that is not observed.

Finally, we also calculated the bipartite von Neumann
entanglement entropy of the columnar VBS and many-triplon
states (Fig. 11). Fitting the data with the curve (68), we found
that the entanglement entropies obey an area law, as expected
for a two-dimensional gapped phase, and that the coefficient
c > 0 and it increases with the triplon number N̄ for both
J2 = 0.48J1 and 0.52J1. These results corroborate the fact
that the many-triplon state with large N̄ does not describe
a spin-liquid state, in particular, a gapped Z2 spin liquid: In
this case, the entanglement entropy obeys an area law with
c = −γ = − ln 2, where γ is the topological entanglement
entropy [11]; such a feature is found, e.g., for the nearest-
neighbor RVB state on the kagome and triangular lattices [50];
again, for the many-triplon state, a transition from a VBS
state to a spin-liquid one with the triplon number N̄ would
be characterized by c → − ln 2.

In summary, we have studied a system of interacting
triplons b, the elementary excitations above a VBS ground
state, described by an effective boson model derived within
the bond operator formalism. In particular, we chose the
spin-1/2 J1-J2 AFM Heisenberg model on a square lattice
and focused on the possible columnar VBS ground state.
We found that a many-triplon state is stable, but the lowest-
energy one is constituted by a small number of triplons.
Moreover, we also discussed the properties of many-triplon
states constituted by a large number of triplons. In particular,
the spin-spin-correlation functions indicated that such states
might be characterized by a more homogeneous singlet pat-
tern than the columnar VBS ground state. However, based on
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the mean-field results for the dimer order parameters and the
bipartite entanglement entropy, we concluded that the many-
triplon states with large triplon number N̄ may not describe a
(gapped) spin-liquid phase.

It is important to emphasize that our conclusions about the
nature of the many-triplon states, in particular, the ones with
large triplon number N̄ , are related to a particular Heisenberg
model and VBS (reference) state. As mentioned in Sec. III,
it is not clear, at the moment, whether the ground state of
the J1-J2 model within the intermediate parameter region
0.4 J1 � J2 � 0.6 J1 is a VBS or a spin-liquid state. It would
be interesting to apply the mean-field procedure discussed
here to a Heisenberg model for which there are (strong)
evidences for a gapped spin-liquid phase, to contrast the
obtained results with the ones derived here, and, in particular,
to check whether the (possible) lowest-energy many-triplon
state is constituted by a large number of triplons. A possible
candidate is the spin-1/2 J1-J2 AFM Heisenberg model on a
triangular lattice: Although a more recent DMRG calculation
pointed to a gapless spin-liquid phase [51], previous DMRG
simulations [52–54] indicated that a gapped spin-liquid
ground state may set in within the intermediate parameter
region 0.07 J1 � J2 � 0.15 J1.
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APPENDIX A: EFFECTIVE BOSON MODEL
I IN REAL SPACE

In this section, we quote the expression of the effective
boson model (8) in terms of the singlet si and triplet tiα boson
operators.

Substituting the (generalized) bond operator representation
(4) into the Heisenberg model (6), it is possible to show that
the four terms of the Hamiltonian (8) read

H0 = − 3

4
J1

∑
i

s†
i si,

H2 =J1

4

∑
i

t†
iαtiα + 1

4

∑
i,τ

ζ2(τ )(sis
†
i+τ t†

iαti+τα + H.c.

+ s†
i s†

i+τ tiαti+τα + H.c.),

H3 = i

4
εαβλ

∑
i,τ

ζ3(τ )[(s†
i tiα + t†

iαsi )t
†
i+τβti+τλ

− (i ↔ i + τ )],

H4 = − 1

4
εαβλ εαμν

∑
i,τ

ζ4(τ )t†
iβt†

i+τμtiλti+τν, (A1)

where the summation convention over repeated indices is
implied and the ζi(τ ) functions are defined as

ζ2(τ ) = 2(J1 − J2)δτ,2 − J1δτ,1 − J2(δτ,1+2 + δτ,1−2),

ζ3(τ ) = J1δτ,1 + J2(δτ,1+2 + δτ,1−2),

ζ4(τ ) = 2(J1 + J2)δτ,2 + J1δτ,1 + J2(δτ,1+2 + δτ,1−2),

with τn being the dimer nearest-neighbor vectors (7).

