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We show how low-energy electronic models derived from the first-principles electronic structure calculations
can help to rationalize the magnetic properties of two lacunar spinel compounds GaM4S8 with relatively
light (M = V) and heavy (M = Mo) transition-metal elements, which are responsible for different spin-orbit
interaction strength. In the model, each magnetic lattice point was associated with the (M4S4)5+ molecule, and
the model itself was formulated in the basis of molecular Wannier functions constructed for three magnetic t2

bands. The effects of rhombohedral distortion, spin-orbit interaction, band filling, and the screening of Coulomb
interactions in the t2 bands are discussed in details by stressing similarities and differences between GaV4S8

and GaMo4S8. The electronic model is further treated in the superexchange approximation, which allows us to
derive an effective spin model for the energy and electric polarization (P) depending on the relative orientation
of spins in the bonds, and study the properties of this model by means of classical Monte Carlo simulations
with the emphasis on the possible formation of the skyrmionic phase. While isotropic exchange interactions
clearly dominate in GaV4S8, all types of interactions (isotropic, antisymmetric, and symmetric anisotropic) are
comparable in the case of GaMo4S8. Particularly, large uniaxial exchange anisotropy has a profound effect on
the properties of GaMo4S8. On the one hand, it raises the Curie temperature by opening a gap in the spectrum of
magnon excitations. On the other hand, it strongly affects the skyrmionic phase by playing the role of a molecular
field, which facilitates the formation of skyrmions, but makes them relatively insensitive to the external magnetic
field in the large part of the phase diagram. We predict reversal of the magnetic dependence of P in the case of
GaMo4S8 caused by the reversal of the direction of rhombohedral distortion.

DOI: 10.1103/PhysRevB.102.014414

I. INTRODUCTION

Magnetic skyrmions, the topologically protected whirl-like
spin textures, have attracted a great deal of attention [1–3].
Owing to their topology and nanometer size, skyrmions be-
have like particle objects that can be moved over macroscopic
distances by applying low-density electric currents [4,5], thus
making them suitable candidates for applications in low-
power nanoelectronics and data storage [6]. Moreover, the
studies of novel skyrmionic phases present a fundamental
interest as they open new frontiers in our understanding of
magnetic matter.

The existence of skyrmions has been theoretically pre-
dicted to occur in solids belonging to certain crystallographic
classes, that allow for chiral magnetic structures driven by
antisymmetric Dzyaloshinskii-Moriya (DM) interactions [1].
The skyrmions can be of two types: (i) Bloch skyrmions,
where spins are locked in a tangential plane (and rotate in this
plane), and (ii) Néel skyrmions with the spins rotating in radial
planes.

*saishi@inbox.ru
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The Bloch skyrmions are typically observed in metal-
lic (and, therefore, nonpolar) alloys including MnSi [7],
Fe1−xCoxSi [8], and FeGe [5]. The Néel skyrmions were
reported only recently in two materials with the lacunar spinel
structure (R3m, the space group No. 160): GaV4S8 [9,10]
and GaV4Se8 [11]. The new aspect of the lacunar spinels
structure is that it is polar and, therefore, the compounds are
multiferroics. The multiferroicity adds a new functionality
into the properties of skyrmions, including an electric-field
control of these magnetic objects and, inversely, the control
of electric polarization by changing the magnetic texture.
The possibility of such control was indeed demonstrated by
Ruff et al. [10], who have shown that the change of electric
polarization in GaV4S8, caused by the change of the magnetic
order, can reach several tens of μC/m2. The only material
where the multiferroicity was known to coexist with the sky-
rimon order was Cu2OSeO3 [12–14]. However, the observed
magnetoelectric coupling was almost two orders of magnitude
weaker than in GaV4S8.

Despite genuine interest in multiferroic skyrmions, the un-
derstanding of this phenomenon is still in a preliminary stage.
It is not clear why the polarization depends on the skyrmionic
texture, which microscopic mechanism is responsible for the
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polarization change, and how this property can be further
controlled and improved.

In the previous paper [15], we reported results of our first
theoretical study of the electric polarization (P) in GaV4S8

depending on the change of the skyrmion order. For these pur-
poses, we started with the first-principles electronic structure
calculations and established a realistic model describing the
behavior of the magnetic t2 bands near the Fermi level in the
basis of appropriate molecular-type Wannier orbitals. In order
to solve this model, we have extended the superexchange (SE)
theory [16] to deal not only with the exchange interactions,
but also with the change of electric polarization depending on
the relative direction of spins in the bonds. Thus, this theory
allowed us to construct a spin model for both the energy and
P, and then to study this model by using various techniques.
By doing this, we were able to rationalize the behavior of
electric polarization in GaV4S8. Particularly, (i) although the
magnetic skyrmions are mainly formed by the SE interactions
in the plane, another important factor, that determines the
dependence of electric polarization on the magnetic order, is
the stacking of these planes in the perpendicular direction z.
In the lacunar spinel structure, the stacking is such that some
neighboring spins in the adjacent planes remain noncollinear
and this noncollinearity participates as the main source of the
magnetic dependence of P. (ii) Similar to the spin Hamil-
tonian, the magnetic part of the polarization can be decom-
posed in terms of isotropic, antisymmetric, and symmetric
anisotropic contributions. In the case of Néel skyrmions, the
magnetic dependence of P stems from the strong competition
of the former two effects, emerging in the second order of the
spin-orbit (SO) coupling.

In this paper, we explain the details of our method. Fur-
thermore, we extend our analysis to a new lacunar spinel
compound with strong SO coupling, GaMo4S8, which can po-
tentially host the skyrmionic states [17–19]. We will argue that
the new aspect of GaMo4S8 is the strong exchange anisotropy,
which favors the out-of-plane direction of spins and thus
acts as a molecular field stabilizing the Néel skyrmions, but
making them relatively insensitive to the external field in
the large part of the phase diagram. In fact, all exchange
interactions (isotropic, antisymmetric DM, and symmetric
anisotropic) are comparable in the case of GaMo4S8, thus
excluding any perturbative treatment. In comparison with
GaV4S8, we predict the reversal of magnetic dependence of P
in GaMo4S8, associated with the reversal of the rhombohedral
distortion.

The rest of the paper is organized as follows. In Sec. II,
we briefly explain details of the crystal structure and basic
electronic structure of GaV4S8 and GaMo4S8 within local
density approximation (LDA) [20]. In Sec. III, we discuss
construction and parameters of the electronic model for the
molecular t2 bands near the Fermi level. In Sec. IV, we
present the spin model derived in the SE approximation for
the magnetic interactions and electric polarization. Results
of Monte Carlo (MC) simulations for the spin model are
discussed in Sec. V and the brief summary of our work is
given in Sec. VI. Two Appendices (A and B) deal with details
of MC calculations and alternative estimates of parameters of
the spin model based on the direct solution of the electronic
model in the Hartree-Fock approximation.

