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Dzyaloshinskii-Moriya interaction induced asymmetry in dispersion of magnonic Bloch modes
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We report the results of the experimental investigation of magnonic Bloch modes in the presence of
asymmetric dispersion induced by the interfacial Dzyaloshinskii-Moriya interaction by means of Brillouin light-
scattering technique. It was realized in a specially designed ultrathin CoFeB/Pt periodic structure consisting of
an array of rectangular nanostrips separated by half-etched grooves. The proposed theory based on the coupled
mode approach explains the major features observed experimentally, such as Brillouin zone folding and the
asymmetry of the magnonic band-gap points in the reciprocal k space.
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I. INTRODUCTION

Magnonics is a rapidly developing field of magnetization
dynamics investigating the behavior of spin waves (SWs) in
nanopatterned structures seeking to put their unique wave
properties to use in important applications related to the vast
field of information transport and processing [1–3] that is
complementary to mainstream spintronics. Spintronics looks
to utilize the inherent “spin” degree of freedom to complement
the already successful charge property of the electron used
in conventional electronics [4]. In other words, conventional
charge currents are replaced with spin currents. Transfer of
spin can be implemented in two ways, either via fluxes of
electrons with a well-defined spin polarization (spin-polarized
current) as in mainstream spintronics or via spin angular mo-
mentum carried by collective magnetic-moment precession in
SWs (SW spin current) forming the basis of magnon spin-
tronics, or magnonics for short [5]. Substitution of electrons
by quasiparticles such as magnons or photons opens up the
possibility of the realization of wave-based computing allow-
ing operations with vectors rather than scalar variables, and
represents a promising direction for future alternative com-
puting technologies. Introduction of periodicity in magnonic
structures radically modifies laws of propagation of SW exci-
tations. Such artificial media typically referred to as magnonic
crystals are of great interest for both pure wave physics
and highly technologically relevant multifunctional magnonic
devices [1]. A magnonic crystal is a magnetic metamaterial
and its wave properties arise from geometrical structuring,
and not from their composition directly. On the one hand, like
other periodic structures, they exhibit such features as band
gaps, within which SWs in the form of Bloch modes are not
allowed to propagate, and whose major characteristics can be
tailor made through ad hoc patterning [6]. On the other hand,
they can be further tuned by applying external magnetic or
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electric fields which make these structures extremely flexi-
ble and even more attractive for signal and data treatment.
Moreover, application of external fields varying in time, as
is the case for dynamic magnetic crystals, open up access to
magnonic devices whose characteristics can be varied in real
time [7]. Although the term magnonic crystal, introduced in
2001 [8], is relatively new, investigations of SWs in periodic
structures started much earlier [9,10]. Another promising
branch of spintronics opening up the possibility of creation of
a generation of energy-saving devices based on spin currents
operated without magnetic fields, which currently is a key
challenge in this domain, relies on the effects related to spin-
orbit coupling (SOC) [11], such as Rashba [12,13] and spin
Hall effects [14,15], spin-orbit torques, and Dzyaloshinskii-
Moriya Interaction (DMI) [16,17], and is referred to as spin
orbitronics. A major trend regarding SOC is that its strength
increases for heavier atoms. In terms of solid-state magnetism,
DMI can be regarded as an antisymmetric exchange inter-
action and can only be realized in the absence of inversion
symmetry. In this respect, a bilayer composed of a heavy metal
(HM) and ferromagnetic metal (FM) seems to be optimal;
in this structure, the high SOC efficiency is ensured by the
presence of HM atoms while an interface provides the re-
quired symmetry reduction, as first suggested by Fert [18].
As a result, the DMI is localized in the close vicinity of
the HM/FM interface and thus is referred to as interfacial
DMI (iDMI). That is why the role of iDMI can only be pro-
nounced in ultrathin FM structures. Contrary to conventional
exchange interaction, DMI favors perpendicular orientation of
the neighboring spins, which makes DMI instrumental in sta-
bilizing nanostructures with a preferred chirality [19] such as
spin spirals and skyrmions [20–23] or antiskyrmions [24–26].
Importantly, extremely high domain-wall velocities that have
been observed in Pt/ferromagnetic are only possible after
iDMI-assisted conversion of the inner structure of the domain
wall from a Bloch type to a Néel type [27,28].

