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We discuss spin- 1
2 Heisenberg antiferromagnet on simple square lattice in magnetic field H using a recently

proposed bond-operator technique. It is well known that magnetically ordered phases of quantum magnets
are well described at least qualitatively by the conventional spin-wave theory that only introduces quantum
corrections into the classical solution of the problem. We observe that quantum fluctuations change drastically
dynamical properties of the considered model at H close to its saturation value: the dynamical structure factor
shows anomalies corresponding to Green’s function poles which have no counterparts in the spin-wave theory.
That is, quantum fluctuations produce multiple short-wavelength magnon modes not changing qualitatively the
long-wavelength spin dynamics. Our results are in agreement with previous quantum Monte Carlo simulations
and exact diagonalization of finite clusters.
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I. INTRODUCTION

Short-wavelength magnetic excitations in spin- 1
2 Heisen-

berg antiferromagnets (HAFs) have attracted much attention
recently. This interest has been stimulated by recent analytical
[1–3], numerical [4–8], and experimental [9–13] works which
have appeared, in particular, due to the rapid progress in
computer power, numerical methods, and experimental facil-
ities. Then, spin excitations are considered now as one of the
promising candidates to provide a “glue” for high temperature
superconductivity with an important role of short-wavelength
excitations [14].

Spin-wave theory (SWT) based on the Holstein-Primakoff
spin representation [15] proved to be one of the most conve-
nient and powerful analytical tool for discussing magnetic ex-
citations in magnetically ordered phases of quantum magnets
[16,17]. SWT often works surprisingly well far beyond the
formal domain of its applicability (S � 1, where S is the spin
value) providing rapidly converging series in powers of 1/S
for observable quantities even in two-dimensional spin models
in the most quantum case of S = 1/2. In particular, it was
successful in describing static properties and long-wavelength
spin dynamics in spin- 1

2 Heisenberg antiferromagnet (HAF)
on simple square lattice, the prototypical model attracting
much attention due to its relevance to physics of high temper-
ature superconductors [17]. However, SWT failed to describe
quantitatively an anomaly in the spectrum of short-wavelength
magnons at k = (π, 0) in this model [7,11,18].

Application of SWT to spin- 1
2 HAF on simple square

lattice in magnetic field described by the Hamiltonian

H =
∑
〈i, j〉

SiS j − H
∑

j

Sz
j, (1)

*asyromyatnikov@yandex.ru

where 〈i, j〉 denote the nearest-neighbor spin couples and
the exchange coupling constant is set to be equal to unity,
showed drastic changes in short-wavelength spin dynamics
in the range 0.76Hs < H < Hs, where Hs = 4 is the satura-
tion field [1,2]. It was demonstrated that magnons acquire
finite lifetime due to a spontaneous decay into two magnons
in this field interval. Self-consistent calculations performed
within the first order in 1/S showed that the single-magnon
branch disappears in the most part of the Brillouin zone (BZ),
whereas long-wavelength spin waves do not change qualita-
tively [1,2,19]. Well-defined short-wavelength magnons reap-
pear only at H = 0.99Hs. Results of subsequent numerical
investigations [4,5] were interpreted in the spirit of these
SWT findings. For instance, two-peak anomalies observed in
Ref. [5] in the longitudinal dynamical structure factor (DSF)
at H ≈ 3.5 using quantum Monte Carlo (QMC) simulations
was construed as a continuum of excitations in which the
peaks mark its edges. A multipeak regime was also observed
in DSF at 0.76Hs < H < Hs in the exact diagonalization
(ED) study of finite clusters with the number of sites up
to 64 [4]. This regime was also attributed to the anomalous
magnon decay. At the same time an analytical approach based
on an expansion in small parameter (Hs − H )/Hs demon-
strated only a small magnon damping in contrast to the SWT
observations [20].

