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We believe that a necessary first step in understanding the ground-state properties of the spin- 1
2 kagome

Heisenberg antiferromagnet is a better understanding of this model’s very large number of low-energy singlet
states. A description of the low-energy states that is both accurate and amenable for numerical work may
ultimately prove to have greater value than knowing only what these properties are, in particular, when they
turn on the delicate balance of many small energies. We demonstrate how this program would be implemented
using the basis of spin-singlet dimerized states, though other bases that have been proposed may serve the same
purpose. The quality of a basis is evaluated by its participation in all low-energy singlets, not just the ground
state. From an experimental perspective, and again in light of the small energy scales involved, methods that can
deliver all low-energy states promise more robust predictions than methods that only refine a fraction of these
states.
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I. INTRODUCTION

In the past 30 years, there has been a surge of interest
in the Heisenberg antiferromagnet with spins arranged on
corner-sharing triangles in the kagome arrangement (KHA).
Publications are growing in proportion to their number, with
currently over two papers being generated every day. What
may have started as idle speculation about the origin of
missing entropy in a system of adsorbed He3 atoms and their
nuclear spins [1,2], the KHA is now a leading candidate for
supporting exotic order [3,4], a driver in the development
of numerical methods [5–8] and a target for experimental
realizations [9–11]. This KHA paper does none of these
but instead offers a fresh theoretical perspective along with
modest numerical evidence supporting the approach.

In condensed-matter phenomena, we are guided by the
Landau paradigm, where the low-energy physics is derived
from general characteristics of the ground state. This strategy,
while enormously successful, assumes we have a firm grasp
of the “chemistry” of our system. To see what can go wrong,
consider the case of the quantum chemist who undertakes
a study of hydrogen oxides, in particular, the contentious
2–1 compound. One is limited to studies of small clusters
and is frustrated because the ground-state properties (struc-
ture factor, phonon spectrum, etc.) depend sensitively and
unpredictably on system size, boundary conditions, pressure.
By going straight to the lowest energy properties of the
system, the researcher has failed to notice that the atoms
single-mindedly first form H2O molecules, and it is the quirky
interactions among these constituents that is responsible for
the complex behavior of the bulk compound.

Not meaning to imply a parallel between the KHA and the
essential molecules of life, it is at least worth asking whether
we have a comparably good understanding of the chemistry of
this system of quantum spins. Do we know of a basis of states
that provides an accurate representation of the low-energy

properties, even if a theory for this representation may turn out
to be hopelessly complex? After all, there is no comprehensive
theory of the 18+ phases of ice other than the physics behind
the interactions of water molecules (hydrogen bonds, etc.).

The prevailing strategy for developing a theory of the
low-energy KHA physics runs counter to the lesson of ice
physics. This is the parton (slave-fermion) construction [12],
where instead of reducing the entropy of the relevant states,
it is doubled. Notwithstanding the constraint imposed to re-
store two states per site, this approach is favored because
the expanded Hilbert space provides relatively direct access
to candidate proposals for ground-state order in the mean-
field approximation. There is also general agreement that
these proposals need to be investigated by other techniques,
since the reliability of mean-field conclusions are question-
able when the associated “large N” is only 2 in the original
model.

As an alternative to the prevailing strategy, we propose
the following. First, we shift the focus from divining the
KHA’s ground state and instead consider its chemistry. The
chemistry might turn out to be very interesting and may even
have greater value than establishing ice-X as the ground state.
Second, we apply rigorous tests to show that a proposed,
reduced-entropy chemical model reproduces the low-energy
physics. Finally, the computational efficiencies enabled by a
validated chemical model give us access to potentially messy
questions, including the nature of the ground state. One of
the earliest models of the KHA chemistry is featured as an
example of the approach.

II. HUSIMI-CACTUS AND SPIN-SINGLET DIMERS

By not insisting on the perfect kagome topology, we can
better understand the chemistry of the KHA [13]. The simplest
is to arrange the corner-sharing triangles not on the vertices of
a honeycomb, but the vertices of an infinite three-valent tree:
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FIG. 1. Left: Fragment of the Husimi cactus with a defect tri-
angle (center) in its dimerization. The choice of dimers elsewhere
(without defects) determines three semi-infinite chains of (unshaded)
triangles on which the Hamiltonian H acts. Right: Interpretation
by Hao and Tchernyshyov [15] of the action of H as translational
motion of two spinons (in a distant singlet relationship) along the
same chains (topologically) as in the diagram shown on the left.

The Husimi cactus. Writing the Hamiltonian (in general) as a
shifted sum over spins on triangles,
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∑
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we get a zero-energy ground state if we can construct a wave
function where each triangle has total spin one-half. There is
a two-dimensional space of spin doublets on a triangle, with
special linear combinations corresponding to two of the spins
forming a singlet, leaving the remaining spin free to form a
singlet with a spin on the adjacent corner-sharing triangle.