The interplay between magnonics and the SOC-related
iDMI opens access to a wide variety of physical effects and
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FIG. 1. Patterned areas imaged by scanning electron microscopy:
(a) 170-nm-wide strips, (b) 200-nm-wide strips, (c) partially grated
layer; the upper sketch corresponds to the separate strips and the
lower sketch corresponds to the partially engraved structure.

application-oriented features which is convincingly illustrated
by the concept of skyrmion-based dynamic magnonic crystals.
Here we report the results of our investigations of another
important aspect of SOC-magnonics combination, namely, the
DMI-induced asymmetry in the dispersion of magnonic Bloch
modes.

II. SAMPLE PREPARATION AND EXPERIMENTS

The initial Pt (6 nm)/Co20Fe60B20 (6 nm)/Cu (4 nm) film
was deposited on a thermally oxidized Si substrate using
d.c. magnetron sputtering in an argon environment. High
resolution electron beam lithography with a negative tone
resist (MAN-2401) was subsequently used to pattern 0.5 mm
× 0.5 mm arrays of nanostrips with a periodicity p of 350 nm
and a variable wire width which depended on the electron dose
of the given array. A partially engraved film was created by
etching at low power ion milling such that the total CoFeB
thickness was decreased by nominally 2–3 nm in the gap re-
gion. Following etching, a 4-nm Cu layer was deposited in situ
to prevent oxidation of the etched regions prior to exposure
to atmosphere. The remaining resist was then removed using
acetone. A second patterning and etching step was performed
to remove any CoFeB from the regions external to the strips.
Additionally, an unetched square region was protected during
both pattern and etch steps to serve as a reference region. The
arrays have been imaged by scanning electron microscopy
(SEM). The SEM images as well as sketches of the patterns
are displayed in Fig. 1. Additional arrays with completely
separated strips, with width W = 170 nm and W = 200 nm,
respectively, were also created as reference samples.

Magnetometry was performed on the initial magnetic film
before patterning [see Fig. 2(a)]. The SWs were probed by
means of Brillouin light scattering (BLS) technique with a
Sandercock tandem spectrometer. The incident and collected
light directions determine the wave vector of the propagating
excitation in the sample. In the backscattering geometry,
the probed propagating waves present a wave vector kθ =
4π
λ

sin θ , where λ and θ denote the laser wavelength and its in-
cidence angle with respect to the sample normal, respectively.
The experiments were performed in the Damon-Eshbach (DE)
geometry: The external field direction is perpendicular to the
incident light plane [29,30]. Moreover, the groove direction is
parallel to the applied magnetic field.

FIG. 2. (a) Hysteresis loops of the 6-nm-thick CoFeB film from
vibrating sample magnetometry measurements, (b) typical spectrum
for the CoFeB film at H = 2 kOe and kθ = 15.18 μm−1, (c) dispersion
law at H = 2 kOe. The inset represents the sample stack where red
and green arrows refer to the applied magnetic field and the spin wave
vector directions, respectively.

III. RESULTS AND DISCUSSION

A. Purpose of the study, sample design,
and experimental conditions

The goal of this paper is to reveal the influence of the
iDMI-induced nonreciprocity on the propagation of the Bloch
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collective SW modes in periodic thin-film ferromagnetic
structures. However, the design of a structure with a config-
uration optimized for this particular goal is far from being
trivial. This is the result of the compromise between several
mutually contradicting criteria as described below.