It should be noted that the ranges of validity of all ap-
proaches applied to this problem so far are not known exactly.
One should be careful about the data obtained in Refs. [1,2]
within the self-consistent SWT in the first order in 1/S at
S = 1/2. It is not known exactly up to which H one can
restrict oneself to the first order in the expansion in (Hs −
H )/Hs because it was difficult to estimate the second-order
terms [20]. Finite-cluster ED results suffer from the finite-size
effects: the number and positions of anomalies in DSF depend
strongly on cluster size [4]. Investigation of spin dynamics
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using QMC simulations includes a Baysian procedure for con-
tinuing an imaginary-time spin correlator to real frequencies
which produces uncontrolled errors. In particular, the agree-
ment between QMC and ED data is mostly qualitative. To
the best of our knowledge, experimental consideration of this
problem has not been performed yet due to the lack of suitable
spin- 1

2 materials with accessible saturation fields. Thus, it is
desirable to attack this problem using another method.

We present in this paper results of consideration of model
(1) using the bond-operator theory (BOT) proposed in our
recent paper [21]. The main idea of this approach is to double
the unit cell in two directions and to take into account all spin
degrees of freedom in the unit cell (plaquette) containing four
spins 1/2. We propose a bosonic spin representation for these
four spin operators which reproduces the spin commutation
algebra and contains 15 bosons describing excited states of
the plaquette. This technique, which is described in some
detail in Sec. II, is very close in spirit to the conventional
SWT. The role of the spin value S is played in the BOT
by a parameter n, the maximum number of bosons which
can occupy a unit cell (physical results correspond to n = 1).
One expects that the BOT may describe the short-wavelength
spin dynamics more accurately than the SWT because some
amount of short-wavelength spin correlations within the pla-
quette is taken into account in the BOT even in the harmonic
approximation. Besides, the BOT proved to be convenient and
quite precise in discussion of some high-energy excitations
[e.g., the Higgs mode in model (1) at H = 0] which are
described in this approach by separate bosons and which arise
in conventional considerations as bound states of common
quasiparticles [21].

We show in Sec. III that the uniform and the staggered
magnetizations obtained in the BOT in the first order in
1/n are in a very good quantitative agreement with previous
numerical and analytical results. Spin dynamics in strong field
H > 2.5 is studied in Sec. IV. We observe a very unusual
phenomenon: quantum fluctuations lead to anomalies in the
DSF corresponding to Green’s function poles which have no
counterparts in the SWT. Positions of new peaks correlate
with anomalies in the DSF found in previous numerical stud-
ies. Then we propose that multiple short-wavelength magnon
modes appear in the strong-field regime. It is demonstrated
in Sec. V that one of the boson in the BOT describes an
excitation which could appear in conventional approaches as
a two-magnon bound state. We observe that this quasiparticle
produces a distinct anomaly in the DSF which is seen in ED
data around H = 3 and which turns into the Higgs excitation
at H = 0.

Section VI contains our conclusion. There is an Appendix
with some technical details of the BOT.

II. BOND-OPERATOR FORMALISM FOR SPIN- 1
2 HAF

IN MAGNETIC FIELD

Let us double the unit cell in two directions and take into
account all spin degrees of freedom in the unit cell containing
four spins 1/2 (plaquette). BOT for spin- 1

2 HAF in magnetic
field can be build as it was done in Ref. [21] for the considered
model (1) at H = 0. We introduce 15 Bose operators which
act on 16 basis functions |0〉 and |ei〉 (i = 1, . . . , 15) of a

FIG. 1. Diagrams giving corrections of the first order in 1/n to
self-energy parts.

plaquette according to the rule

a†
i |0〉 = |ei〉, i = 1, . . . , 15, (2)