A completely spin-singlet dimerized Husimi cactus, a
ground state of H, is an instance of localization in the follow-
ing sense [14]. Whereas there is a one-dimensional continuum
of ground states on any one triangle, only a set of three
localized settings of that degree of freedom allows the free
spin to form a singlet with a spin on an adjacent triangle, and
thereby allow this order to propagate throughout the rest of
the cactus.

It is also possible to localize energy on the Husimi cactus
[13]. The relevant part of the Husimi cactus is shown in the left
panel of Fig. 1. One triangle has all three of its spins dimerized
with spins on adjacent triangles. This triangle, and the twofold
choice of dimers along each of the three chains of triangles
emanating from it, define a subsystem upon which the action
of H is confined (the singlets on the shaded triangles in Fig. 1
remain undisturbed). Because the “defect triangle” defined by
the intersection of the three semi-infinite chains does not have
a singlet pair, it fails to be an energy eigenstate. However,
starting with the state �0 shown in Fig. 1 we can construct
(by Lanczos) a sequence of orthogonal basis states �1, �2, . . .

generated by successive applications of H, each disrupting the
dimerization one step further down the chain. From these, we
obtain estimates Ed (0) = 0.75, Ed (1) = 0.5, Ed (2) = 0.459,
Ed (3) = 0.444, etc. for the defect triangle energy as we
expand the basis. Hao and Tchernyshyov (HT) [15] showed
that these converge to Ed (∞) = 0.378 and established that
the excitation is localized. We should note that not only can
this energy be placed on any triangle of the Husimi cactus,

but there are exponentially many (in the number of triangles)
ways for the three chains to meander through the cactus.

The KHA is usually described as a frustrated system,
where the presence of triangles defeats the Néel alignment of
classical spins. But on the Husimi cactus, with the help of
the spin-dimer localized basis, we see that this system is not
frustrated at all. Though Anderson [16] long ago proposed
a resonating spin-dimer (“valence bond”) basis for another
classically frustrated system, the triangular lattice, we believe,
it is in the localized dimer setting that this basis confers an
advantage over other bases. As we describe below, the KHA is
frustrated in a very different way, and in contrast to the Husimi
cactus, by the fact that defect triangles of the kind described
above are not excitations but imposed by topology.

The work of HT [15] advanced the chemical understanding
of the KHA in an important way. HT interpreted the defect tri-
angle on the cactus as a bound state of two spinons. A spinon
on the cactus, where one spin is not dimerized and all other
spins form dimers, one per triangle, is another zero-energy
state. There is no zero-energy two-spinon state but there are
positive energy states where two spinons are confined to the
same three-pronged set of triangles as the defect triangle in
the left of Fig. 1. A basis state is shown in the right panel and
we see that the dimer environments in which the spinons find
themselves are not eigenstates at the triangles on which they
reside. The action of H in this case not only admixes further-
neighbor singlets but also generates translations of the spinons
along the chain of triangles. When one spinon is restricted to
chain A, the other spinon is constrained to move along chains
B or C, etc. Also, when the two spinons exchange positions in
this manner, HT noticed that the dimer wave function changes
sign, conferring Fermi statistics to the spinons. The spins
of a spinon pair can be combined into a singlet or triplet,
and HT found the singlet combination has the lower energy,
binding the spinons in close proximity to the defect triangle.
The singlet to triplet excitation energy, �E1 ≈ 0.06 [15], is
very small and makes spinon unbinding a strong candidate for
the unusually small �E1 observed numerically for the KHA
[8,17,18].

Although the Husimi cactus has the same local geometry
as kagome, the two systems deviate in an important way with
respect to a topological property of the spin-dimerized states.
For any dimerized state, including states with spinons, there
is a rule for assigning a ±1 flux to all the edges of the triangle
graph upon which the triangles are placed (three-valent tree,
honeycomb) [13]. This gives the triangles a net charge, and
the low-energy singlet triangles (H� = 0) all have charge
−1. The net flux entering the system, in a low-energy state,
must therefore grow in proportion to the enclosed number of
triangles. This is only possible in graphs, such as trees, where
the number of edges crossing the boundary scales with the
number of vertices interior to the boundary.

“Arrow rules” for assigning fluxes and corresponding
charges Q are shown in Fig. 2 for the two kinds of triangles in
a fully dimerized state, as well as the three kinds of triangle
environments of an isolated spinon. Arrows are associated
only with sites that have spins and point toward the triangle
that contains the spin’s dimer partner. In the case of spinons,
the charge is assigned to triangle pairs by the net exiting flux.
Of the zero-energy configurations, the Q = −1 single triangle
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FIG. 2. Fluxes (arrows) and corresponding charge Q of the two
kinds of triangles and three environments of a spinon. Black vertices
not in a dimer are dimerized with a spin on the adjacent triangle (not
shown).

is superior to the Q = −4 triangle pair because it minimizes
the accumulation of charge when the system has nonexten-
sive boundary. As sources of neutralizing countercharge, the
contenders are the Q = +3 defect triangle and the Q = 0
spinon environment named the anti-kink by HT [15]. The
former increases the charge (over the Q = −1 background)
by �Q = 4 at energy cost �E = Ed , while the anti-kink has
�Q = 2 and energy equal to half the unbound spinon-pair
energy, �E = (Ed + �E1)/2. Of these, the defect triangle
has the smaller value of �E/�Q, by an amount proportional
to �E1.