It should be mentioned that the nonreciprocity of SW
Bloch modes can be induced through periodic dynamic cou-
pling [31], also referred to as dynamic pinning [32], which
has been observed recently in relatively thick Permalloy (Py)
films [33]. In this case, a 30-nm-thick continuous Py film
was deposited on a periodic array of 20-nm-thick Ni stripes
separated from Py by Cr spacers with a variable thickness
(0–50 nm). Theoretical analysis was based on COMSOL
numerical simulations. Importantly, the physics behind this
nonreciprocity is completely different with respect to our
paper. First, this mechanism is critically dependent on the
degree of spatial asymmetry of the dynamic magnetization in
the DE mode across the FM. This spatial asymmetry becomes
more pronounced in thicker FM films. At the same time, it is
the interplay of the asymmetry of the multilayer structure and
the asymmetry of the DE mode that is at the bottom of this type
of SW nonreciprocity. This means that the SW nonreciprocity
becomes more and more pronounced in thicker FM samples,
gradually reaching its optimal value which justifies the choice
of a 30-nm permalloy layer by the authors of Ref. [33]. This
significant increase in the thickness of the FM layer allows us
to avoid considerable problems in the realization of magnonic
behavior.

First, the pattern period should be compatible with the
experimental wave vector range, i.e., the Brillouin zone (BZ)
boundary of the periodic structure should be in the vicinity
of the middle of the experimental wave vector range π

p ≈
10 μm−1 which explains our choice of p ≈ 0.3 μm. Another
point of extreme importance, directly related to the previous
issue, is the choice of the optimal thickness t of the structure.
On the one hand, its mean value cannot exceed 4–5 nm since
the iDMI is a purely interfacial effect and its effective strength
scales as 1/t , as revealed by BLS measurements [34,35]. On
the other hand, collective magnetic modes can be evidenced
only if the SW coherence length is much larger than the array
period, i.e., �co > p, which implies low microwave losses.
The spatial attenuation is described by the imaginary part
of the SW vector which is proportional to the imaginary
part of the temporal frequency usually referred to as the
linewidth of the ferromagnetic resonance δ f , the inverse of
the SW group velocity vg playing the role of the coefficient of
proportionality. Thus, the coherence length can be estimated
by the ratio between the SW group velocity and the frequency
line width �co ≈ vg/δ f [36].

The expression of the group velocity of the DE mode
in an ultrathin film, like in our case, taking into ac-
count the magnetic anisotropy, reads vg = γπM(4πM −
Ha)t/

√
H (H + 4πM − Ha), where γ , H , M, Ha, t are the gy-

romagnetic factor, the external field, the saturation magnetiza-
tion, the perpendicular anisotropy field, and the thickness. As
one can see, vg scales as the film thickness t . In other words, to
meet this requirement, the film thickness must be considerably
increased which is in an obvious contradiction with the first
iDMI related criterion. At the same time, the dependence of

vg on the applied field also suggests using a low value for H
which was duly taken into account during our measurements.
There exists yet another important aspect in the question of the
optimization of the structure thickness. The iDMI is not the
only mechanism that is capable of producing nonreciprocity
in SW propagation. A non-negligible nonreciprocity can also
be induced via asymmetric pinning due to the asymmetry in
normal uniaxial interface anisotropy (NUIA), the situation we
wish to avoid [37]. Effects from NUIA are more pronounced
in thicker samples and therefore suggest a need for thinner
samples.

Finally, the type of periodic patterning should also be
adapted to the specificity of the investigated phenomena. For
entirely separated strips, the dynamic dipolar interstrip cou-
pling field extends only to a distance comparable to the strip
thickness. This implies very small interstrip groove widths
on the order of several nanometers which is technologically
challenging. Thus, the “partially filled grooves” option seems
to be far more attractive for the problem at hand, in which case
the meander profile with a maximum value of the amplitude
of the fundamental spatial harmonic is preferable. All things
considered, and taking into account our numerical estimations
(see Appendix B), we have chosen to pattern a 6-nm-thick
CoFeB film with 2–3-nm-deep grooves to fulfill the requested
criteria: for such a film M = 1300 emu/cc, 4πM − Ha ≈
14 kOe, γ /2π = 3 GHz/kOe, δ f ≈ 0.5 GHz at H = 0.5 kOe,
and the minimum thickness (“groove” thickness) is about
3 nm, consequently, �co ≈ 1.2 μm.