APPENDIX B: DETAILS OF EFFECTIVE BOSON MODEL
II AND THE MEAN-FIELD APPROXIMATION FOR A

SYSTEM OF N̄ TRIPLONS

In this section, we quote alternative expressions for the
constant E40 [Eq. (29)], the coefficients A(4)

k and B(4)
k [Eq. (32)]

of the quadratic term H24 [Eq. (30)], and the expressions
of the coefficients of the mean-field Hamiltonian (35), in
addition to provide some details of the self-consistent problem
related to the mean-field approximation discussed in Sec. V A.

We start by considering the constant E40 and the quadratic
term H24. Since the bare quartic vertex (18) can be written as

γk−p = −1

2

4∑
i=1

Ci[ fi(k) fi(p),+ f̄i(k) f̄i(p)], (B1)

where the coefficients Ci are defined as

C1 = J1, C2 = 2(J1 + J2), C3 = C4 = J2, (B2)

the functions fi(q) are given by

f1(p) = cos(2px ), f2(p) = cos py,

f3(p) = cos(2px + py), f4(p) = cos(2px − py), (B3)

and the functions f̄i(p) = fi(p) with the replacement
cos(x) → sin(x). It is interesting to define the following set
of coefficients:

a4(i, j) = 1

N ′
∑

p

fi(p)gi(p), (B4)

where i, j = 1, 2, 3, 4 and the functions gi(p) are defined in
terms of the Bogoliubov coefficients (24), i.e.,

g1(p) = v2
p = 1

2

(
−1 + Ap

ωp

)
, g2(p) = upvp = Bp

2ωp
.

(B5)
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It is then possible to rewrite the constant E40 [Eq. (29)] and the coefficients A(4)
k and B(4)

k [Eq. (32)] as

E40 = 3

4
N

4∑
i=1

Ci
[
a2

4(i, 1) − a2
4(i, 2)

]
, A(4)

k =
4∑

i=1

Ci
fi(k)

ωk
[a4(i, 1)Ak − a4(i, 2)Bk],

B(4)
k =

4∑
i=1

Ci
fi(k)

ωk
[a4(i, 2)Ak − a4(i, 1)Bk], (B6)

where the coefficients Ak and Bk are, respectively, given by Eqs. (15) and (16) and ωk is the triplon energy (23).
Within a mean-field approximation, that takes into account both normal hk and anomalous h̄k expectation values (45), one

shows, after a long but straightforward algebra, that the quartic term H44 [Eq. (31)] assumes the form (35), where the constant
E44 and the coefficients �1,k and �2,k read

E44 = 3

N ′
∑
k p

γk−p
[
(2ukvk )(2upvp) − (

u2
k + v2

k

)(
u2

p + v2
p

)]
h̄kh̄p

+2γk−p
[(

u2
k + v2

k

)
(2upvp) − (2ukvk )

(
u2

p + v2
p

)]
h̄khp + γk−p

[(
u2

k + v2
k

)(
u2

p + v2
p

) − (2ukvk )(2upvp)
]
hkhp, (B7)

�1,k = − 2

N ′
∑

p

γk−p
[
(2ukvk )

(
u2

p + v2
p

) − (
u2

k + v2
k

)
(2upvp)

]
h̄k + γk−p

[(
u2

k + v2
k

)(
u2

p + v2
p

) − (2ukvk )(2upvp)
]
hk, (B8)

�2,k = − 2

N ′
∑

p

γk−p
[
(2ukvk )(2upvp) − (

u2
k + v2

k

)(
u2

p + v2
p

)]
h̄k + γk−p

[(
u2

k + v2
k

)
(2upvp) − (2ukvk )

(
u2

p + v2
p

)]
hk, (B9)

with γk being the bare quartic vertex (18), uk and vk being the Bogoliubov coefficients (24), and hk and h̄k being, respectively,
the normal and anomalous expectation values (45).