where |0〉 is a selected state playing the role of a vacuum. The
basis functions are presented in the Appendix which are con-
venient for the consideration of finite H . The representation of
four spin operators which reproduces the spin commutation
algebra can be built on these 15 Bose operators using quite
a general procedure which is described in detail in Ref. [21].
This spin representation is quite lengthy and we do not present
it here. It is a close analog of the conventional Holstein-
Primakoff transformation but it contains 15 bosons and it
is valid for four spins 1/2 (see Ref. [21]). In the proposed
spin representation, the counterpart of the spin value S is an
artificial parameter n giving the maximum number of bosons
which can occupy a unit cell (then the physical results of BOT
correspond to n = 1). In analogy with the SWT based on the
Holstein-Primakoff transformation, expressions for observ-
ables are found in BOT using the conventional diagrammatic
technique as series in 1/n. This is because terms in the Bose
analog of the spin Hamiltonian containing products of i Bose
operators are proportional to n2−i/2 (in SWT, such terms are
proportional to S2−i/2). For instance, to find self-energy parts
in the first order in 1/n one has to calculate diagrams shown
in Fig. 1 (as in the SWT in the first order in 1/S). Besides,
previous applications of BOT to models well studied before
by other methods show that first 1/n terms give the main
corrections to renormalization of observables if the system is
not very close to a quantum critical point (similarly, first 1/S
corrections in the SWT frequently make the main quantum
renormalization of observable quantities even at S = 1/2,
Ref. [17]) [21,22]. Importantly, because the spin commutation
algebra is reproduced within our approach at any n > 0, one
has the proper number of Goldstone excitations in phases with
spontaneously broken continuous symmetry in any order in
1/n (unlike the majority of other versions of BOT proposed
so far [21]).

Although BOT is technically very similar to the spin-wave
theory, the main disadvantage of this technique is that it is
very bulky (e.g., the part of the Hamiltonian bilinear in Bose
operators contains more than 200 terms). But some bosons
describe in BOT excitations which appear in the conventional
SWT as bound states of some number of magnons. Among
such excitations are the Higgs mode, a boson responsible
for the so called “two-magnon” peak in the Raman intensity
(observed, in particular, experimentally in layered cuprates),
and two- and three-magnon bound states which can produce
distinct anomalies in DSFs at high energies [21,22]. Particular
comparison with previous numerical, analytical, and experi-
mental results shows that the positions of anomalies in DSFs
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FIG. 2. The difference between uniform magnetization M(H )
and its classical value Mcl (H ) = H/8 found using exact diagonal-
ization of finite clusters (ED) [4], quantum Monte Carlo simulations
(QMC) [23], spin-wave theory in the first order in 1/S (SWT) [24],
and BOT (present study). Inset shows M(H ).

corresponding to all elementary excitations are determined
quite accurately in the first order in 1/n, whereas their width
(i.e., the quasiparticles damping) may be underestimated in
this approximation [21,22].

III. STATIC PROPERTIES: UNIFORM AND STAGGERED
MAGNETIZATIONS

We have found the uniform and the staggered magnetiza-
tions in the first order in 1/n as it was described in detail in
Ref. [21]. The results are shown in Figs. 2 and 3, respectively.
One can see a very good quantitative agreement between
BOT, previous numerical calculations, and SWT in Fig. 3.
The difference between BOT and previous numerical results
does not exceed 10% in Fig. 2. It is seen from Fig. 3 that
some amount of quantum fluctuations is taken into account
in BOT already in the harmonic approximation (i.e., in the
zeroth order in 1/n): the staggered magnetization found in this
approximation within BOT is closer to numerical data than the
result of the classical approximation in the common SWT.

IV. DYNAMICAL PROPERTIES

We calculate in this section the longitudinal [see Eq. (1)]
spin susceptibility

χzz(k, ω) = i
∫ ∞

0
dteiωt

〈[
Sz

k(t ), Sz
−k(0)

]〉
(3)

and the dynamical structure factor (DSF)

Szz(k, ω) = 1

π
Imχzz(k, ω), (4)

where spin operators read in our terms as Sz
k = (Sz

1k +
Sz

2ke−iky/2 + Sz
3ke−i(kx+ky )/2 + Sz

4ke−ikx/2)/2, the double dis-
tance between nearest neighbor spins is set to be equal to unity
here (notice that in the rest part of this paper, the distance
between nearest spins is assumed to be unity), and spins in
the unit cell are enumerated clockwise starting from its left

FIG. 3. Staggered magnetization Ms versus longitudinal magne-
tization M and the field value H found using quantum Monte Carlo
simulations (QMC) [4,25], spin-wave theory in the first order in 1/S
(SWT) [26], and BOT in the harmonic approximation and in the first
order in 1/n (present study). The classical relation Ms = √

1/4 − M2

is drawn by a black dashed line. The upper axis (H ) corresponds to
M(H ) obtained using BOT in the first order in 1/n.

lower corner. We restrict ourself to terms in Sz
jk linear in Bose

operators. Then χzz(k, ω) appears as a linear combination of
Green’s functions of the bosons in this approximation.