B. Experimental data and interpretations

We begin our discussion with the experimental data ob-
tained on the reference samples, the native continuous film,
and the array of fully separated strips with the FM material
entirely removed from the grooves (100% etching) to extract
the values of major intrinsic parameters. Finally, we deal
with collective magnetic modes influenced by iDMI (partially
etched grooves).

The hysteresis loops of the initial 6-nm-thick film are
displayed in Fig. 2(a) for both in-plane and out-of-plane ap-
plied magnetic fields. From these measurements, we obtain an
estimation of the perpendicular saturation field 4πM − Ha ≈
14 kOe (M is the saturation magnetization, Ha is the perpen-
dicular anisotropy field). This estimation is in agreement with
that obtained from Brillouin light spectroscopy measurements
on the unpatterned film as discussed below.

Typical Brillouin spectrum taken on the continuous film is
displayed in Fig. 2(b). One line is observable representing the
DE mode. Conversely, a typical Brillouin spectrum obtained
on the arrays of fully separated strips exhibits several lines as
shown in Fig. 3(a) for the case of the 170-nm-wide strips. The
positions of lines deduced from Lorentzian fits as a function of
the SW wave vector are shown in Fig. 2(c) for the continuous
film and Figs. 3(b) and 3(c) for the 200-nm and 170-nm-
wide strips, respectively. The reference samples demonstrate
predictable behavior; in the continuous film, SW frequency
depends on the wave vector according to the conventional DE
pattern while the SW modes on the isolated strip (fully etched
grooves) arrays are dispersionless.
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The film frequency variations versus the wave vector shown in Fig. 2(c) are fitted using the expression proposed by
Kostylev [38]

2π f

γ
+ 2Deff

M
k =

√[
H + 2A

M
k2 + 4πM(1 − G)

](
H + 2A

M
k2 + 4πMG − Ha

)
, (1)

where γ , H , A, M, Ha, k, t , G, Deff are the gyromag-
netic factor, the external field, the exchange constant, the
saturation magnetization, the perpendicular anisotropy field,
the wave vector, the thickness, the averaged demagnetiz-
ing factor and the Dzyaloshinskii-Moriya surface constant.
For a thin film, this demagnetizing parameter reads G =
1−exp(−|kt |)

|kt | . Some parameters were estimated from the liter-

ature γ /2π = 3 GHz/kOe, A = 10−6 erg/cm, Deff = Ds/t
with Ds = −10−7erg/cm(= −1pJ/m) [39]. The magnetiza-
tion is deduced from magnetometry M = 1300 emu/cc. This
allowed us to estimate the anisotropy field in the continuous
as-grown film. Its fitted value for a 6-nm-thick film is Ha =
2.5 kOe which is in good agreement with the estimation from
magnetrometry measurements. In a relatively thick 6-nm film,
the frequencies for k and −k are very close and consequently
the value of the effective constant Deff is very small. As a
result, its reliable experimental estimation is not possible at
this stage.

The experimental data for the arrays of isolated strips
(100% etching) are fitted using expression Eq. (1) with quan-
tized values for the wave vector. Assuming that the continuous
film parameters (γ /2π = 3 GHz/kOe, A = 10−6 erg/cm,
M = 1300 emu/cc, Ha = 2.5 kOe, t = 6 nm) are still valid for
the array of isolated strips, we have estimated the strip widths.
Interestingly, if, for one reason or another, the effective value
iDMI increases and the induced frequency difference for k
and −k becomes measurable, such a difference will never take
place in isolated strips because standing modes are combina-
tions of counterpropagating waves with the same frequency.
Thus the frequency expression Eq. (1) with Deff = 0 is used
to fit the strips array frequency variations with respect to the
external field by taking k = π

W , 2π
W , 3π

W [40–43]. Reasonable
fits of all the data concerning strip arrays are obtained for
W = 200, 170 nm [see Figs. 3(b) and 3(c) and Fig. 5 in
Appendix B]. The estimated widths are in agreement with
those determined from SEM images (see Fig. 1).