III. CHARGE-NEUTRAL SYSTEMS AND LOOPS

Systems with nonextensive boundary are topologically
frustrated and have positive energy (relative to the Husimi
cactus) from the finite density of charge-neutralizing defect
triangles. From their +3 charge relative to the −1 charge
of defect-free triangles, we know the defect triangle con-
centration is fixed at 1/4. The presence of loops in the
triangle network represents another point of departure from
the Husimi cactus. In the tree topology, different dimerized
states (including ones with defects) are related by infinite
chains of triangle edges along which the two states choose
a different alternating sequence of dimers. By contrast, in the
KHA these chains can be finite loops, making the dimerized
states nonorthogonal. As a result, the Hamiltonian now not
only “dresses” the environments of the defect triangles but
also mediates transitions in their positions.

For any hexagon in the triangle graph of the KHA and any
dimerized state, there is a unique transition loop to another
dimerized state that encircles only the given hexagon. These
transition loops generate all the dimerized states, and from
this we know their number is 2N� , where N� is the number of
loops (hexagons). An early proposal [13] for constructing a
low-energy effective Hamiltonian for the KHA was based on
the generalization where the hexagons in the triangle graph are
replaced by polygons with s sides. In such a system without
boundary, analogous to the KHA with periodic boundary
conditions, the (three-valent) triangle graph has N� vertices,
N = (3/2)N� edges (spins), N� = (2/s)N polygons, and lies
in a surface of genus

g =
( s

6
− 1

)N�

2
+ 1 (3)

by Euler’s theorem. The same rules for assigning charges to
vertices and fluxes to the edges of the triangle graph apply
in this generalization, including the concentration of defect

FIG. 3. Resonance on s-gons, shown for s = 8, is generated by
the reversal of arrows around the ring (left panel) and moves a
defect from the top triangle to the bottom triangle in the dimerization
(center panel). The ratio of the two lowest singlet excitation energies,
�E1→2/�E1→3, is plotted on the right as a function of s.

triangles, Nd = N�/4. For s = 7, the smallest system has 12
loops, 28 triangles, and 42 spins.

The s-gon generalization of the KHA clarifies its relation-
ship to the Husimi cactus model and disentangles the diagonal
and off-diagonal terms for the N� pseudospin variables σ in
the effective Hamiltonian. For the state with σ z = +1 on
all the polygons, we may pick any valid dimerization/arrow
assignment. Flipping a pseudospin corresponds to reversing
the arrows on just its polygon, as shown in Fig. 3 for s = 8.
The flux out of a polygon varies from only inward arrows
to any even number of outward arrows. In the former case,
there are two defect-free dimerizations with exact local en-
ergy degeneracy. Otherwise, alternating out-arrows give the
locations of defect triangles, switching roles in the two states.
Resonance now splits the energies of the two dimerizations by
an amount we expect to scale as their overlap, (1/2)s−d , where
d � s/2 is the number of defects. To show that we recover
a two-level system in the limit of large s, we numerically
obtained the two lowest singlet excitation energies for the case
d = 1, where we Heisenberg-coupled the spins at the s-gon’s
out-arrows to a pair of spins in the polygon’s environment.
The ratio �E1→2/�E1→3, shown in Fig. 3, decays exponen-
tially with s and is already quite small for s = 6. In absolute
terms, the resonance energy gain of the two lowest singlets,
T = �E1→2/2 = 0.029, is also small for s = 6.

Whereas resonance splitting disappears for large s, the
2N� pseudospin states continue to acquire different energies
through the positions of the defect triangles. Repeating the
Lanczos defect triangle calculation on the Husimi cactus, now
for a pair, we find the energy is lowest when the pair is at
their closest separation (one intervening triangle), but only
by about V = −0.01. This is consistent with the high-order
dimerized-coupling perturbation theory calculation of Singh
and Huse [5].

In addition to learning that both diagonal and off-diagonal
terms of the effective Hamiltonian Heff are small, the exercise
of looking at the model for general s has shown us that
the form of the Hamiltonian is complicated. Using V�{σ z}
to denote a general function on the set of z-pseudo-spins on
the loops (polygons) adjacent to loop �, on which we have
pseudospin σ�, the effective Hamiltonian takes the following
form:

Heff =
∑

�

(
σ z

� V�{σ z} + σ x
� T�{σ z}) + · · · , (4)
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where the omitted terms are higher order in the number of
flipped pseudospins. The first term is able to count the number
of nearest defect triangle pairs, each contributing V ≈ −0.01.
This is because every nearest defect triangle pair has an
associated loop �, and σ z

� along with the σ z of the adjacent
loops specify the existence and positions of all the defect
triangles on �. Likewise, the resonance energies T� are a
function of the number and positions of the defect triangles
around the loop, which are specified by the adjacent σ z. For
example, when there is a single resonating defect and s = 6,
T� = 0.029.