A. Harmonic approximation

Because we do not use the Bogoliubov transformation to
diagonalize the bilinear part of the Hamiltonian (see Ref. [21]
for detail), the denominator of all bosons Green’s functions
appearing in χzz(k, ω) is a polynomial of degree 28 in ω (at
a given k) in the zeroth order in 1/n. Fourteen non-negative
roots of the denominator determine the spectrum of our sys-
tem in the harmonic approximation (HA). Five low-energy
roots are of particular importance for further consideration
(the rest roots have too large energies). Four of them describe
the conventional magnon and the rest, which seemingly has
not been discussed before, could appear in the common
SWT as a bound state of two magnons. We focus on the
four “magnon” poles of χzz(k, ω) now and consider the fifth
(‘nonmagnon”) pole in the next section in detail.

Because the first Brillouin zone (BZ) in BOT is four times
as little as the chemical BZ, four low-energy poles of χzz(k, ω)
describe the conventional magnon living in the chemical BZ.
This is illustrated by Fig. 4, where magnon spectra found
in the linear SWT and in the HA of BOT are presented for
H = Hs = 4 and H = 3.5. It is shown in the insets of Fig. 4
that residues of the four magnon poles of χzz(k, ω) are finite
only in some parts of the chemical BZ. Then, if one draws
the spectra of these poles only at those parts of BZ, where
their residues are finite, the resulting curve reproduces well
the spin-wave spectrum, as it is seen in Fig. 4.

It is well known that due to the absence of the zero-
point oscillations the magnon spectrum is not renormalized
by quantum fluctuations at H � Hs (all diagrams are equal
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FIG. 4. Magnon spectrum εk [shifted by (π, π )] for H = Hs = 4 and H = 3.5 found using BOT in the harmonic approximation. The
distance between nearest spins is set to be unity. Dashed line shows the magnon spectrum at H = 3.5 obtained in the linear spin-wave theory
(SWT). Magnon spectra observed in BOT and in SWT coincide at H = 4. The chemical Brillouin zone (BZ) is presented in the inset. BZ in
BOT is shown by the red square. It is four times as small as the chemical BZ. The magnon mode in the conventional SWT corresponds to
four poles of the spin susceptibility (3) in BOT. Residues of these poles multiplied by 4 are shown in the insets. Parts of the chemical BZ in
which residues of these poles are finite are drawn by different colors in the inset. Spectra of these four poles are shown in the main panel by
the corresponding color in those parts of the BZ in which their residues are finite. The mismatch between four modes at the borders of the
different parts of BZ at H < Hs is an artifact of the harmonic approximation.

to zero because they contain at least one contour which can
be walked around by Green’s functions arrows and which
gives zero upon the integration over frequencies). Bare spectra
of four magnon poles do not change in BOT at H � Hs

by the same reason (all diagrams describing the magnon
renormalization are equal to zero). Then, the magnon spectra
found at H = Hs coincide in BOT and in SWT (see Fig. 4).
At smaller H , they are very close to each other except for
the boundaries of BZ regions drawn by different colors (see
the inset in Fig. 4) where four branches of the BOT spectrum
do not meet. The mismatch between these four poles on the
borders is an artifact of the approximation. In particular, it
was found in Ref. [21] that the value of this mismatch reduces
considerably in the first order in 1/n at H = 0.

B. Calculation in the first order in 1/n

We calculate now self-energy parts in the first order in 1/n
in the bosons Green’s functions arising in Eq. (3) for χzz(k, ω)
(i.e., we find diagrams shown in Fig. 1 using bare Green’s
functions and bare spectra). Notice that we do not expand in
powers of 1/n either the denominator or numerators of the
bosons Green’s functions. Our main observation is that spin
susceptibilities acquire new poles at large H < Hs which have
no counterparts either in the HA of BOT or in SWT. This
finding is illustrated by Fig. 5 which presents Szz(k, ω) at H =
3.5. As it was found in previous numerical works [4,5], the
most dramatic changes in dynamical properties arise around
this field value. We have obtained that anomalies in Szz(k, ω)
seen in BOT data in insets of Fig. 5 are caused by poles of
χzz(k, ω) which are presented in each inset as ωi and which
real parts are indicated by arrows. We present only those poles
whose imaginary parts are much smaller than the real ones.
Results of the quantum Monte Carlo (QMC) simulations [5]
shown in the main panel and in insets of Fig. 5 demonstrate