For the “magnonic” sample with an intermediate groove
depth, several lines can also be observed in the BLS spectra
[Fig. 4(a)]. However, conversely to the fully isolated strips,
the associated frequencies depend on both absolute value and
sign of the wave vector [Fig. 4(b)].

The interpretation of the corresponding experimental data
relies on a generalization of Eq. (1) for a periodic thickness.
Equation (1) is deduced from the linearized Landau-Lifshitz
equation

i(
ω

γ
+ 2Deff

M
k) �m = �M × (�hd + �he + �ha) + �m × �H , (2)

where �m is the dynamic magnetization, �hd , �he, �ha are the
dynamic demagnetizing, exchange, and anisotropy fields. We
denote �uz the unit vector parallel to the applied field, �ux the
unit vector parallel to the wave vector, and �uy the normal to the

sample. The dynamic fields read �hd = −4π ((1 − G)mx �ux +
Gmy�uy), �he = − 2A

M k2 �m, �ha = 2K
M my�uy, where the anisotropy

constant K is deduced from the static anisotropy field Ha by
the relation K = 1

2 MHa.
For the sake of simplicity and without losing general-

ity, we assume a sinusoidal variation of thickness t = t0 +
t1 cos(qx). This means that the three major physical pa-
rameters, namely, the demagnetizing factor, the anisotropy,
and DMI constants, will be modulated accordingly: G =
G(|k|t0) + |k|t1 cos(qx) ∂G

∂u with G(u) = u−1[1 − exp(−u)],
K = K (t0) + t1 cos(qx) ∂K

∂t with K (t ) = Kv + Kst−1, and
Deff = Deff(t0) + t1 cos(qx) ∂Deff

∂t with Deff = Dst−1.
Consequently exp(ikx), exp[i(k − q)x] and exp[i(k + q)x]

waves will be coupled (see calculation details in Appendix A)
via these three mechanisms. Strictly speaking, higher harmon-
ics in the Fourier series expansion of the meander etching
profile should also be taken into account. This means that
the SW with a wave vector k will be coupled to all multiple
harmonics k + nq (n is an integer), creating an infinite set of
harmonic contributions. In classic wave science, such a solu-
tion is known as Floquet’s theorem [44]. In solid-state physics,
wave propagation in periodic structures is interpreted in terms
of BZ folding. In our particular case of a meander-type profile,
the amplitudes of higher spatial harmonics are appreciably
smaller than that of the fundamental one which makes cou-
pling through them considerably weaker. This justifies our
supposition that the actual meander profile can be replaced
with its fundamental harmonic without loss of generality.
Importantly, taking into account of the coupling with only
the nearest k + q and k − q spatial harmonics is sufficient to
explain the major feature observed experimentally, namely the
appearance of two additional peaks in the BLS spectra [see
Fig. 4(a)]. The main peak (No. 1) corresponds to the exp(ikx)
wave. The satellite peaks corresponding to exp[i(k − q)x]
(No. 2) and exp[i(k + q)x] (No. 3) waves are not visible if they
are too close or too far from the main line: too closely, they
disappear in the main peak, too far the coupling is not efficient
to make the satellite peaks visible. The calculated frequencies
fit the measured values for the following parameters: M =
1300 emu/cc, A = 10−6 erg/cm, γ /2π = 3 GHz/kOe, Kv =
1.625 Merg/cc (four parameters identical to those for the
initial film, Kv corresponds to Ha = 2.5 kOe), Ds = −10−7

erg/cm (i.e., = −1pJ/m), and q = 18 × 104 cm−1. The fit-
ting q value corresponds to a periodicity p = 2π

q = 350 nm.
Moreover, the fitting value for t0 is 3.3 nm.