Again, due to the property (B1), it is useful to define the set of coefficients

b4(i, j) = 1

N ′
∑

p

fi(p)ḡ j (p), (B10)

where i, j = 1, 2, 3, 4 and the functions ḡi(p) are given in terms of the Bogoliubov coefficients (24) and the normal and
anomalous expectation values (45):

ḡ1(p) = (
u2

p + v2
p

)
h̄(p) = − ApB̄p

2ωp�p
, ḡ2(p) = 2upvph̄(p) = − BpB̄p

2ωp�p
,

ḡ3(p) = (
u2

p + v2
p

)
h(p) = Ap

2ωp

(
−1 + Āp

�p

)
, ḡ4(p) = 2upvph(p) = Bp

2ωp

(
−1 + Āp

�p

)
. (B11)

Then, it is easy to show that Eqs. (B7)–(B9) can be rewritten as

E44 = −3

4
N

∑
i

Ci{[b4(i, 2) − b4(i, 3)]2 − [b4(i, 1) − b4(i, 4)]2},

�1,k =
∑

i

Ci
fi(k)

ωk
{[b4(i, 3) − b4(i, 2)]Ak + [b4(i, 1) − b4(i, 4)]Bk}, (B12)

�2,k =
∑

i

Ci
fi(k)

ωk
{[b4(i, 4) − b4(i, 1)]Ak + [b4(i, 2) − b4(i, 3)]Bk},

where Ci are the coefficients (B2); fi(k) are the functions (B3); Ak and Bk are, respectively, the coefficients (15) and (16); and
ωk is the triplon energy (23).

Due to the form of Eq. (B12), we define a new set of coefficients:

b1(i) ≡ b4(i, 4) − b4(i, 1) = 1

2N ′
∑

p

fi(p)
1

ωp�̄p
[Bp(Āp − �̄p) + ApB̄p], (B13)

b2(i) ≡ b4(i, 3) − b4(i, 2) = 1

2N ′
∑

p

fi(p)
1

ωp�̄p
[Ap

(
Āp − �̄p

) + BpB̄p], (B14)
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where i = 1, 2, 3, 4, Āp and B̄p are the coefficients (38), and �̄p is the energy (43) of the elementary excitations above the
many-triplon state (47). Finally, we recall Eq. (46), that is related to the condition (39):

N̄

N
= 3

4N ′
∑

k

(
−1 + Āp

�p

)
. (B15)

Equations (B13)–(B15) define a self-consistent problem that is numerically solved for a fixed value of the triplon number N̄ and
the ratio J2/J1 of the exchange couplings. Such a set of self-consistent equations allows us to calculate the coefficients b1(i) and
b2(i), with i = 1, 2, 3, 4, and the chemical potential μ̄, yielding the energy (42) and the excitation spectrum (43).

[1] S. Sachdev, in Quantum Magnetism, Lecture Notes in Physics
Vol. 645, edited by U. Schollwöck, J. Richter, D. J. J. Farnell,
and R. A. Bishop (Springer-Verlag, Berlin, 2004); Nat. Phys. 4,
173 (2008).

[2] N. Read and S. Sachdev, Valence-Bond and Spin-Peierls
Ground States of Low-Dimensional Quantum Antiferromag-
nets, Phys. Rev. Lett. 62, 1694 (1989); Spin-Peierls, valence-
bond solid, and Néel ground states of low-dimensional quantum
antiferromagnets, Phys. Rev. B 42, 4568 (1990).

[3] Introduction to Frustrated Magnetism, Springer Series in Solid-
State Sciences Vol. 164, edited by C. Lacroix, P. Mendels, and
F. Mila (Springer-Verlag, Berlin, 2011).

[4] R. Ganesh, J. van den Brink, and S. Nishimoto, Deconfined
Criticality in the Frustrated Heisenberg Honeycomb Antiferro-
magnet, Phys. Rev. Lett. 110, 127203 (2013).

[5] Z. Zhu, D. A. Huse, and S. R. White, Weak Plaquette Valence
Bond Order in the S = 1/2 Honeycomb J1-J2 Heisenberg Model,
Phys. Rev. Lett. 110, 127205 (2013).

[6] For more details about the J1-J2 model on the honeycomb
lattice see, e.g., the Introduction section of F. Ferrari, S. Bieri,
and F. Becca, Competition between spin liquids and valence-
bond order in the frustrated spin-1/2 Heisenberg model on the
honeycomb lattice, Phys. Rev. B 96, 104401 (2017).