two-peak features in Szz(k, ω) along directions (0,0)–(π, 0)
and (0,0)–(π, π ) which are reproduced qualitatively by our
BOT results. It is seen that along (0,0)–(π, π ) line the many-
peak regime starts within BOT at smaller momenta and ends
at larger k compared to QMC findings.

Exact diagonalization (ED) of finite clusters [4] also shows
many poles which number and positions vary with the cluster
size and which are also indicated in insets of Fig. 5 for
clusters with 32 and 64 sites. It is seen that the agreement
between data obtained using ED, QMC, and BOT is quali-
tative in most cases. However this agreement is sufficient to
raise doubts on a previous interpretation of the many-pole
feature in numerical data for DSF which was thought to be
a confirmation of the magnon death in the most part of the BZ
[2,5]. In particular, the peaks in the two-peak anomalies were
interpreted in Ref. [5] as two edges of the continuum arising
instead of conventional magnons.

In contrast, we propose a quite exotic and thus unexpected
scenario: the many-peak regime is an indication of appearance
of poles in spin susceptibilities which are either absent in the
HA of BOT and in the SWT or which arise as a result of a
splitting of poles appearing in the HA. Figure 6 illustrates
these poles modifications in χzz(k, ω) at k = (3π/8, 3π/8)
and H = 3.5: we have multiplied all 1/n corrections by a pa-
rameter λ and observed the pole splitting and the appearance
of new poles on the way from λ = 0 (the HA) to λ = 1 (the
result in the first order in 1/n).

Notice also that low-energy peaks obtained in BOT and
shown in Fig. 5 correspond to quasiparticles with zero damp-
ing. This may be an artifact of the first order in 1/n ap-
proximation which uses bare spectra. In contrast, high-energy
peaks [e.g., the peak corresponding to ω3 in Fig. 5(h)] have
finite widths due to the decay into two quasiparticles and
they are mounted on an incoherent background. Two close
peaks in Figs. 5(a), 5(d), and 5(h) found using BOT and

014409-4



MULTIPLE MAGNON MODES IN SPIN- 1
2 … PHYSICAL REVIEW B 102, 014409 (2020)

(d) (e) (f) (g) (h)

(i)

(j)

(k)

(c)

(b)

(a)

FIG. 5. Density plot of the longitudinal dynamical structure factor Szz(k, ω) found in Ref. [5] at H = 3.5 using quantum Monte Carlo
simulations (QMC) on L × L system with L = 32. The white curve is the magnon damping calculated in Ref. [5] within the spin-wave theory
using the Fermi’s golden rule. Insets show Szz(k, ω) for particular momenta obtained using the QMC [5] and BOT in the first order in 1/n
(present study). Positions of anomalies are also shown by circles observed in Ref. [4] by exact diagonalization of finite clusters (black and
magenta circles correspond to clusters with 32 and 64 sites, respectively). The circle size is proportional to Szz(k, ω) (see Ref. [4]). Poles ωi

of the spin susceptibility χzz(k, ω) observed in BOT are presented in each inset. The real parts of ωi are indicated by arrows.

FIG. 6. Evolution of the longitudinal dynamical structure factor
Szz(k, ω) at k = (3π/8, 3π/8) and H = 3.5 upon increasing the
value of 1/n corrections which is measured by λ (λ = 0 and λ = 1
correspond, respectively, to the harmonic approximation and to the
result in the first order in 1/n). Real parts of poles in the spin
susceptibility χzz(k, ω) are indicated by arrows (as in Fig. 5) of the
corresponding color. Pole splitting and appearance of new poles are
seen as λ rises.

corresponding to ω1 and ω2 do not originate from two peaks
in DSFs appearing in the HA as a result of the four magnon
bands mismatch (see above). Thus, it is difficult to conclude
from our results whether these couples of peaks merge into
a single peak after taking into account all 1/n corrections.
Notice also that no multipeak regimes were obtained at H = 0
in model (1) and in the J1-J2 model considered within BOT in
Refs. [21,22].