FIG. 1. Fragments of the crystal structure of GaM4S8: (a) Net-
work of the M4S4 “molecules”; (b) schematic view on the network
with the notation of rhombohedral parameters ar and αr ; (c) M4

tetrahedra interconnected by the S atoms; (d) single M4 tetrahedron
with the notation of two inequivalent types of M atoms, the M1-M2

bond length at and the angle αt , characterizing the distortion of this
tetrahedron.

II. CRYSTAL AND BASIC ELECTRONIC STRUCTURE

The building blocks of the magnetic lattice of GaM4S8

(M = V and Mo) are the charged (M4S4)5+ “molecules,”
which are formed by two interpenetrating M4 and S4 tetra-
hedra. The molecules form the face-centered-cubic network,
as shown in Figs. 1(a) and 1(b), and are interconnected via
yet another type of S atoms, as shown in Fig. 1(c). Below Ts

(of about 44 and 45 K for GaV4S8 and GaMo4S8, respectively
[21,22]) the lacunar spinels undergo a phase transition from
the cubic F43m to polar rhombohedral R3m structure, which
results in the deviation of the rhombohedral angle αr from the
ideal cubic value of 60◦. Similar change is found for the angle
αt , characterizing the distortion of the single M4 tetrahedron,
as explained in Fig. 1(d).

In this study we use experimental parameters of the crystal
structure for GaV4S8 and GaMo4S8 reported in Refs. [21]
and [22], respectively. Unless otherwise stated, we focus
on the behavior of the low-temperature R3m phases. Some
parameters of the R3m structures are listed in Table I.

TABLE I. Crystal-structure parameters of GaM4S8 in their low-
temperature R3m phases (see Fig. 1): rhombohedral lattice parameter
ar (in Å), rhombohedral angle αr (in degrees), and the unit-cell
volume V (in Å3). The parameters of the single M4 tetrahedron (the
M1-M2 distance, at , the M2-M1-M2 angle, αt , and the volume, Vt ) are
given for comparison in parentheses.

ar (at ) αr (αt ) V (Vt )

GaV4S8 6.834 (2.898) 59.66 (58.36) 223.95 (2.76)
GaMo4S8 6.851 (2.823) 60.53 (61.51) 230.08 (2.74)
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FIG. 2. Electronic structure and densities of states of GaMo4S8 and GaV4S8 in the local density approximation as obtained for the high-
temperature cubic F43m phase and the low-temperature rhombohedral R3m phase with and without spin-orbit interaction. The Fermi level is
at zero energy (shown by dashed line).

Particularly, we note that the direction of the rhombohedral
distortion is opposite in the V- and Mo-based compounds:
while GaV4S8 is elongated along the cubic [111] axis (αr <

60◦), GaMo4S8 is compressed (αr > 60◦). Similar tendency
is seen for the single M4 tetrahedron. The unit-cell volume is
substantially larger in GaMo4S8 even though the single Mo4

tetrahedron is smaller than V4. Therefore, the Mo4 octahedra
are more compressed (thus, resulting in larger molecular level
splitting), but more separated from each other in comparison
with V4 in GaV4S8. In the following, we will show that all
these changes are clearly reflected in the electronic structure
and parameters of the spin models of the considered lacunar
spinel compounds.

The electronic band structure of GaV4S8 and GaMo4S8,
calculated within LDA using the QUANTUM ESPRESSO method
[23], is summarized in Fig. 2.

Despite the complexity of the lacunar systems, the elec-
tronic structure near the Fermi level is relatively simple
and featured by three t2 bands, which are separated by
energy gaps from other bands located in the lower and
upper energy parts of the spectrum. Importantly, these
bands have a “molecular origin,” resulting from the fol-
lowing hierarchy of hybridization effects: (i) Strong hy-
bridization within the (M4S4)5+ molecules leads to the
formation of the molecular levels. (ii) The hybridization be-
tween the molecules is considerably weaker, resulting in the
formation of weakly dispersive bands within each group of the
molecular orbitals (but not in the overlap between the bands
formed by different groups of the molecular orbitals). In the
following, we will call the t2 bands as “target bands,” imply-
ing that the magnetism of GaV4S8 and GaMo4S8 originates

mainly from this group of states and can be described by
a proper model with all the parameters extracted from first-
principles electronic structure calculations. Without SO inter-
action, the t2 bands in the high-temperature cubic F43m phase
are threefold degenerate, while the rhombohedral distortion in
the R3m phase lifts this degeneracy and splits the t2 bands into
the singly degenerate a1 and twofold-degenerate e bands. The
splitting is clearly seen in Fig. 2. The a1 band lies below the e
bands in GaV4S8 and above them in GaMo4S8, thus reflecting
the change of the direction of the rhombohedral distortion.
Taking into account the formal occupancy of the t2 states,
having one electron in GaV4S8 and one hole in GaMo4S8, the
band splitting is consistent with the general Jahn-Teller the-
orem stating that the rhombohedral (or any other) distortion
should lift the degeneracy of the ground state. Judging from
the band dispersion alone, the SO interaction does not seem to
play a decisive role: the change of the band structure caused by
the SO interaction is relatively small compared to the effect of
the rhombohedral distortion, even in GaMo4S8. Nevertheless,
this interaction is vitally important for the formation of the
skyrmion texture as it gives rise to such key ingredients as
DM interactions and uniaxial anisotropy.

III. EFFECTIVE ELECTRONIC MODEL

Our next goal is the construction of the realistic model,
which would describe the magnetic properties of GaV4S8 and
GaMo4S8. Since the skyrmionic texture can include thou-
sands of atoms in the magnetic unit cell, the brute-force
electronic structure calculations, dealing with such complex
noncollinear magnetic states, are practically impossible today.
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TABLE II. Spreads of the Wannier functions (in Å2) correspond-
ing to a1 and e representations.

a1 e

GaV4S8 8.4 8.1
GaMo4S8 9.4 9.7

Nevertheless, one can construct a model, using the input
from the electronic structure calculations, and then solve this
model. Another problem is the electronic correlations in the
molecular complexes (M4S4)5+, which can be relatively easily
taken into account in the model, but not at the level of first-
principles electronic structure calculations.