[7] J. Marston and C. Zeng, Spin-Peierls and spin-liquid phases
of Kagomé quantum antiferromagnets, J. Appl. Phys. 69, 5962
(1991).

[8] B.-J. Yang, Y. B. Kim, J. Yu, and K. Park, Spin triplet excita-
tions for a valence bond solid on the kagome lattice, Phys. Rev.
B 77, 224424 (2008).

[9] For additional references about VBS states on the kagome
lattice see, e.g., the Introduction section of K. Hwang, Y. Huh,
and Y. B. Kim, Z2 gauge theory for valence bond solids on the
kagome lattice, Phys. Rev. B 92, 205131 (2015).

[10] Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann, Sig-
natures of Dirac Cones in a DMRG Study of the Kagome
Heisenberg Model, Phys. Rev. X 7, 031020 (2017).

[11] L. Savary and L. Balents, Quantum spin liquids: A review,
Rep. Prog. Phys. 80, 016502 (2017).

[12] Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid states,
Rev. Mod. Phys. 89, 025003 (2017).

[13] A. W. Sandvik, Evidence for Deconfined Quantum Criticality
in a Two-Dimensional Heisenberg Model with Four-Spin Inter-
actions, Phys. Rev. Lett. 98, 227202 (2007).

[14] A. W. Sandvik, Continuous Quantum Phase Transition be-
tween an Antiferromagnet and a Valence-Bond Solid in Two
Dimensions: Evidence for Logarithmic Corrections to Scaling,
Phys. Rev. Lett. 104, 177201 (2010).

[15] A. W. Sandvik, Finite-size scaling and boundary effects in
two-dimensional valence-bond solids, Phys. Rev. B 85, 134407
(2012).

[16] H. Suwa, A. Sen, and A. W. Sandvik, Level spectroscopy in a
two-dimensional quantum magnet: Linearly dispersing spinons
at the deconfined quantum critical point, Phys. Rev. B 94,
144416 (2016).

[17] See, e.g., P. Henelius and A. W. Sandvik, Sign problem in
Monte Carlo simulations of frustrated quantum spin systems,
Phys. Rev. B 62, 1102 (2000).

[18] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. A.
Fisher, Quantum criticality beyond the Landau-Ginzburg-
Wilson paradigm, Phys. Rev. B 70, 144407 (2004).

[19] S. Sachdev and R. Bhatt, Bond-operator representation of quan-
tum spins: Mean-field theory of frustrated quantum Heisenberg
antiferromagnets, Phys. Rev. B 41, 9323 (1990).

[20] A. Auerbach, Interacting Electrons and Quantum Magnetism
(Springer, New York, 1994).

[21] R. L. Doretto and M. Vojta, Triangular-lattice anisotropic
dimerized Heisenberg antiferromagnet: Stability and excita-
tions of the quantum paramagnetic phase, Phys. Rev. B 85,
104416 (2012).

[22] R. L. Doretto, Plaquette valence-bond solid in the square-lattice
J1-J2 antiferromagnet Heisenberg model: A bond operator ap-
proach, Phys. Rev. B 89, 104415 (2014).

[23] X. Yang and F. Wang, Schwinger boson spin-liquid states on
square lattice, Phys. Rev. B 94, 035160 (2016).

[24] S.-S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and M. P. A.
Fisher, Plaquette Ordered Phase and Quantum Phase Diagram
in the Spin-1/2 J1-J2 Square Heisenberg Model, Phys. Rev. Lett.
113, 027201 (2014).

[25] L. Wang and A. W. Sandvik, Critical Level Crossings and Gap-
less Spin Liquid in the Square-Lattice Spin-1/2 J1-J2 Heisen-
berg Antiferromagnet, Phys. Rev. Lett. 121, 107202 (2018).

[26] F. Ferrari and F. Becca, Gapless spin liquid and valence-bond
solid in the J1-J2 Heisenberg model on the square lattice:
Insights from singlet and triplet excitations, arXiv:2005.12941.

[27] Y. Nomura and M. Imada, Dirac-type nodal spin liquid revealed
by machine learning, arXiv:2005.14142.

[28] L. S. G. Leite and R. L. Doretto, Entanglement entropy for
the valence bond solid phases of two-dimensional dimer-
ized Heisenberg antiferromagnets, Phys. Rev. B 100, 045113
(2019).