The most interesting evolution of the longitudinal DSF
upon the field increasing was observed in ED investigation
[4] for momenta k = (π/2, π/2) and k = (3π/4, 3π/4) as a
result of superimposing of data for clusters of all considered
sizes. We compare in Figs. 7 and 8 those ED results with our
findings and obtain a good overall agreement. The low-energy
anomalies in ED results are of particular interest as long as
they originate from the conventional spin waves at small H . It
is seen from Figs. 7 and 8 that there are counterparts of these
anomalies in BOT data having the form of two close peaks
and corresponding to poles of χzz(k, ω). Remarkably, both
methods show that intensities of these anomalies (residues of
these poles in BOT) gradually reduce to zero upon the field
increasing to H = Hs. Besides, we have found that the low-
energy peak at k = (π/2, π/2) originates from the magnon
pole in HA at H = 2.6, 3.2, and 3.5, whereas both low-energy
poles have no counterparts in HA at H = 3.8 and 3.9. At
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FIG. 7. Longitudinal dynamical structure factor Szz(k, ω) at k = (π/2, π/2) found in the first order in 1/n (right panel) and as a result of
superimposing of data of the exact diagonalization of clusters with the number of sites ranged from 32 to 64 (left panel). The left density plot is
taken from Fig. 14 of Ref. [4] (where m is the uniform magnetization). Arrows point to the low-energy anomaly which is produced in BOT by
two close poles of χzz(k, ω). Residues of these poles gradually diminish to zero on the way to H = Hs = 4. These poles have no counterparts
in the harmonic approximation of BOT and in the spin-wave theory at H > 3.5 (see the text).

k = (3π/4, 3π/4), two low-energy poles stem from magnon
poles but they have large imaginary parts and small residues
at H > 3.2 and produce a very weak anomaly in the DSF.

We point out also a good agreement between BOT and the
perturbation theory in small parameter (Hs − H )/Hs proposed
in Ref. [20] at those k and H at which the most pronounced
anomaly of the DSF originates from a magnon pole in HA.
For instance, the BOT shows the magnon peak in the DSF
at k = (3π/4, 3π/4) and H = 3.8 produced by the pole
at ω = 3.3 − 0.083i (see Fig. 8), whereas the perturbation
theory gives for the magnon energy and damping 3.2 and
0.094, respectively.

V. “NONMAGNON” MODE AND TWO-MAGNON
BOUND STATES

Apart from four magnon poles, there is another pole in
the longitudinal spin susceptibility within HA of BOT whose
energy is comparable with short-wavelength magnon energies
being smaller than 4. It does not produce an anomaly in
Szz(k, ω) in the HA because the residue of this pole is zero.

However, it becomes apparent in the first order in 1/n in
some regions of BZ. For instance, we have found that the
pole ω1 in Fig. 5(g) corresponds to this mode. It is seen
from Fig. 8 that this mode produces distinct anomalies in
Szz(k, ω) at k = (3π/4, 3π/4) in a range of strong fields in
agreement with previous numerical results [4]. However, we
cannot identify it with any peak in the DSF at other considered
k by at least one of two reasons: many close poles arise at
some λ on the way from the HA to 1/n results or the imaginary
part of the pole in the first order in 1/n is of the order of its
real part. For instance, at k = (π/2, π/2), this mode produces
a weak anomaly in Figs. 5(h) and 7 in BOT data for H = 3.5
and 3.2 at ω ≈ 2.4–2.5 because the imaginary part of the
corresponding pole is comparable with its real part.