In order to fulfill this goal, we first construct the basis
of Wannier functions for the t2 bands, using the maximally
localized Wannier functions technique [24] as implemented in
the WANNIER90 package [25]. Thus, in our case, the Wannier
functions are the molecular orbitals of the (M4S4)5+ clusters
of the a1 and e symmetry. Table II summarizes the spreads
of these Wannier functions, which characterize the degree of
their localization [24].

The Wannier functions for GaMo4S8 tend to be more ex-
tended despite a smaller Mo4 tetrahedron size. Nevertheless,
this can be easily explained by the character of atomic 4d
orbitals, which are less localized in comparison with the 3d
ones. Then, the direction of the rhombohedral distortion also
affects the relative localization of the a1 and e orbitals: while
the a1 orbital is the least localized in GaV4S8, it becomes the
most localized in GaMo4S8.

Then, the Wannier functions are used as the basis for the
low-energy model [15,26]:

Ĥel = ĤCF + ĤSO + Ĥkin + ĤU , (1)

where the first three terms (the crystal field, the spin-orbit
interaction, and the kinetic hoppings, respectively) are the
noninteracting one-electron part of the model Hamiltonian
and ĤU stands for the effective electron-electron interactions
in the t2 bands. In our model, the one-electron part was defined
via matrix elements of the LDA Hamiltonian in the Wannier
basis [26], while the electron-electron interaction part was

evaluated within the constrained random phase approximation
(cRPA) [27].

TABLE III. Parameters of crystal-field splitting � and spin-orbit
interaction of the spherical type ζSO and Rashba type ζ R

SO (all are in
meV).

� ζSO ζ R
SO

GaV4S8 98.1 23.0 1.3
GaMo4S8 −168.0 68.7 −8.7

Ĥel is formulated in terms of creation (annihilation) oper-
ators ĉσ†

ia (ĉσ
ia ) of an electron with spin σ at the molecular

Wannier orbital a of site i (where a = 1 is the a1 orbital
of the 3z2 − r2 symmetry, while a = 2 and 3 are the e or-
bitals of predominantly xy and x2 − y2 character, respectively
[15]). Particularly, we define the crystal-field splitting as
ĤCF = �

∑
i,a �=1,σ ĉσ†

ia ĉσ
ia and the SO interaction as ĤSO =

ζSO
∑

i L̂i · Ŝi − ζ R
SO

∑
i (L̂x

i Ŝx
i + L̂y

i Ŝy
i ) [15], where the first

term stands for the regular “spherical” interaction while the
second term is the Rashba-type interaction arising from the
polar rhombohedral distortion [28]. The matrix elements of
angular momentum operators are expressed in terms of the an-
tisymmetric Levi-Civita symbol as (L̂x

i )ab = −iε2ab, (L̂y
i )ab =

−iε3ab, and (L̂z
i )ab = iε1ab. The corresponding parameters are

listed in Table III.
First, we note that the sign of � and ζ R

SO is controlled by
the direction of the rhombohedral distortion: both parameters
are positive in GaV4S8, where αr < 60◦, but become negative
in GaMo4S8, where αr > 60◦. The molecular level splitting
comes from the hybridization effects within each (M4S4)5+
cluster [29], which are stronger in GaMo4S8 because (i) the
Mo4 tetrahedron is smaller and (ii) the Mo 4d states are
more extended, which explains the larger value of |�|. The
SO coupling ζSO is also larger in GaMo4S8, as expected for
heavier Mo atoms. The large value of |ζ R

SO| in GaMo4S8

is a joint effect of hybridization and relativistic interactions
associated with the Mo states.

The kinetic part Ĥkin = ∑
i �= j

∑
abσ t ab

i j ĉσ†
ia ĉσ

jb is given by

the transfer integrals t̂i j = [t ab
i j ]. For the in-plane bonds ( j =

1–6 in Fig. 3), they can be presented as

t̂0 j =

⎛
⎜⎜⎝

t1
‖ s3

‖ sin 2π j
3 − u3

‖ cos π j
3 −s3

‖ cos 2π j
3 + u3

‖ sin π j
3

s3
‖ sin 2π j

3 + u3
‖ cos π j

3 t2
‖ − s2

‖ cos 2π j
3 s2

‖ sin 2π j
3 + (−1) ju2

‖
−s3

‖ cos 2π j
3 − u3

‖ sin π j
3 s2

‖ sin 2π j
3 − (−1) ju2

‖ t2
‖ + s2

‖ cos 2π j
3

⎞
⎟⎟⎠. (2)

Six independent parameters, describing (i) the diagonal bond-independent hoppings between orbitals of either a1 or e symmetry
(t1

‖ and t2
‖ , respectively); (ii) the symmetric (s2

‖) and antisymmetric (u2
‖) hoppings between e orbitals ; and (iii) the symmetric (s3

‖)
and antisymmetric (u3

‖) hoppings connecting a1 and one of e orbitals are listed in Table IV.
The matrices of transfer integrals for the out-of-plane bonds ( j = 1′–6′ in Fig. 3) are described by five independent parameters

t1
⊥, t2

⊥, s2
⊥, s3

⊥, and u3
⊥, which have the same meaning as for the in-plane bonds [30]:

t̂0 j =

⎛
⎜⎜⎝

t1
⊥ s3

⊥ sin 2π j
3 − u3

⊥ sin π j
3 s3

⊥ cos 2π j
3 + u3

⊥ cos π j
3

s3
⊥ sin 2π j

3 + u3
⊥ sin π j

3 t2
⊥ + s2

⊥ cos 2π j
3 s2

⊥ sin 2π j
3

s3
⊥ cos 2π j

3 − u3
⊥ cos π j

3 s2
⊥ sin 2π j

3 t2
⊥ − s2

⊥ cos 2π j
3

⎞
⎟⎟⎠. (3)
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FIG. 3. Notations of M4 clusters in GaM4S8: (a) side view, (b) top
view.

These parameters arelisted in Table V. Without SO interac-
tions, the only relevant parameters are t1, s3, and u3, which
involve the occupied a1 orbital. For instance, only these
parameters will contribute to the exchange coupling and the
magnetic part of electric polarization in the framework of
the SE theory [15]. Quite expectedly, these transfer integrals
are stronger in GaMo4S8, due to the spatial extension of the
Mo 4d states. The antisymmetric part of t̂i j , described by u2

and u3, is an odd function of the rhombohedral distortion.
Therefore, u2 and u3 have different signs in GaV4S8 and
GaMo4S8, where this distortion is the opposite.