Contrary to the results obtained on the continuous film or
the separated strips, a number of pronounced iDMI related
asymmetries in SW spectra can be observed. On the one
hand, all effects originating from the iDMI become more
pronounced in thinner FM films. It is not surprising that
the asymmetry of the main dispersion branch in a magnonic
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FIG. 3. (a) Brillouin light scattering spectrum for the 170-wide-
strip array. Dispersion laws for the W = 200 nm (b) and W = 170 nm
(c) strip arrays at H = 2 kOe.

structure (8 GHz < f < 12 GHz, 0 < k <22 μm−1) with
an effective thickness of 3.3 nm is clearly observable while
that in a 6-nm-thick continuous film is not. The fact that
it is the effective thickness that appears in the numerical
simulations successfully fitting the experimental data is direct
proof of the magnonic nature of the wave process. Impor-
tantly, this best-fitting thickness is equal to teff = 3.3 nm,
which is far from the value prompted by simple intuition for
the case of meander patterning, which suggests the value of
4.5 nm, i.e., the average of two thicknesses. Moreover, in

FIG. 4. (a) Stokes side of the spectrum for the partially etched
layer at H = 0.5 kOe and kθ = 20.45 μm−1, (b) dispersion law at H =
0.5 kOe, 
F indicates the maximal observed frequency asymmetry
on the main peak, error bars for the main line indicate the frequencies
are measured within ±0.15 GHz, errors bars for the satellite lines
indicate the frequencies are measured within ±0.3 GHz because their
positions depend on the precision on the main line position.

the patterned sample, there exist iDMI-related effects that
are only possible in a magnonic structure. First, this applies
to the upper dispersion branch (12 GHz < f < 14 GHz)
directly resulting from BZ folding. Actually, it corresponds
to the 22 μm−1 < k <44 μm−1 range and is shifted due to
folding to the 0 < k <22 μm−1 one which is covered by the
BLS technique. This doubles the iDMI-induced effect on the
frequency. Indeed, this effect is proportional to the effective
wave vector. Another promising effect is related to the shift of
the BZ edges in the reciprocal k space (band-gap points). It is a
result of a trade-off between the conventional dipolar DE sign-
independent dispersion and the sign-dependent iDMI induced
dispersion. As with all iDMI-related effects, this asymmetry
becomes more pronounced in thinner films. Importantly, this
dependence on the film thickness is highly nonlinear and there
exists a critical thickness below which no intersection of the
dispersion branches takes place, excluding the possibility of
the band-gap effects. The realizability of this characteristic
feature is unique to the iDMI-induced SW nonreciprocity.
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In any case, in thin FM films under 3 nm, the shift of
the band-gap points is very sensitive to the magnitude of
the iDMI constant. Thus, in our magnonic sample having an
effective thickness of 3.3 nm, the asymmetry of the band-gap
points k−−k+

kav
in the reciprocal k space is 17%, while the

asymmetry of the temporal frequencies is only about 3.6%,
as can be observed from the positions of the crossings in
Fig. 4(b).

IV. CONCLUSION

We have studied the behavior of DE Bloch modes in an
ultrathin periodic CoFeB/Pt structures designed ad hoc to
ensure simultaneous realization of both periodicity-related
magnonic features and the pronounced iDMI-related nonre-
ciprocity by means of BLS technique. This has been achieved
in an array of rectangular strips with a period of 350 nm
separated by half-etched grooves acting as a magnonic SW
waveguide with an effective thickness of 3.3 nm. In par-
ticular, it was shown that the asymmetry of the magnonic
band-gap points in the reciprocal k space can be several
times more pronounced than the conventional asymmetry
of the temporal frequencies. Moreover, the observed values
of the iDMI-induced Stokes/anti-Stokes frequency asymme-
try were doubled due to BZ folding, leading to doubling of
the effective range of SW wave numbers. In other words, the
already non-negligible SW nonreciprocity in a CoFeB layer
with an effective magnetic thickness of 3.3 nm was further
enhanced through magnonic features such as BZ folding.
The observed features were explained both qualitatively and
numerically on the basis of an approximate theory based on
the classical coupled-wave formalism with the values of major