The s-gon generalization of the KHA has helped us identify
relevant small energies in its chemistry. Shifting H as in
Eq. (1) to make the ground-state energy lower-bounded by
zero (the Husimi cactus energy), the excess energy per triangle
of the KHA is only �E0/N� = 0.0919 [8]. This number can
be compared to the energy of a 1/4 concentration of defect
triangles, Ed/4 = 0.0945, and is consistent with the observa-
tion that defect-defect interactions (V ) and resonance gains
(T ) are both small. That �E0/N� itself is a small number
should remind us that the KHA is only weakly “frustrated”
in the basis of spin-dimerized states. Increasing s quickly
reduces T , and the ground state selects dimer configurations
that minimize just the diagonal terms, V , which remain un-
changed and small. The generalization of the KHA for large s
is also interesting insofar as spinons are out of the picture.
Though resonance may be interpreted as the unbinding of
spinon pairs at all the defect triangles around an s-gon, and
their subsequent recombination at the intervening out-arrow
positions, the low energy states are well described without
any reference to spinons. Finally, whereas s → ∞ is formally
the Husimi cactus, on which the dimerized states are truly
localized, we should not expect this to be the case for any
finite s. Dynamics/thermalization will be slow at large s (even
s = 6), but not frozen.

The program to analyze the KHA via the Hamiltonian Heff

was abandoned when a numerical study [19] revealed that
including higher order resonance terms brought a qualitative
change to the ground-state properties. Apparently, s = 6 is not
sufficiently large for Heff to capture all details of the chemistry
relevant for the ground state. At the lowest level of resonance,
a translational symmetry-broken state is weakly favored, in
fact, the same state identified by the high-order Heisenberg-
coupling perturbation analysis of Singh and Huse [5].

IV. TESTING THE SPIN-DIMERIZED BASIS

To make progress on the KHA we propose setting aside,
for now, the resolution of the ground state and the derivation
of an effective Hamiltonian and instead shift the focus to the
low energy chemistry. Numerical studies do agree on two
things: (i) the triplet gap �E1 is small but nonzero and (ii)
there are unusually many low-energy singlet states. Building
on these findings might proceed as follows. First, we define
a low-energy singlet as any state with energy below �E1.
Clearly, being able to determine the number of low-energy
singlets, N0, for a given small system, would demonstrate our
command of the chemistry. Also, it is hard to imagine how
that goal can be achieved without at the same time having the
capability to construct good bases for the low-energy singlets.

FIG. 4. First three bounded clusters with an even number of
spins, comprising 1, 3, and 5 hexagons.

We evaluate a basis B, in its representation of a low-energy
state �, by its participation p = |PB(�)|2, where PB is the
projection to the span of B. In systems small enough where it
is feasible to numerically obtain all the low-energy singlets �,
a single number that quantifies its quality is the participation
averaged over all �, denoted p.

We illustrate the approach with the basis of dimerized
states, D0. As in two earlier studies [13,19], we refine this
basis by admixing further-neighbor singlets generated by H at
each defect triangle. That is, for each near-neighbor dimerized
state � we construct the (unnormalized) basis state

�(α) =
∏
�

(1 + αH�)�, (5)

where α is a variational parameter. Fluctuations generated by a
single application of H are responsible for most of the energy
reduction of an undressed defect triangle on the Husimi cac-
tus. When there are multiple defects, fluctuations to this order
are independent of the defect configuration because defects
can never be on adjacent triangles.

To test the quality of our basis we use the family of
bounded clusters shown in Fig. 4, where the triangle graph is
comprised of the union of an odd number of hexagons. From
a chemical perspective, clusters with boundary are better for
testing the versatility of a basis and avoid the artifact of short,
nonzero winding number transition loops, when small systems
are placed on a torus. Not being focused on the ground state
of the infinite system is another reason periodic systems hold
less sway.

Starting with the cluster built on one hexagon with 12
spins, it is easy to see that attaching another hexagon always
adds an odd number of spins. In this paper, we are interested in
the low-energy singlet states and therefore keep the number of
hexagons (elementary loops) N� odd. To study the dynamics
of a single spinon, one would use systems with even N�. Since
transition loops around the hexagons uniquely generate all the
basis states, our basis has size 2N� . Finally, by taking into ac-
count that the triangles on the boundary with only two corner-
sharing neighbors always have charge Q = 0 in a dimerized
state, it is easy to work out, from charge neutrality, that the
number of defect triangles Nd satisfies Nd = (N� − 1)/2.