The electron-electron interaction in (1) is given by

ĤU = 1

2

∑
i

∑
σσ ′

∑
abcd

U abcd ĉσ†
ia ĉσ ′†

ic ĉσ
ib ĉσ ′

id , (4)

where the screened Coulomb interactions Û = [U abcd ] were
calculated within cRPA [27]. In Fig. 4, we show the energies
of two-particle excitations (i.e., “two-electron” in the case of
GaV4S8 and “two-hole” in the case of GaMo4S8), obtained
for bare and screened interactions (and for the time being
ignoring the crystal field and spin-orbit interaction). These
energies are relevant to the superexchange processes, which
will be considered below.

In the ideal spherical case, the two-particle states are split
in three groups: nine 3T1 states, the degenerate 1T2 and 1E
states (five in total), and one 1A1 state with the energies
(U − 3J ), (U − J ), and (U + 2J ), respectively [31], which
are given in terms of the Kanamori’s intraorbital Coulomb
interaction U and exchange interaction J [32]. The rhom-
bohedral distortion and covalent mixing [33,34], manifested
in different spreads of the Wannier functions of the a1 and
e symmetry (Table II), partially lift the degeneracy of the
3T1, 1T2, and 1E states. The main Kanamori parameters,
evaluated using averaged energies of these states, are also

TABLE IV. Hopping parameters for the nearest-neighbor in-
plane bonds (in meV). The corresponding 3 × 3 matrices of transfer
integrals are given by Eq. (2).

t1
‖ s3

‖ u3
‖ t2

‖ s2
‖ u2

‖

GaV4S8 4.0 25.5 16.2 −0.4 −10.5 18.7
GaMo4S8 7.3 37.4 −14.8 0.3 −15.6 −24.0

TABLE V. Hopping parameters for the nearest-neighbor out-of-
plane bonds (in meV). The corresponding 3 × 3 matrices of transfer
integrals are given by Eq. (3).

t1
⊥ s3

⊥ u3
⊥ t2

⊥ s2
⊥

GaV4S8 −3.3 −22.7 −21.6 2.3 21.7
GaMo4S8 −4.7 −25.3 25.5 5.7 29.9

shown in Fig. 4. First, we note that, due to the spatial ex-
tension of the molecular orbitals, the bare U ∼ 6–7 eV is
substantially smaller than typical atomic values of U (be-
ing of the order of 20 eV). Furthermore, the behavior of
bare interactions fully reflects the localization degree of the
Wannier functions, where the bare U decreases in the di-
rection GaV4S8 → GaMo4S8, following the increase of
the Wannier functions spreads (Table II). Similar behavior
is found for the bare J , which decreases drastically in com-
parison with the atomic values (being about 0.8 eV for V
and 0.5 eV for Mo), but still appears to be larger in the
case of more localized V 3d states in GaV4S8. Nevertheless,
even more important is the screening, which substantially
modifies the behavior of U and J . Particularly, the screening
of Coulomb interactions is exceptionally strong due to prox-
imity of other occupied and unoccupied bands to the target
t2 bands (see Fig. 2). Moreover, all these bands are basically
the transition-metal d bands, which makes this screening very
efficient [35]. As a result, the screened U is reduced by an
order of magnitude to about 0.7 eV in both GaV4S8 and
GaMo4S8. The same screening reduces J’s by a factor of
2 compared to their bare values. Although the bare U is
substantially smaller in GaMo4S8, the screening totally inverts
this tendency. This can be again understood by considering
the electronic structure of GaV4S8 and GaMo4S8 (Fig. 2):
in GaMo4S8, the energy gaps separating t2 and other bands
are larger. Therefore, the screening should be weaker and the
parameter U itself larger.

FIG. 4. Energies of two-particle excitations obtained using ma-
trix elements of the bare (left) and screened (right) Coulomb
interactions and corresponding averaged Kanamori parameters of
intraorbital Coulomb interaction U and Hund’s rule exchange
interaction J .
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IV. SPIN MODEL

Details of the SE theory for the exchange interactions
and electric polarization can be found in Refs. [15,36]. In
this theory, the kinetic energy in the leading order of t̂i j/U

is mapped onto the spin model HS = ∑
〈i j〉 ei

↔
J i je j , which

can be further rearranged in terms of the isotropic exchange
constants Ji j , antisymmetric DM vectors Di j , and the traceless

symmetric anisotropic tensors �
↔

i j as [15,37]

HS =
∑
〈i j〉

(−Ji jeie j + Di jei × e j + ei�
↔

i je j ), (5)

where ei stands for the direction of spin. It is important to
note that under the parity inversion, Ji j , Di j , and �

↔
i j behave as

a (true) scalar, pseudovector, and tensor, respectively. Further-

more, we would like to stress that for the spin 1
2 there should

be no single-site contributions, neither to the exchange energy
nor to the magnetic dependence of the electric polarization
[36]. The DM interactions for the in-plane ( j = 1–6) and
out-of-plane ( j = 1′-6′) bonds can be written as [15]

D0 j = d‖

(
sin

π j

3
, cos

π j

3
, (−1) jδ

)
(6)

and

D0 j = d⊥

(
cos

π j

3
, sin

π j

3
, 0

)
, (7)

respectively, where the positions j of the M4 clusters are
explained in Fig. 3. The tensor �

↔
i j is given by

�
↔

0 j =

⎛
⎜⎝

− 1
3� + �� cos 2π j

3 ±�� sin 2π j
3 ±��′ sin 2π j

3

±�� sin 2π j
3 − 1

3� − �� cos 2π j
3 ��′ cos 2π j

3

±��′ sin 2π j
3 ��′ cos 2π j

3
2
3�

⎞
⎟⎠, (8)

where the + (−) signs stand for the in-plane (out-of-plane)
bonds. The obtained parameters of the SE interactions are
listed in Tables VI and VII. One can clearly see that in GaV4S8

(i) the isotropic exchange in and between the planes is clearly
the strongest; (ii) the DM interactions are considerably weaker
and can be viewed as a perturbation leading to the spin-
spiral or skyrmion phase; and (iii) the symmetric anisotropic
interaction is even weaker and can be neglected [15].

Nevertheless, in GaMo4S8, the situation is fundamentally
different. First, the isotropic exchange interactions are some-
what weaker than in GaV4S8. This can be understood as
follows: (i) The transfer integrals s3 and u3, which contribute
to the ferromagnetic (FM) and antiferromagnetic (AFM) paths
connecting the a1 and e orbitals [38], are comparable in
GaV4S8 and GaMo4S8 (see Tables IV and V). (ii) On the
other hand, the J/U ratio, which controls the strength of the
FM contributions to the exchange coupling [38], is smaller
in GaMo4S8. (iii) Furthermore, the transfer integral t1

‖ , which
contributes solely to the AFM coupling, is clearly lager in
GaMo4S8. This effect is partly counterbalanced by a larger
U value in the denominator of SE interactions, which is also
larger in GaMo4S8. Altogether, this yields smaller J‖ and J⊥
in the case of GaMo4S8. Second, the DM interactions and
the symmetric anisotropic interactions between the planes are
of the same order of magnitude as J‖ and J⊥, as expected
for materials with large SO coupling. Thus, in GaMo4S8 all

TABLE VI. Parameters of superexchange interactions for the in-
plane bonds (in meV). The corresponding vectors of Dzyaloshinskii-
Moriya interactions and tensors of exchange anisotropy are given by
Eqs. (6) and (8), respectively.