parameters describing the structure extracted from characteri-
zation of the reference samples (a continuous film and a fully
etched array of uncoupled strips).
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APPENDIX A: FREQUENCY CALCULATION FOR A
OSCILLATORY THICKNESS

In the case of a layer with a uniform thickness, Eq. (2)
yields

i

(
ω

γ
+ 2Deff

M
k

)
m(k)

x =
(

H + 2A

M
k2 + 4πMG − 2K

M

)
m(k)

y ,

(A1)

i

(
ω

γ
+ 2Deff

M
k

)
m(k)

y = −
[

H + 2A

M
k2 + 4πM(1 − G)

]
m(k)

x .

(A2)

Equating the determinant associated to Eqs. (A1) and (A2)
to 0 yields Eq. (1). Let us denote G(k)

0 = G(|k|t0), G(k)
1 =

t1
∂G(|k|t )

∂t (t0), G(k±q)
0 = G(|k ± q|t0), G(k±q)

1 = t1
∂G(|k±q|t )

∂t (t0),
K0 = K (t0), K1 = t1

∂K
∂t (t0), D0 = Deff(t0), D1 = t1

∂Deff
∂t (t0).

Equations (A1) and (A2) are replaced with

i

(
ω

γ
+ 2D0

M
k

)
m(k)

x + i

[
D1

M
(k − q)

]
m(k−q)

x + i

[
D1

M
(k + q)

]
m(k+q)

x

=
(

H + 2A

M
k2 + 4πMG(k)

0 − 2K0

M

)
m(k)

y +
(

2πMG(k−q)
1 − K1

M

)
m(k−q)

y +
(

2πMG(k+q)
1 − K1

M

)
m(k+q)

y (A3)

i

(
ω

γ
+ 2D0

M
k

)
m(k)

y + i

[
D1

M
(k − q)

]
m(k−q)

y + i

(
D1

M
(k + q)

)
m(k+q)

y

= −
[

H + 2A

M
k2 + 4πM

(
1 − G(k)

0

)]
m(k)

x + (
2πMG(k−q)

1

)
m(k−q)

x + (
2πMG(k+q)

1

)
m(k+q)

x (A4)

i

[
ω

γ
+ 2D0

M
(k − q)

]
m(k−q)

x + i

(
D1

M
k

)
m(k)

x + i

[
D1

M
(k + q)

]
m(k+q)

x

=
[

H + 2A

M
(k − q)2 + 4πMG(k−q)

0 − 2K0

M

]
m(k−q)

y +
(

2πMG(k)
1 − K1

M

)
m(k)

y +
(

2πMG(k+q)
1 − K1
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Equating the determinant associated to Eqs. (A3)–(A8) to 0 yields the three eigenfrequencies for coupled waves exp(ikx),
exp[i(k − q)x] and exp[i(k + q)x].

APPENDIX B: EXPERIMENTAL RESULTS AND FITTING CURVES FOR THE FREQUENCY VARIATION VERSUS
THE APPLIED FIELD

To check the values of the quantized vector in the case of separated strips, we have compared the calculated frequencies with
the observed discrete modes frequencies for several applied fields (see Fig. 5).

FIG. 5. (a) Frequency dependence on the applied magnetic field for the continuous film, (b) the 170-nm-wide strips and (c) the 200-nm-
wide strips. The symbols refer to the experimental data and the dashed lines to the theoretical fits.
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