[29] L. Wang, Z.-C. Gu, F. Verstraete, and X.-G. Wen, Tensor-
product state approach to spin-1/2 square J1-J2 antiferromag-
netic Heisenberg model: Evidence for deconfined quantum
criticality, Phys. Rev. B 94, 075143 (2016).

014415-17

https://doi.org/10.1038/nphys894
https://doi.org/10.1103/PhysRevLett.62.1694
https://doi.org/10.1103/PhysRevB.42.4568
https://doi.org/10.1103/PhysRevLett.110.127203
https://doi.org/10.1103/PhysRevLett.110.127205
https://doi.org/10.1103/PhysRevB.96.104401
https://doi.org/10.1063/1.347830
https://doi.org/10.1103/PhysRevB.77.224424
https://doi.org/10.1103/PhysRevB.92.205131
https://doi.org/10.1103/PhysRevX.7.031020
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1103/PhysRevLett.98.227202
https://doi.org/10.1103/PhysRevLett.104.177201
https://doi.org/10.1103/PhysRevB.85.134407
https://doi.org/10.1103/PhysRevB.94.144416
https://doi.org/10.1103/PhysRevB.62.1102
https://doi.org/10.1103/PhysRevB.70.144407
https://doi.org/10.1103/PhysRevB.41.9323
https://doi.org/10.1103/PhysRevB.85.104416
https://doi.org/10.1103/PhysRevB.89.104415
https://doi.org/10.1103/PhysRevB.94.035160
https://doi.org/10.1103/PhysRevLett.113.027201
https://doi.org/10.1103/PhysRevLett.121.107202
http://arxiv.org/abs/arXiv:2005.12941
http://arxiv.org/abs/arXiv:2005.14142
https://doi.org/10.1103/PhysRevB.100.045113
https://doi.org/10.1103/PhysRevB.94.075143


R. L. DORETTO PHYSICAL REVIEW B 102, 014415 (2020)

[30] A. Yu. Aktersky and A. V. Syromyatnikov, Low-energy singlet
sector in the spin-1/2 J1-J2 Heisenberg model on a square
lattice, J. Exp. Theor. Phys. 123, 1035 (2016).

[31] A. V. Syromyatnikov and A. Yu. Aktersky, Elementary exci-
tations in the ordered phase of spin-1/2 J1-J2 model on square
lattice, Phys. Rev. B 99, 224402 (2019).

[32] K. Choo, T. Neupert, and G. Carleo, Two-dimensional frus-
trated J1-J2 model studied with neural network quantum states,
Phys. Rev. B 100, 125124 (2019).

[33] D. Roscher, N. Gneist, M. M. Scherer, S. Trebst, and S. Diehl,
Cluster functional renormalization group and absence of a
bilinear spin liquid in the J1-J2 Heisenberg model, Phys. Rev.
B 100, 125130 (2019).

[34] V. N. Kotov, J. Oitmaa, O. P. Sushkov, and W. H. Zheng, Low-
energy singlet and triplet excitations in the spin-liquid phase
of the two-dimensional J1-J2 model, Phys. Rev. B 60, 14613
(1999).

[35] R. Haghshenas and D. N. Sheng, U(1)-symmetric infi-
nite projected entangled-pair states study of the spin-1/2
square J1-J2 Heisenberg model, Phys. Rev. B 97, 174408
(2018).

[36] A. Metavitsiadis, D. Sellmann, and S. Eggert, Spin-liquid
versus dimer phases in an anisotropic J1-J2 frustrated square
antiferromagnet, Phys. Rev. B 89, 241104(R) (2014).

[37] M. E. Zhitomirsky and K. Ueda Valence-bond crystal phase of
a frustrated spin-1/2 square-lattice antiferromagnet, Phys. Rev.
B 54, 9007 (1996).

[38] A. Ralko, M. Mambrini, and D. Poilblanc, Generalized quan-
tum dimer model applied to the frustrated Heisenberg model on
the square lattice: Emergence of a mixed columnar-plaquette
phase, Phys. Rev. B 80, 184427 (2009).

[39] J. Richter, R. Zinke, and D. J. J. Farnell, The spin-1/2 square-
lattice J1-J2 model: The spin-gap issue, Eur. Phys. J. B 88, 2
(2015).