J‖ d‖ δ �‖ ��‖ ��′
‖

GaV4S8 0.180 0.073 0.137 −0.007 −0.022 0.003
GaMo4S8 0.110 0.179 −0.399 0.004 −0.098 −0.054

interactions are comparable, which has a profound effect on
the magnetic properties.

Very recently, the magnetic interactions in GaMo4S8 have
been theoretically studied by mapping the total energies
obtained in the generalized gradient approximation plus U
(GGA + U ) method onto the spin model [17]. In principle,
GGA + U is the all-electron method and, in addition to the
target t2 bands, treats other valence states on an equal foot-
ing. On the other hand, the onsite Coulomb and exchange
interactions in the GGA + U method were treated in the
basis of atomic Mo 4d orbitals, which we believe is a crude
approximation and our choice of the molecular Wannier basis
for these purposes is more physical. Nevertheless, we note
a qualitative agreement between our results and the ones of
Ref. [17]: at least in both studies J‖ < J⊥, while d‖ > d⊥
(note also the flip of the direction of the z axis in Ref. [17]
in comparison with our choice of the coordinate frame, which
should change the signs of d‖ and d⊥). However, the absolute
values of the parameters of isotropic and DM interactions
reported in Ref. [17] are at least three times larger than
ours. The direct comparison of the exchange anisotropy is
ambiguous because the authors of Ref. [17] have included
in their analysis the unphysical single-site anisotropy term,
which should vanish for the spin 1

2 .
In order to appreciate the importance of the anisotropic

interactions, it is instructive to estimate the Curie temperature

TABLE VII. Parameters of superexchange interactions for
the out-of-plane bonds (in meV). The corresponding vectors
of Dzyaloshinskii-Moriya interactions and tensors of exchange
anisotropy are given by Eqs. (7) and (8), respectively.

J⊥ d⊥ �⊥ ��⊥ ��′
⊥

GaV4S8 0.217 0.057 −0.022 0.029 0
GaMo4S8 0.157 0.136 −0.174 0.203 0.009
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TC using Tyablikov’s RPA technique [39]. Then, consider-
ing only isotropic exchange interactions, we find TC = 22
and 10 K for GaV4S8 and GaMo4S8, respectively. Naturally,
since the nearest-neighbor interactions J‖ and J⊥ are larger
in GaV4S8, the obtained TC is also larger. Nevertheless, the
experimental data reveal exactly the opposite tendency for
TC. The discrepancy can be resolved by considering the
anisotropic exchange interactions. Let us start with a simple
semiquantitative analysis. Among anisotropic exchange inter-
actions, �⊥ < 0 plays a very important role for the uniaxial
systems, as it opens the magnon gap of a classical origin,
which further increases TC [39]. �⊥ is clearly one of the
strongest interactions in GaMo4S8. Although ��⊥ is formally
comparable with �⊥, it is typically responsible for a much
smaller in-plane gap generated by quantum fluctuations [40].
Thus, as the first approximation, one can neglect �� and eval-
uate TC by considering only the isotropic exchange J and the
uniaxial anisotropy �, again in the framework of Tyablikov’s
RPA [39]. Quite expectedly, TC practically does not change in
the case of GaV4S8, where �

↔
is small. In GaMo4S8, however,

�⊥ has a profound effect on TC, which increases to 22 K and
becomes comparable with the experimental value of 19 K.
This simplified analysis is fully supported by MC calculations
for the model (5), which yield TC ∼ 18 K for GaMo4S8 (in
comparison with TC ∼ 23 K for GaV4S8), as explained in
Appendix A. Thus, we believe that relatively high TC in
GaMo4S8 is not because the isotropic exchange interactions
are larger, but rather because the uniaxial anisotropy is
stronger.

Finally, we note that the exchange parameters and TC

are sensitive to approximations employed for the solution

of the effective low-energy model (1) and definitions of the
spin model. For instance, the SE approximation seems to
overestimate TC in GaV4S8 by a factor of 2. In Appendix B
we will show that, to a certain extent, this discrepancy can be
resolved by going beyond the SE approximation.

The spin-dependent part of the electric polarization can be

written as [15,36] P = ∑
〈i j〉 ε ji(ei

↔
P i je j ) or

P =
∑
〈i j〉

ε ji(Pi jeie j + P i jei × e j + ei
↔

i je j ), (9)

where ε ji = τ ji/|τ ji| is the unit vector in the direction of the
bond i- j (τ ji = R j − Ri being the bond vector connecting
two M4 clusters [15]). This is an analog of Eq. (5) for the
electric polarization, where ε jiPi j , ε jiP i j , and ε ji

↔

i j stand for

isotropic, antisymmetric, and anisotropic symmetric contri-
butions, respectively. Alternative derivations for the isotropic
and antisymmetric terms can be found in Refs. [41,42], re-
spectively. Importantly, since Pi j ‖ ε ji, only the out-of-plane
bonds can contribute to the polarization change along z.
Therefore, we have to consider only the contributions of the
sites j = 1′–6′ (see Fig. 3). Because of the additional prefactor
ε j0, the parameters P0 j , P0 j , and

↔

0 j behave as a, respec-

tively, pseudoscalar, vector, and pseudotensor. Therefore, they
will have the same form as J0 j , D0 j , and �

↔
0 j , but multiplied

by the additional prefactor (−1) j . Thus, we get

P0 j = (−1) jP⊥, (10)

P0 j = (−1) j p⊥

(
cos

π j

3
, sin

π j

3
, 0

)
, (11)

and

↔

0 j = (−1) j

⎛
⎜⎝

− 1
3
 + �
 cos 2π j

3 −�
 sin 2π j
3 −�
′ sin 2π j

3

−�
 sin 2π j
3 − 1

3
 − �
 cos 2π j
3 �
′ cos 2π j

3

−�
′ sin 2π j
3 �
′ cos 2π j

3
2
3


⎞
⎟⎠. (12)

The obtained parameters are listed in Table VIII.