It is interesting to relate this mode with the bound states of
magnons at H = Hs. Its spectrum found in BOT at H = Hs in
the first order in 1/n is shown in Fig. 9. We have checked that
this spectrum is indeed close to the spectrum of the pole of the
four-particle vertex found standardly within SWT. Then, this
mode does correspond to the two-magnon bound states in the
conventional approaches. Notice a considerable damping of

FIG. 8. Same as in Fig. 7 but for k = (3π/4, 3π/4). The left density plot is taken from Fig. 14 of Ref. [4]. The lower group of arrows
point to the low-energy anomaly which is produced in BOT by two close poles of χzz(k, ω). The upper group of arrows point to the anomaly
caused by the pole corresponding to two-particle bound states described in BOT by a separate boson (see the text).
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FIG. 9. Spectra of magnons and two-magnon bound states corre-
sponding in the harmonic approximation of the BOT to propagation
of the plaquette singlet state shown in the right inset. The magnetic
field H is equal to its saturation value Hs. The dynamical structure
factor (DSF) S(k, ω) = 1

π
Imχ (k, ω) at k = 0 is shown in the left

inset, where χ (k, ω) is given by Eq. (5). χ (k, ω) is built on two-spin
plaquette operator (6) and it is given by the Green’s function of
the boson in the BOT corresponding to the considered two-magnon
bound states. The narrow peak in DSF at ω ≈ 1.9 does not corre-
spond to a pole of χ (k, ω), it rather marks the lower edge of the
energy region in which the bound states acquire finite lifetime due to
the decay into two magnons. In contrast, the broad peak in DSF at
ω ≈ 2.7 corresponds to the pole describing bound states with k = 0.

this mode at H = Hs and that it lies below magnon spectrum
in a large part of BZ. Interestingly, the boson describing this
mode in BOT creates in HA the singlet state of the plaquette
shown in the right inset of Fig. 9. Besides, we have traced the
development of this mode upon variation of H and found that
it corresponds to the Higgs mode at H = 0 (see Ref. [21]).

As it is mentioned above, this mode appears in Szz(k, ω)
only at some k in the strong-H regime. In particular, the
residue is zero of the pole of this mode in χzz(k, ω) at H =
Hs. It is more conveniently seen at large H in the four-spin
(plaquette) correlator

χ (k, ω) = i
∫ ∞

0
dteiωt 〈[Ak(t ),A†

−k(0)]〉, (5)

A j = S−
1 jS

−
2 j + S−

1 jS
−
4 j + S−

2 jS
−
3 j + S−

3 jS
−
4 j

− 2(S−
1 jS

−
3 j + S−

2 jS
−
4 j ), (6)

where Sp j is the pth spin in the jth plaquette. We have found
that spin susceptibility (5) is related to the Green’s function
of the considered boson if it is built on operators (6). As it is

shown in the left inset of Fig. 9, the two-magnon bound states
produce a distinct anomaly in this four-spin correlator.

VI. CONCLUSION

To conclude, we discuss spin- 1
2 Heisenberg antiferromag-

net (1) on simple square lattice in strong magnetic field
H > 2.5 using the bond-operator theory (BOT). The uniform
and the staggered magnetizations found in the first order in
the BOT agree well with previous numerical and analytical re-
sults. The dynamical structure factor (DSF) found in the BOT
shows a number of high-energy anomalies corresponding to
poles of spin susceptibilities which have no counterparts either
in the harmonic approximation of the BOT or in the conven-
tional spin-wave theory. Positions of peaks in the DSF corre-
sponding to these poles correlate with anomalies found in the
DSF in previous numerical works [4,5]. Thus, we propose that
the strong-field regime in the considered model shows quite
an exotic phenomenon: quantum fluctuations change drasti-
cally the quasiclassical picture of the magnetically ordered
state producing multiple short-wavelength spin excitations
which have nothing to do with high-energy spin waves in the
classical limit. This phenomenon manifests itself in previous
spin-wave calculations [1,2] as the complete disappearance of
short-wavelength magnons due to the two-magnon decay.
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APPENDIX: BASIS FOR THE
BOND-OPERATOR THEORY

The basis which was used in Ref. [21] for developing BOT
in model (1) at H = 0 is shown in Fig. 10. Because states
with different total spin values and its projections are mixed
in the ordered phase at finite H , it is convenient to intro-
duce the following basis functions for Eq. (2): |ϕ1〉 = |φ1〉,
|ϕ2〉 = |φ2〉, |ϕ3〉 = |φ3〉, |ϕ4〉 = (|b1〉 − |b̃1〉)/