Table I summarizes our results for the odd N� clusters
up to the N� = 5 cluster with 34 sites. For the two larger
clusters, we used a custom-parallelized version of the Lanczos
program [20] to find energy eigenstates up to at least the first
spin triplet, with the energies converged to below 1 × 10−10.
The dimer bases D0 were optimized with respect to α, not to
get the best ground-state energy but to maximize the average
participation p of the singlets below the lowest triplet. Shown
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TABLE I. Summary of results for the three systems in Fig. 4 using the complete basis and the dimer bases D0 and D1. N� is the number of
hexagon loops, Nd the number of defects, �E0/N� the excess energy per triangle (over the Husimi cactus), �E1 the singlet-triplet gap, N0 the
number of singlet states below the lowest triplet, α is a variational parameter, and p the average participation.

Complete basis D0 D1

N� Nd �E0/N� �E1 N0 α p̄ �E0/N� α p̄ �E0/N�

1 0 0 0.259669 2 – 100% 0 – 100% 0
3 1 0.028009 0.132053 7 −0.3961 90.9% 0.034501 −0.2745 95.2% 0.031055
5 2 0.039642 0.098374 13 −0.4071 83.5% 0.046416 −0.2815 90.2% 0.042458

also are results for the augmented bases D1 of size 2 × 2N�

obtained by including states generated by a single application
of H to D0. We see that the values of p remain large even for
the largest system.

Evidence that the quality of our bases applies uniformly
to all the low-energy singlets is shown in Fig. 5. The effect
of going from the basis D0 to the doubled basis D1 is a
nearly uniform shift to higher participation p. A basis with
high participation will also give an accurate spectrum when
the Hamiltonian is projected onto it. This is shown in Fig. 6,
where points on the dashed diagonal correspond to perfect
representation by the basis. When the scatter of points is
nearly parallel to the diagonal, it means the basis is doing a
good job representing the density of states.

V. ALTERNATIVE BASES

To our knowledge, two other bases for the low-energy
states have been proposed. Like our bases, these too were
inspired by high degeneracy ground states for particular mod-
ifications of the KHA model. Mambrini and Mila [14,21]
considered partitioning the Heisenberg couplings into sets of
strength J and J ′, such that J ′ → 0 results in just the kagome
up-triangles being internally coupled and decoupled from
each other. Perturbation theory for J ′ 	 J is complicated,
motivating Mambrini and Mila to consider the basis of singlet
states obtained by forming singlet dimers of the spin-doublets
on adjacent trimers of kagome spins. The size of the resulting
basis, corresponding to dimers on the triangular lattice formed
by the kagome up-triangles, grows as 1.154N , where N is the
number of kagome spins.

Preserving translational symmetry, in contrast to Mambrini
and Mila, Changlani, et al. [22,23] modified the KHA by
moving from the Heisenberg point Jz/J⊥ = 1 to the special

FIG. 5. Participation p of all the singlets below the lowest triplet
state in the bases D0 and D1. The bulls-eye symbols represent pairs
of degenerate states allowed by the symmetry of the N� = 3 cluster.

anisotropic case Jz/J⊥ = −1/2. The basis is now given by
all tensor products of three spin states in the familiar 120◦
relationship, with the constraint that adjacent kagome sites
have different spin states, or “colors.” The degeneracy of the
zero z-magnetization sector is believed to be the same as
the number of kagome three-colorings, 1.134N , and it is this
sector (after projection to total spin zero) that is of interest for
the Heisenberg model.

The trimerization and three-coloring bases offer a clear
advantage in economy over our Husimi cactus-inspired basis,
which grows as 2N/3 = 1.260N . However, the former bases
break symmetries of the KHA and it is harder to make the
case they have the precision required for the small energies
in the model. In general, the average participation p of an
incomplete basis decays exponentially with the number of
spins. It would be useful to know how symmetry breaking
compromises bases in this respect, relative to a basis that does
not. Systems with boundary (Fig. 4) also present challenges.
At boundaries, down-triangle spins not also part of an up-
triangle are left isolated in a trimerization. The 12-site system,
with its two dimer basis states (both exact ground states), has
11 permutation-inequivalent three-colorings.

VI. EVIDENCE OF A LOW-ENERGY SECTOR

The small energy scales of the KHA make its low-
energy properties exceptionally sensitive to realities beyond
the model (disorder, anisotropy, etc.), thereby complicating
efforts to test ground-state hypotheses through experiment. A
more robust experimental indicator of kagome physics would
be evidence of an unusually high concentration of states at
low energy. The “missing entropy” question that was raised
30 years ago [1] did in fact receive a satisfactory resolution in

FIG. 6. Energies of the lowest singlet states computed in the
complete basis compared against their values in the bases D0 and
D1. The gray horizontal line shows the energy of the lowest triplet
state.
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the He3 system [9], with heat capacity measurements at lower
temperatures. However, Roger [24] pointed out that more
elaborate spin models that naturally arise in ring-exchange
systems like solid He3 could also explain the observed double-
peaked heat capacity.