The contribution of
↔

i j to the polarization change associ-

ated with the skyrmion order is small (being of the third order
in ζSO, as the angle between neighboring spins formed by the
DM interactions is of the first order in ζSO) [15]. Nevertheless,
Pi j and P0 j can produce quiet comparable contributions to the
polarization change in the second order of ζSO: Pi j does not
depend on ζSO, but the change of eie j is of the second order in
ζSO, while P0 j and the change of ei × e j are both of the first
order in ζSO.

An interesting aspect of the magnetic dependence of elec-
tric polarization in GaV4S8 and GaMo4S8 is that the parame-

TABLE VIII. Parameters of spin-dependent electric polarization
(in μC/m2).

P⊥ p⊥ 
⊥ �
⊥ �
′
⊥

GaV4S8 −362 41 1 7 1
GaMo4S8 342 −40 3 −20 −4

ters P⊥ and p⊥ of isotropic and antisymmetric contributions in
these two compounds are comparable in absolute magnitude,
but have opposite signs, meaning that for the same spin
texture, the polarization in GaV4S8 and GaMo4S8 will change
in the opposite directions. This behavior can be rationalized
by considering the analytical expression for Pi j [15]:

Pi j ≈ e|τ ji|
V

J

(U + |�|)3
Ti j, (13)

where Ti j = (t21
i j )2 + (t31

i j )2 − (t12
i j )2 − (t13

i j )2 is antisymmetric
with respect to the permutation of i and j: Ti j = −T ji. Then,
using the analytical expression (3) for the out-of-plane trans-
fer integrals around 0, one can find that Ti j = (−1) j+12s3

⊥u3
⊥,

which naturally explains that the reason why P⊥ has opposite
signs in GaV4S8 and GaMo4S8 is related to the opposite direc-
tions of the polar rhombohedral distortion, which controls the
sign of u3

⊥. Then, the transfer integrals and the SO interaction
are progressively larger in GaMo4S8, which should lead to
larger P⊥ and p⊥. Nevertheless, this effect is compensated
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FIG. 5. Typical spin patterns obtained in Monte-Carlo simulation
for the model (5) on the lattice 30 × 30 × 18 (μBh ∼ 0.15J‖ and T =
0.1J‖).

by larger U and |�| and smaller J , which reduces the value
of the polarization in GaMo4S8 in comparison with GaV4S8.
Similar tendencies are expected for p⊥, as was confirmed by
numerical calculations [15].

V. EMERGENCE OF SKYRMIONS AND CHANGE OF
ELECTRIC POLARIZATION

In order to study the formation of skyrmionic states, we
perform MC simulations for the model (5) in an external
magnetic field parallel to z, −μBh

∑
i ez

i . All technical details
are summarized in Appendix A.

The FM interlayer coupling J⊥ tends to stack all two-
dimensional spin patterns ferromagnetically along z. A typical
“tube structure” obtained for the skyrmionic phase is illus-
trated in Fig. 5.

The next important aspect is the stacking misalignment,
which is inherent to the rhombohedral structure. Since only
out-of-plane bonds contribute to the magnetic dependence
of Pz, the change of the magnetic texture in the plane can
affect this polarization only indirectly, via the redistribution
of spins in adjacent planes. In this context, the “stacking mis-
alignment” means that each next plane in the rhombohedral
structure, aside from the vertical shift along z, also experi-
ences a horizontal displacement with respect to the original
plane. Therefore, each spin couples with three neighboring
spins in the next plane, meaning that some of these spins
in the skyrmion tube will be noncollinear and the degree of
this noncollinearity can be controlled by the magnetic field.
According to our scenario, this is the main mechanism of
the magnetic field dependence of Pz in the lacunar spinel
compounds [15]. The situation is schematically illustrated in
Fig. 6: if the skyrmionic texture in the plane z = c is obtained
from the one in the plane z = 0 by translating the spin 0
to 1′, the spins in the bonds 0–3′ and 0–5′ will still remain
noncollinear.

Then, for each h we obtain the distribution of spins and
use it to evaluate the net magnetization and the change of
electric polarization �Pz relative to the FM state. The results
are summarized in Fig. 7.

The phase diagram can be schematically divided in three
regions. For small h (region I), one can clearly see two FM
domains corresponding to positive and negative directions of
the magnetization along z. These domains are stabilized by
DM interactions and their relative weight is controlled by the

FIG. 6. Schematic illustration of interpenetrating skyrmionic
textures in adjacent planes z = 0 and z = c with the notation of
bonds formed by neighboring spins: (a) top view and (b) side
view. Owing to the stacking misalignment, each spin couples with
three neighboring spins in the next plane. Therefore, some of the
neighboring spins between the planes will always be noncollinear.

magnetic field. Furthermore, within each domain, one can
clearly observe the skyrmions. In this case, the skyrmions
are stabilized by strong uniaxial exchange anisotropy �⊥,
which plays the same role as the external field, but does not
distinguish between positive and negative directions of the
magnetization. This region corresponds to the rapid change of
the electric polarization Pz, which mainly occurs at the AFM
domain walls. Then, the system goes into the single-domain
region II. Nevertheless, the field h still remains small com-
pared to the exchange anisotropy �⊥, which mainly controls
the skyrmionic texture. As the result, the number and the size
of the skyrmions practically do not change, which is clearly
manifested in the “plateau” of the magnetization and electric
polarization versus h. The magnetic anisotropy energy due to
�⊥ can be evaluated as �E = 3�⊥ ∼ −0.5 meV. Therefore,
in order to produce a comparable effect, the magnetic field

FIG. 7. (a) Spin patterns as obtained in Monte Carlo calculations
for the model (5) in an external magnetic field h ‖ z at the tempera-
ture T = 0.1J‖. (b) Magnetization and (c) electric polarization (total
and partial contributions) versus magnetic field. The meaning of the
regions I, II, and III is explained in the text.
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should be about 9 T. In the region III, the magnetic field starts
to prevail over the exchange anisotropy, and becomes the
main factor controlling the size and the number of skyrmions.
In this region, the magnetization strongly depends on h and
reaches the saturation in the FM state. The change of the
magnetization is also accompanied by the rapid drop of the
polarization.

Among three mechanisms of the polarization change (the
isotropic, antisymmetric, and symmetric anisotropic) the latter
is relatively weak, as was explained before. Then, there is
a strong competition of isotropic and antisymmetric contri-
butions to �Pz, similar to GaV4S8 [15]. These contributions
enter with different signs and strongly cancel each other. Nev-
ertheless, the isotropic term slightly dominates and controls
the sign of total �Pz in both GaV4S8 and GaMo4S8. As the
direction of the rhombohedral distortion changes, the sign of
�Pz also changes when going from GaV4S8 (�Pz < 0) to
GaMo4S8 (�Pz > 0), following the behavior of the param-
eters P⊥ and p⊥ with respect to the rhombohedral distortion
(see Sec. IV). It would be interesting to check this prediction
experimentally.