√
2, |ϕ5〉 =

(|b4〉 + |b̃4〉)/
√

2, |ϕ6〉 = (|c〉 + |c̃〉)/
√

2, |e6〉 = |a1〉, |e7〉 =
|a2〉, |e8〉 = |a3〉, |e9〉 = (|b1〉 + |b̃1〉)/

√
2, |e10〉 = (|b4〉 −

|b̃4〉)/
√

2, |e11〉 = (|c〉 − |c̃〉)/
√

2, |e12〉 = (|b2〉 + |b̃2〉)/
√

2,
|e13〉 = (|b2〉 − |b̃2〉)/

√
2, |e14〉 = (|b3〉 + |b̃3〉)/

√
2, |e15〉 =

(|b3〉 − |b̃3〉)/
√

2. We assume here that the field is directed
along x axis. It is convenient to represent the function of the
ground state |0〉 as well as |e1,2,3,4,5〉 as the following linear
combinations of |ϕ1,2,3,4,5,6〉:

|0〉 = cos γ (cos β(|ϕ2〉 sin α1 + |ϕ1〉 cos α1) − sin β(|ϕ4〉 sin α2 + |ϕ3〉 cos α2)) + sin γ (|ϕ6〉 sin α3 + |ϕ5〉 cos α3),

|e1〉 = − sin γ (cos β(|ϕ2〉 sin α1 + |ϕ1〉 cos α1) − sin β(|ϕ4〉 sin α2 + |ϕ3〉 cos α2)) + cos γ (|ϕ6〉 sin α3 + |ϕ5〉 cos α3),

|e2〉 = sin β(|ϕ2〉 sin α1 + |ϕ1〉 cos α1) + cos β(|ϕ4〉 sin α2 + |ϕ3〉 cos α2),

|e3〉 = cos γ (cos β(|ϕ2〉 cos α1 − |ϕ1〉 sin α1) − sin β(|ϕ4〉 cos α2 − |ϕ3〉 sin α2)) + sin γ (|ϕ6〉 cos α3 − |ϕ5〉 sin α3),

|e4〉 = − sin γ (cos β(|ϕ2〉 cos α1 − |ϕ1〉 sin α1) − sin β(|ϕ4〉 cos α2 − |ϕ3〉 sin α2)) + cos γ (|ϕ6〉 cos α3 − |ϕ5〉 sin α3),

|e5〉 = sin β(|ϕ2〉 cos α1 − |ϕ1〉 sin α1) + cos β(|ϕ4〉 cos α2 − |ϕ3〉 sin α2), (A1)
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FIG. 10. Basis spin functions for the bond-operator technique. Normalization factors are omitted for clarity. For each spin function,
corresponding values are indicated of the total spin S and its projection Sz.

where real parameters α1,2,3, β, and γ should be found as a
result of minimization of the ground state energy [i.e., the term
without Bose operators in the Bose analog of the spin Hamil-
tonian (1)] or, equivalently, from the requirement that the
term in the Hamiltonian H1 linear in Bose operators should
vanish. Then these parameters depend on H . For instance,
we find at H = 3.2 α1 = −1.168, α2 = 0.739, α3 = 0.423,
β = 0.898, and γ = −0.614. There are also 1/n corrections
to these quantities coming from the contribution to H1 from
terms in the Hamiltonian containing products of three Bose
operators after making all possible couplings of two Bose op-
erators. As a result, we find, e.g., at H = 3.2 α1 = −1.168 −
0.052/n, α2 = 0.739 + 0.098/n, α3 = 0.423 + 0.007/n, β =

0.898 − 0.011/n, and γ = −0.614 + 0.038/n. Because all
terms in the Hamiltonian depend on α1,2,3, β, and γ , 1/n cor-
rections to these parameters contribute to the renormalization
of observables in the first order in 1/n and we have taken them
into account in all our calculations.

Notice also that a BOT built on a basis similar to
Eq. (A1) but containing linear combinations involving all
states |ϕ1,2,3,4,5,6〉 and |e6,...,15〉 does give the same results for
observables. The spin representation built using the procedure
described in detail in Ref. [21] and used in the present
study reproduces the spin commutation algebra of four spins
1/2 in the unit cell at any real parameters α1,2,3, β, γ ,
and n > 0.
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