Without making assumptions about the nature of the
ground-state order, Elstner and Young [25] convincingly
showed there was indeed low-energy structure in the KHA
heat capacity by combining a high-temperature series with
the spectra of small systems up to 18 spins. The current state
of the art along these lines is the study by Schnack et al.
[26] that finds evidence, using the finite temperature Lanczos
method on systems up to 42 sites, of a broad heat capacity
“shoulder” that extends to two orders of magnitude below
the temperature of the main peak. While there is still much
to be resolved experimentally and numerically for the KHA,
the general phenomenon of an abundance of low-energy states
deserves a theoretical explication. The development of high
quality bases for the low-energy states seems to us as the first
logical step in that direction.

VII. COMPUTATION WITH LOW-ENERGY BASES

After control over the quality of a low-energy basis is
demonstrated, through its participation in a sufficiently large
set of energy eigenstates in the full basis, subsequent cal-
culations can take advantage of the economies provided
by the greatly reduced basis size. However, size reductions
generally incur extra costs, such as nonorthogonality of the
spin-dimerized bases. These extra costs and their growth are
assessed in the Appendix for the block-Lanczos method. The
latter is a general technique that can exploit the property of an
initial basis being already reasonably good, so far fewer iter-
ations are needed than in conventional Lanczos with random
initial states. The doubling of the basis in Sec. IV, from D0 to
D1, is an example of a single block-Lanczos iteration.

The chief downside in the application of block-Lanczos to
low-energy bases is the rapid growth in memory with itera-
tions. This is mitigated by the very small memory requirement
for the initial basis. We illustrate this point with the example
of our spin-dimerized bases. Consider a KHA system on the
torus comprising N spins, N� = N/3 hexagon loops, and Nd =
N�/2 defect triangles. The initial basis has M = O(2N� ) states,
each of which requires memory for 4Nd = 2N� elementary
spin-dimerized states by the four-fold multiplication at each
defect triangle in Eq. (5). Thankfully, each elementary spin-
dimerized state uses only O(N ) memory to store (symboli-
cally) the matching of the spin pairs. Overall, the initial basis
therefore requires O(M2) = O(22N/3) memory, an exponential
improvement over the complete basis.

The blocks in the block-Lanczos method are M × M matri-
ces of numbers that represent H in the block-tridiagonalized
form. Storage of these blocks does not pose a problem. What
does pose a problem is the growth in the number of (symbolic)
elementary spin-dimerized states with each application of H.
When the Lanczos blocks are kept dense, the multiplication
factor in each iteration is M, canceling the memory savings
over the full basis after just one iteration. Fortunately, the
spin-dimerized basis has the nice feature that the Lanczos
blocks are effectively sparse. Matrix elements decay expo-

nentially in the number of flipped pseudospins by which the
corresponding basis states differ. By limiting this number,
though more generously than the single flipped pseudospin of
the early attempt at an effective Hamiltonian [13], the memory
growth can be managed. This can be implemented by setting
an absolute threshold that the block matrix elements must
exceed in magnitude to be retained.
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APPENDIX: BLOCK-LANCZOS
FOR THE SPIN-DIMER BASIS

This Appendix introduces notations and supports claims
made in the main text about the complexity of implementing
the block-Lanczos algorithm for the spin-dimer basis. Block-
Lanczos, when used with a special initial block, can take
advantage of the chemistry of the system and deliver good
results with far fewer iterations than when used on an arbitrary
initial basis. We make an effort to distinguish those parts of the
implementation that are specific to the spin-dimer basis from
those that apply to bases more generally.

Spin-dimerized states, from the perspective of computa-
tion, are best understood as symbolic objects. An elementary
spin-dimerized state |φ〉, for a system with an even number of
spins N , is completely specified by a matching δ of the inte-
gers {1, . . . , N}, that is, a map on this set with the properties
δ(i) �= i, δ2(i) = i:

|φ〉 =
N∏

i=1

sgn(δ(i) − i)

21/4
( |+〉i |−〉δ(i) − |−〉i |+〉δ(i) ). (A1)

Here |+〉i denotes an up-spin at site i, etc. To store this state in
the symbolic sense, we only need memory for the N integers
δ(1), . . . , δ(N ). A general spin-dimerized state, given by a
sum of K elementary states,

|ψ〉 =
K∑

k=1

αk |φk〉, (A2)

requires memory for KN integers and K complex numbers.
The symbolic representation of spin-dimerized states is

sufficient for both of the operations we need to perform:
Acting with the Hamiltonian H and computing inner products.
Inner products distribute over the elementary states and for
these,

〈φ1|φ2〉 = (−1)r(δ1,δ2 ) 2c(δ1,δ2 ), (A3)

where the integers r and c are easily computed from the asso-
ciated matchings δ1 and δ2. The action of H on the elementary
dimerized states is also very simple and in fact reminds us why
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this basis was chosen in the first place. Consider the term H�

in H, where the triangle � comprises spins (i, j, k):

H� = 1
2 (Pi j + Pjk + Pki ). (A4)

Here Pi j exchanges the site labels i and j in the product
Eq. (A1), etc. Now if δ(i) = j, or δ( j) = k, or δ(k) = i in
the state |φ〉, then H�|φ〉 = 0, and indeed the action of this
part of H is very simple. If none of these apply, then in
the case of the first term we may assume δ(i) = m �= j and
δ( j) = n �= i, where m �= n. The action of Pi j on |φ〉 is the
exchanges δ(i) ↔ δ( j) and δ(m) ↔ δ(n) in the matching δ,
possibly with a sign change applied to the amplitude of the
state. In the worst case, when no triangles have a dimer in
the state |φ〉, H|φ〉 will be a sum of 2N elementary dimerized
states, where 2N is just the number of Heisenberg couplings
(exchange operators) in a system of N spins (assuming a
system without boundary). The number 2N is therefore the
worst case growth factor, for each application of H, in the
memory requirement for general dimerized states.