VI. DISCUSSIONS AND SUMMARY

Using first-principles electronic structure calculations, we
have discussed the formation of skyrmions and the change of
electric polarization, caused by these skyrmions in the lacunar
spinel compounds GaV4S8 and GaMo4S8. For these purposes,
we have constructed the effective electronic model for the
molecular t2 bands, which are located near the Fermi level
and primarily responsible for the magnetism. The molecular
character of the problem, where each magnetic lattice point
is associated with the (M4S4)5+ molecule, has a number of
interesting consequences. Particularly, it is rather unusual, that
the screened “on-site” Coulomb interaction U , characterizing
the repulsion of electrons within the (M4S4)5+ molecules, is
only of the order of 0.7 eV. For instance, in the atomic physics,
such energy scale is characteristic for the Hund’s exchange
coupling J , while U is expected to be substantially larger.
Yet, in the molecular systems, the situation is different: U
is small and J is even smaller (by an order of magnitude).
Nevertheless, such “small” U still remains to be the largest
parameter in the problem, so that the transfer integrals, which
are responsible for the dispersion of the t2 bands can still be
treated as a perturbation, in the spirit of the SE theory [16].
We have successfully formulated such theory describing the
behavior of exchange energy and electric polarization in terms
of the relative orientation of spins in the bonds.

By using the spin model, obtained in the framework of
the SE theory, we were able to rationalize the behavior of
electric polarization in GaV4S8 and GaMo4S8. Particularly,
although the Hund’s coupling J is small, it is the key param-
eter responsible for the magnetic dependence of P, which is
essentially the multiorbital effect proportional to J (and higher
powers of J) [36]. Furthermore, in the SE theory, the electric
polarization in each bond is always parallel to the direction
of this bond. The division of magnetic solids into bonds is
an essential part of the SE concept: the energy is presented in
terms of pairwise interactions occurring in the bonds [16]. The
same holds for the magnetic part of electric polarization. The

important point here is that the bonds are polarized and can be
viewed as electric dipoles. Moreover, the polarization of each
such dipole depends on the relative orientation of spins in the
bond.

Similar to the exchange energy, the magnetic dependence
of the electric polarization in GaV4S8 and GaMo4S8 can
be decomposed into isotropic, antisymmetric, and symmetric
anisotropic parts. The latter is generally small, while the
change of electric polarization induced by the skyrmion order
results from the competition of isotropic and antisymmetric
terms, which come with opposite signs. This is pretty much
similar to formation of the skyrmions themselves, resulting
from the competition of isotropic and antisymmetric DM
interactions. The basic difference, however, is that the compe-
tition of the exchange interactions takes place mainly in the
skyrmion plane, while for the polarization parallel to the z
axis, more important is the stacking of the skyrmion planes
and the magnetic alignment in the bonds connecting these
planes.

Aside from these similarities, the important aspect of
GaMo4S8 is the strong uniaxial exchange anisotropy. We
expect that this anisotropy is primarily responsible for higher
TC in the case of GaMo4S8. Furthermore, it facilitates the
formation of skyrmions, acting as a molecular field parallel to
z, but making them relatively insensitive to the external field
in the large part of the phase diagram. Finally, we predict the
reversal of the magnetic dependence of P in GaMo4S8, which
is related to the reversal of the direction of rhombohedral
distortion.
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APPENDIX A: DETAILS OF MONTE CARLO
SIMULATIONS

To study magnetic properties of GaMo4S8 at an external
magnetic field, we performed classical MC simulations for the
model (5) based on heat-bath method combined with over-
relaxation and Metropolis algorithm [43]. We used periodic
hexagonal supercells with the c axis parallel to z = [111]
(in the cubic setting) containing up to N = 30 × 30 × 18,
N = 36 × 36 × 9, and N = 72 × 72 × 3 sites. A single run
contained 0.5 × 106 steps of equilibration and 2 × 106 steps
of statistical averaging. For the initial relaxation, the system
was gradually cooled down from higher temperatures. The
Curie temperature is associated with the peak of specific heat
at zero magnetic field:

Cv

kB
= β2 〈(HS)2〉 − 〈HS〉2

V
, (A1)

where 〈. . .〉 stands for the thermal average, β = 1/kBT , and V
is the volume of the supercell.

The results of calculations for Cv (T ) are shown in Fig 8. In
order to take into account the quantum corrections, resulting
from the replacement of S2 by S(S + 1), the temperature in the
classical Monte Carlo simulations was additionally scaled as
T → (1 + 1/S)T , similar to Tyablikov’s RPA method [39].
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FIG. 8. Temperature dependence of the specific heat as obtained
in the Monte Carlo calculations for the spin model (5) with the
parameters derived in the superexchange approximation for GaV4S8

and GaMo4S8.

Thus, we conclude that the theoretical TC, evaluated with
parameters of SE interactions, is about 23 and 18 K for
GaV4S8 and GaMo4S8, respectively.

APPENDIX B: ALTERNATIVE ESTIMATES OF
PARAMETERS OF THE SPIN MODEL

In this Appendix, we briefly discuss results of the mean-
field Hartree-Fock (HF) approximation for the solution of the
model (1) as an alternative to the SE theory for the exchange
interactions and electric polarization. Figure 9 shows the
densities of states obtained for the FM phase without SO
interaction.

One can clearly see that the Coulomb repulsion, although
being small, is sufficient for opening a band gap in both
GaV4S8 and GaMo4S8. Nevertheless, the transfer integrals
lead to the formation of bands whose width is at least com-
parable with the band gap, thus rising a question about appli-
cability of the SE theory. Therefore, it is interesting to con-
sider an alternative approach for the evaluation of exchange
interactions and the electric polarization, which formally goes
beyond the SE approximation.

Indeed, the parameters of interatomic exchange interac-
tions can be very sensitive to the method and details of the
electronic structure. The isotropic exchange interactions can
be calculated using the theory of infinitesimal spin rotations
near the FM state. The corresponding expressions in terms of
the one-electron Green’s function and intra-atomic exchange
field can be found in Refs. [26,44]. The results are summa-
rized in Table IX.

FIG. 9. Densities of states for the ferromagnetic state as obtained
in the Hartree-Fock approximation for the model (1).