[40] F. Ferrari and F. Becca, Spectral signatures of fractionalization
in the frustrated Heisenberg model on the square lattice, Phys.
Rev. B 98, 100405(R) (2018).

[41] W.-Y. Liu, S. Dong, C. Wang, Y. Han, H. An, G.-C. Guo,
and L. He, Gapless spin liquid ground state of the spin-1/2

J1-J2 Heisenberg model on square lattices, Phys. Rev. B 98,
241109(R) (2018).

[42] For more details about the J1-J2 model on the square lattice, we
refer the reader, e.g., to the Introduction section of Ref. [22] and
the references therein.

[43] T. Grover, Y. Zhang, and A. Vishwanath, Entanglement entropy
as a portal to the physics of quantum spin liquids, New J. Phys.
15, 025002 (2013).

[44] N. Laflorencie, Quantum entanglement in condensed matter
systems, Phys. Rep. 646, 1 (2016).

[45] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws
for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).

[46] A. F. Albuquerque and F. Alet, Critical correlations for short-
range valence-bond wave functions on the square lattice, Phys.
Rev. B 82, 180408(R) (2010).

[47] Y. Tang, A. W. Sandvik, and C. L. Henley, Properties of
resonating-valence-bond spin liquids and critical dimer models,
Phys. Rev. B 84, 174427 (2011).

[48] J. Wildeboer and A. Seidel, Correlation Functions in SU(2)-
Invariant Resonating-Valence-Bond Spin Liquids on Nonbipar-
tite Lattices, Phys. Rev. Lett. 109, 147208 (2012).

[49] F. Yang and H. Yao, Frustrated Resonating Valence Bond States
in Two Dimensions: Classification and Short-Range Correla-
tions, Phys. Rev. Lett. 109, 147209 (2012).

[50] J. Wildeboer, A. Seidel, and R. G. Melko, Entanglement en-
tropy and topological order in resonating valence-bond quan-
tum spin liquids, Phys. Rev. B 95, 100402(R) (2017).

[51] S. Hu, W. Zhu, S. Eggert, and Y.-C. He, Dirac Spin Liquid
on the Spin-1/2 Triangular Heisenberg Antiferromagnet, Phys.
Rev. Lett. 123, 207203 (2019).

[52] Z. Zhu and S. R. White, Spin liquid phase of the spin S =
1/2 J1-J2 Heisenberg model on the triangular lattice, Phys. Rev.
B 92, 041105(R) (2015).

[53] W.-J. Hu, S.-S. Gong, W. Zhu, and D. N. Sheng, Competing
spin-liquid states in the spin-1/2 Heisenberg model on the
triangular lattice, Phys. Rev. B 92, 140403(R) (2015).

[54] S. N. Saadatmand and I. P. McCulloch, Symmetry fractional-
ization in the topological phase of the spin-1/2 J1-J2 triangular
Heisenberg model, Phys. Rev. B 94, 121111(R) (2016).

014415-18

https://doi.org/10.1134/S1063776116150012
https://doi.org/10.1103/PhysRevB.99.224402
https://doi.org/10.1103/PhysRevB.100.125124
https://doi.org/10.1103/PhysRevB.100.125130
https://doi.org/10.1103/PhysRevB.60.14613
https://doi.org/10.1103/PhysRevB.97.174408
https://doi.org/10.1103/PhysRevB.89.241104
https://doi.org/10.1103/PhysRevB.54.9007
https://doi.org/10.1103/PhysRevB.80.184427
https://doi.org/10.1140/epjb/e2014-50589-x
https://doi.org/10.1103/PhysRevB.98.100405
https://doi.org/10.1103/PhysRevB.98.241109
https://doi.org/10.1088/1367-2630/15/2/025002
https://doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/PhysRevB.82.180408
https://doi.org/10.1103/PhysRevB.84.174427
https://doi.org/10.1103/PhysRevLett.109.147208
https://doi.org/10.1103/PhysRevLett.109.147209
https://doi.org/10.1103/PhysRevB.95.100402
https://doi.org/10.1103/PhysRevLett.123.207203
https://doi.org/10.1103/PhysRevB.92.041105
https://doi.org/10.1103/PhysRevB.92.140403
https://doi.org/10.1103/PhysRevB.94.121111