For a system with no boundary on the torus and N� loops
in the triangle graph, the initial basis has M = 2N�−1 spin-
dimerized states in each topological sector. With a slight abuse
of notation, we define

B̃0 = [|ψ1〉 · · · |ψM〉] (A5)

as the rectangular matrix of basis vectors, the M “columns”
of which are understood as being symbolic in their repre-
sentation. In our basis D0 for the KHA, each |ψi〉 is the
result of applying the factor (1 + αH�) to each of the Nd

defect triangles of a single elementary dimerized-state. The
memory requirement for each column of B̃0 is therefore
O(4Nd ) = O(2N� ) = O(M ), since N� = 2Nd and the memory
for an elementary dimerized state is subexponential in N . The
Cholesky decomposition,

(t0)†t0 = (B̃0)†B̃0, (A6)

of the M × M matrix of inner products 〈ψi|ψ j〉, defines an
upper triangular matrix t0 with which we can construct an
orthonormal basis by

B0 = B̃0 (t0)−1. (A7)

The first block-Lanczos iteration is defined by the equation

HB0 = B0 h0 + B1 t1, (A8)

where the lower-case M × M matrices h0 and t0 should be
seen as forming linear combinations of the columns of the
bases B0 and B1, while H on the left side acts symbolically
on the columns of B0. Basis B1 is uniquely defined up to
phases when we insist it is orthonormal and orthogonal to B0.
Applying these properties to Eq. (A8), we obtain

h0 = (B0)†(HB0), (A9a)

(t1)†t1 = (HB0)†(HB0) − (h0)2, (A9b)

B1 = ((HB0) − B0 h0)(t1)−1, (A9c)

where t1 is upper triangular, analogous to t0. The general
block-Lanczos iteration i = 1, 2, . . . is defined by

HBi = Bi−1 (ti )
† + Bi hi + Bi+1 ti+1, (A10)

where the first term on the right is implied by the Hermiticity
of H. Analogous to Eq. (A9), we now have the following three
steps in the iteration:

hi = (Bi )
†(HBi), (A11a)

(ti+1)†ti+1 = (HBi )
†(HBi ) − (hi )

2 − ti(ti )
†, (A11b)

Bi+1 = ((HBi) − Bi hi − Bi−1 (ti )
†)(ti+1)−1. (A11c)

We have already commented on the fact that the term
HBi in the block-Lanczos recursion has a hidden complexity
growth coming from the multiplication of the number of
symbolic terms in the columns of Bi when acted upon by H.
Another and more serious growth in complexity is associated
with the terms where a basis is right multiplied by a numerical
matrix, such as hi(ti+1)−1. The latter is a dense M × M matrix
and will in the worst case multiply the number of symbolic
terms in each column of Bi by M. This growth is much
more rapid than the growth caused by the action of H and
will impose a severe limit on the number of iterations unless
mitigating measures are taken.

We can use the prior knowledge that the matrices hi and ti
have a hierarchy of magnitudes to make the block-Lanczos al-
gorithm practical. First consider the starting (nonorthogonal)
basis B̃0. The dimerizations in any two of its columns differ
by arrow reversals on some number of the hexagons in the
triangle graph. In the language of the effective Hamiltonian
for pseudospins Eq. (4), two columns of B̃0 differ by some
number of flipped values of σ z. The off-diagonal elements of
(B̃0)†B̃0 accordingly decay exponentially with the number of
flipped pseudospins between the two states/columns. Because
an earlier study [19] showed that truncating the off-diagonal
elements at just one flipped pseudospin was too severe, we
should consider a parameterized truncation scheme that ad-
mits off-diagonal elements for multiple flipped pseudo-spins.
The simplest such scheme is to impose an absolute threshold
ε on the magnitude of the retained elements of the Cholesky
factor t0 and its inverse, thereby controlling its sparsity. This
limits the growth in the size of the columns of the orthonor-
mal basis Eq. (A7). The same threshold principle to control
sparsity can be applied to h0 and, in the general recursion, ti
and hi.