In GaV4S8, J‖ practically does not change in comparison
with the SE calculations (see Table VI). However, J⊥ increases
by about 50%. Nevertheless, this increase is accompanied by
the appearance of six next-nearest-neighbor AFM interactions
between the planes, which were absent in the SE theory.
These interactions are about −0.152 meV per bond, which
overcompensate the increase of J⊥. Furthermore, there are
also small (about −0.01 meV) long-range AFM interactions
in the plane. Altogether, it decreases stability of the FM states.
The new TC, evaluated in the framework of Tyablikov’s RPA
but with the parameters extracted from the theory of infinites-
imal spin rotations near the FM state, is about 10 K [15],
which improves the agreement with the experiment (TC ∼
13 K [10]). However, it should be understood that the theory
of infinitesimal spin rotations probes mainly the stability of
the ordered FM state. It is still disputable whether the same
model and parameters should describe properly the transition
to the paramagnetic state, where the electronic structure is
strongly affected by the spin disorder [45]. Big changes are
also expected in GaMo4S8, where in comparison with the SE
theory J‖ increases by about 50%, while J⊥ drops sharply by
an order of magnitude (but still remains ferromagnetic).

The DM interactions can be evaluated using a similar
technique, to first order in SO coupling. For these purposes, it
is convenient to use the self-consistent linear response theory,

TABLE IX. Parameters of isotropic exchange (J‖ and J⊥), Dzyaloshisnkii-Moriya interactions (d‖, δ, and d⊥), magnetocrystalline
anisotropy energy (�E = E001 − E100), and anisotropy of electric polarization (�P = P001 − P100) as obtained in Hartree-Fock calculations.

J‖ (meV) J⊥ (meV) d‖ (meV) δ d⊥ (meV) �E (meV) �P (μC/m2)

GaV4S8 0.179 0.330 0.124 −0.076 −0.029 −0.041 32
GaMo4S8 0.159 0.027 0.107 0.081 0.230 −0.306 26
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which takes into account the response of electron-electron
interactions (4) onto the SO coupling in the HF approximation
[46]. These calculations yield a somewhat larger (smaller)
value of d‖ for GaV4S8 (GaMo4S8). Therefore, considering
only the ratio J‖/d‖, it should lead to some decrease (increase)
of the skyrmion radii in GaV4S8 (GaMo4S8).

The uniaxial exchange anisotropy can be evaluated from
the total-energy difference �E = E001 − E100 between the
out-of-plane and in-plane configurations of spins. Taking into
account the definition (5) and the coordination numbers, one
can find that �E = 3(�‖ + �⊥). Then, assuming |�‖|  |�⊥|
(see Table VI), �⊥ for GaV4S8 and GaMo4S8 can be estimated
as −0.014 and −0.102 meV, respectively. These interactions
are somewhat weaker than in the SE theory (see Table VII).
Nevertheless, one can still conclude that �⊥ is small and
does not play any sizable role in GaV4S8, but expected to be
important in GaMo4S8, where it becomes comparable with the
parameters of isotropic and DM interactions, thus supporting
our main conclusion obtained in the SE theory.

The only parameter, which can be easily derived by map-
ping the polarizations obtained in the HF calculations onto
the spin model (9) is 
⊥, which is related to the calculated
quantity �P = P001 − P100 as �P = 3εz

01′
⊥, where εz
01′ is

the z component of the unit vector εz
01′ (εz

01′ = 0.819 and 0.813
for GaV4S8 and GaMo4S8, respectively). Thus, using the
results of Table IX, 
⊥ can be estimated as 13 and 11 μC/m2

for GaV4S8 and GaMo4S8, respectively, i.e., somewhat larger
than in the SE theory, but still smaller compared to other
parameters responsible for isotropic and antisymmetric con-
tributions (see Table VIII).

In principle, other parameters of electric polarization, P⊥
and p⊥, can be also estimated by considering more complex
noncollinear magnetic textures and mapping the results of HF
calculations onto the spin model (9). Unfortunately, there is
no analog of the theory of infinitesimal spin rotations for the
electric polarization. Such extension would be certainly very
interesting and helpful for the analysis of magnetoelectric
coupling in various compounds.
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Bartkowiak, H. Berger, A. Magrez, J. L. Gavilano, G. Nagy, J.
Zang, and H. M. Rønnow, Phys. Rev. Lett. 113, 107203 (2014).

[15] S. A. Nikolaev and I. V. Solovyev, Phys. Rev. B 99, 100401(R)
(2019).

[16] P. W. Anderson, Phys. Rev. 115, 2 (1959).

[17] H.-M. Zhang, J. Chen, P. Barone, K. Yamauchi, S. Dong, and S.
Picozzi, Phys. Rev. B 99, 214427 (2019).

[18] D. A. Kitchaev, E. C. Schueller, and A. Van der Ven, Phys. Rev.
B 101, 054409 (2020).

[19] Á. Butykai, D. Szaller, L. F. Kiss, L. Balogh, M. Garst,
L. DeBeer-Schmitt, T. Waki, Y. Tabata, H. Nakamura, I.
Kézsmárki, and S. Bordács, arXiv:1910.11523.

[20] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[21] R. Pocha, D. Johrendt, and R. Pottgen, Chem. Matter 12, 2882

(2000).
[22] M. François, W. Lengauer, K. Yvon, H. Ben Yaich-Aerrache,

P. Gougeon, M. Potel, and M. Sergent, Z. Kristallogr. 196, 111
(1991).

[23] P. Giannozzi, S. Baroni, N. Bonini et al., J. Phys.: Condens.
Matter 21, 395502 (2009).

[24] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.
Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).

[25] A. A. Mostofi, J. R. Yates, G. Pizzi, Y. S. Lee, I. Souza, D.
Vanderbilt, and N. Marzari, Comput. Phys. Commun. 185, 2309
(2014).

[26] I. V. Solovyev, J. Phys.: Condens. Matter 20, 293201
(2008).

[27] F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S.
Biermann, and A. I. Lichtenstein, Phys. Rev. B 70, 195104
(2004).

[28] E. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela: Collected Papers,
2, 162 (1959) (in Russian) [English translation: Supplemental
Material to the paper by G. Bihlmayer, O. Rader, and R.
Winkler, Focus on the Rashba effect, New J. Phys. 17, 050202
(2015)].

[29] J. Kanamori, Prog. Theor. Phys. 17, 177 (1957).
[30] The parameters are related to the ones introduced in Ref.

[15] as t1
‖ = θ‖tA

‖ , s3
‖ = −t S

‖ , u3
‖ = −tA

‖ , t1
⊥ = θ⊥tA

⊥, s3
⊥ = t S

⊥, and
u3

⊥ = tA
⊥.
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