In other bases (trimerization [14], three-coloring [22]),
whose sizes M are smaller than the dimerized basis for
the same system size, the growth in the sizes of the basis
states with Lanczos iteration will accordingly be less of a
problem. Even so, memory growth by a factor M per itera-
tion quickly becomes impractical and thresholding to impose
sparsity is a necessity. We note that the spectra for the spin-
dimerized basis D1 shown in Fig. 6 correspond to no threshold
(ε = ∞) and k = 1 Lanczos iterations, that is, where the
Hamiltonian for the low-energy singlets is represented by a
block-tridiagonalized matrix with dense blocks h0, h1, and
t1. Because our interest there was basis participation in the
full basis, sparsity considerations were not relevant. In larger
systems, when states cannot be refined in the full basis, a
low-energy basis can still be assessed with respect to its
convergence to an unknown spectrum. The computational cost
for this convergence will then depend both on the sparsity
threshold ε of the matrix blocks, as well as the number of
Lanczos iterations k.

014413-7



YUAN YAO, C. J. UMRIGAR, AND VEIT ELSER PHYSICAL REVIEW B 102, 014413 (2020)

[1] D. S. Greywall and P. A. Busch, Phys. Rev. Lett. 62, 1868
(1989).

[2] V. Elser, Phys. Rev. Lett. 62, 2405 (1989).
[3] S. Sachdev, Phys. Rev. B 45, 12377 (1992).
[4] M. B. Hastings, Phys. Rev. B 63, 014413 (2000).
[5] R. R. P. Singh and D. A. Huse, Phys. Rev. B 76, 180407(R)

(2007).
[6] D. Poilblanc, M. Mambrini, and D. Schwandt, Phys. Rev. B 81,

180402(R) (2010).
[7] S. Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011).
[8] A. M. Läuchli, J. Sudan, and R. Moessner, Phys. Rev. B 100,

155142 (2019).
[9] H. Fukuyama, J. Phys. Soc. Jpn. 77, 111013 (2008).

[10] J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M.
Bartlett, Y. Yoshida, Y. Takano, A. Suslov, Y. Qiu, J.-H. Chung,
D. G. Nocera, and Y. S. Lee, Phys. Rev. Lett. 98, 107204 (2007).

[11] G.-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath,
and D. M. Stamper-Kurn, Phys. Rev. Lett. 108, 045305 (2012).

[12] D. Yoshioka, in Strong Correlation and Superconductivity
(Springer, Berlin, Heidelberg, 1989), pp. 124–131.

[13] V. Elser and C. Zeng, Phys. Rev. B 48, 13647 (1993).

[14] F. Mila, Phys. Rev. Lett. 81, 2356 (1998).
[15] Z. Hao and O. Tchernyshyov, Phys. Rev. Lett. 103, 187203

(2009).
[16] P. W. Anderson, Mater. Res. Bull. 8, 153 (1973).
[17] Y. Iqbal, D. Poilblanc, and F. Becca, Phys. Rev. B 89,

020407(R) (2014).
[18] Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann, Phys.

Rev. X 7, 031020 (2017).
[19] C. Zeng and V. Elser, Phys. Rev. B 51, 8318 (1995).
[20] Spectra: C++ library for large scale eigenvalue problems,

https://spectralib.org.
[21] M. Mambrini and F. Mila, Eur. Phys. J. B 17, 651 (2000).
[22] H. J. Changlani, D. Kochkov, K. Kumar, B. K.

Clark, and E. Fradkin, Phys. Rev. Lett. 120, 117202
(2018).

[23] H. J. Changlani, S. Pujari, C.-M. Chung, and B. K. Clark, Phys.
Rev. B 99, 104433 (2019).

[24] M. Roger, Phys. Rev. Lett. 64, 297 (1990).
[25] N. Elstner and A. P. Young, Phys. Rev. B 50, 6871 (1994).
[26] J. Schnack, J. Schulenburg, and J. Richter, Phys. Rev. B 98,

094423 (2018).

014413-8

https://doi.org/10.1103/PhysRevLett.62.1868
https://doi.org/10.1103/PhysRevLett.62.2405
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.63.014413
https://doi.org/10.1103/PhysRevB.76.180407
https://doi.org/10.1103/PhysRevB.81.180402
https://doi.org/10.1126/science.1201080
https://doi.org/10.1103/PhysRevB.100.155142
https://doi.org/10.1143/JPSJ.77.111013
https://doi.org/10.1103/PhysRevLett.98.107204
https://doi.org/10.1103/PhysRevLett.108.045305
https://doi.org/10.1103/PhysRevB.48.13647
https://doi.org/10.1103/PhysRevLett.81.2356
https://doi.org/10.1103/PhysRevLett.103.187203
https://doi.org/10.1016/0025-5408(73)90167-0
https://doi.org/10.1103/PhysRevB.89.020407
https://doi.org/10.1103/PhysRevX.7.031020
https://doi.org/10.1103/PhysRevB.51.8318
https://spectralib.org
https://doi.org/10.1007/PL00011071
https://doi.org/10.1103/PhysRevLett.120.117202
https://doi.org/10.1103/PhysRevB.99.104433
https://doi.org/10.1103/PhysRevLett.64.297
https://doi.org/10.1103/PhysRevB.50.6871
https://doi.org/10.1103/PhysRevB.98.094423

