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We investigate the dynamics of two-dimensional quantum spin systems under the combined effect of random
unitary gates and local projective measurements. When considering steady states, a measurement-induced
transition occurs between two distinct dynamical phases, one characterized by a volume-law scaling of
entanglement entropy, the other by an area law. Employing stabilizer states and Clifford random unitary gates, we
numerically investigate square lattices of linear dimension up to L = 48 for two distinct measurement protocols.
For both protocols, we observe a transition point where the dominant contribution in the entanglement entropy
displays multiplicative logarithmic violations to the area law. We obtain estimates of the correlation length
critical exponent at the percent level; these estimates suggest universal behavior and are incompatible with the
universality class of 3D percolation.
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I. INTRODUCTION

Entanglement plays a fundamental role in characterizing
quantum many-body phenomena [1–4]. A common setting
where bipartite entanglement has attracted a great deal of at-
tention is quantum quenches—i.e., the unitary time evolution
following a sudden change of the Hamiltonian parameters
determining the system dynamics. Following a global quench
starting from a generic low-entanglement (area-law) state, the
von Neumann entropy of a given connected spatial partition
grows linearly with time and relaxes to a value proportional
to the partition volume (volume law). Apart from remarkable
exceptions, such as disorder-induced localized phases [5,6],
constrained quantum systems [7–11] and long-range models
[12–17], this trend is ubiquitous, as broadly documented by a
wealth of theoretical studies [18–28]. Thanks to conceptual
and technological advances in cold atom and trapped ions
systems, Rényi entanglement entropies of moderately large
partitions are nowadays experimentally measurable [29–34].

Recently, a novel paradigm has been introduced in the
study of entanglement dynamics, where unitary dynamics is
interlayered with measurement operations [35–65]. This class
of dynamics is an ideal test ground to unveil the competition
between local measurements and conventional Hamiltonian-
type dynamics: For a low frequency of measurements, en-
tanglement grows toward a volume law, while a high rate
of local measurement continuously collapses the state into a
low-entanglement one.

The intermediate regime between area- and volume-law
regimes has been extensively investigated in both random
unitary circuits and Hamiltonian systems, with measurement
paradigm varying from strong projective measurements, to
weak continuous monitoring. Several studies have reported a
second-order phase transition. Here, entanglement measures
serve as order parameters, and universal behavior has been re-

ported in the study of their finite-size scaling and their critical
exponents. The specific case of hybrid random circuits (HRC)
has been vastly investigated in 1 + 1D, where an underlying
emergent conformal field theory (CFT) has been observed.
The nature of this transition has been subject to debate.
Motivated by numerical observations and analytical treatment,
this critical point has been initially conjectured to lie in the
same universality class of the 2D classical percolation theory
transition [37,39]. However, more recent studies employing
conformal field theory tools [60] support that the transition
in 1 + 1D hybrid circuits belongs to a different universality
class than that of 2D percolation. Compared to the already
rich 1 + 1D case, relatively little is instead known about their
higher dimensional counterparts, where, even at equilibrium,
entanglement properties are considerably different. For in-
stance, the nature of a measurement-induced transition in
two spatial dimensions could shed light on the relationship
between HRC and percolation theories, and, potentially, give
access to a new class of genuine out-of-equilibrium critical
points.

In this work, we study the dynamics of 2 + 1D HRC.
Using stabilizer states and Clifford unitary gates, we over-
come known difficulties with more generic evolution pro-
tocol and reach extensive system sizes (square lattices of
side up to L = 48). We consider two measurement proto-
cols, with rank-1 and rank-2 local projective measurements.
In both cases, we find a volume-law phase at a slow rate
of measurement, separated from an area-law phase at a
high measurement rate via a measurement-induced transition
(MIC). We perform a finite-size scaling (FSS) analysis to
obtain accurate predictions of the correlation length critical
exponent for the two cases. Our results suggest both crit-
ical points belong to the same universality class, which is
distinct from that of percolation, similarly to the 1 + 1D
case analyzed in Ref. [60]. This thesis is enriched by the
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FIG. 1. Graphical scheme of the system dynamics with measure-
ment protocol in Eq. (7). Spins are arranged on a square lattice (x-y
plane) of size L × L. The time evolution is a stroboscopic sequence
of random Clifford unitaries (colored rectangles) acting on plaquettes
and layers of random local projections (diamond symbols) acting on
single spins. Different colors identify different unitary layers [see
Eq. (1)].

presence of a violation of the area-law term in the entangle-
ment entropy that resembles those observed in Fermi liquids
and U (1) gauge fields coupled to fermionic matter [66–73].

The rest of the paper is structured as follows. In Sec. II
we present the model and the observable under consideration,
and we briefly discuss the tools implemented for numerical
simulation. In Sec. III we present the numerical results for the
entanglement entropy. Conclusions follow in Sec. IV.

II. MODEL AND OBSERVABLES

A. System dynamics

We consider a two-dimensional square lattice model
of spin-1/2 qubits. The system is initialized in a low-
entanglement state [74] and let evolve through a hybrid quan-
tum circuit where unitary dynamics is alternated to layers of
randomly picked local projective measurements (see cartoon
in Fig. 1).

The unitary operations are given by random gates acting on
four neighboring sites and structured in a brick-layer pattern.
These gates have a periodic space-time pattern: Depending on
the value of the discrete time t , the operations are padded in
the x and y directions. Given the elementary gate:

U (x, y, t ) ≡ U(x,y),(x+1,y),(x,y+1),(x+1,y+1)(t ), (1)

each unitary layer is given by:

U (t ) =
Lx/2∏
x=1

Ly/2∏
y=1

U (2x − rx(t ), 2y − ry(t ), t ) (2)

rx(t ) =
{

1, if t mod 4 = 1, 2
0, otherwise, (3)

ry(t ) =
{

1, if t mod 4 = 0, 1
0, otherwise. (4)

FIG. 2. Local projection operator employed in the two dynamics.

The different shifts guarantees that the dynamics correlates all
spins. The above operators act linearly on the state:

|ψ (t + 1)〉 = U (t )|ψ (t )〉 (5)

and generate entanglement throughout the system.
Measurements are randomly picked with probability p

throughout the circuit. Given an evolution up to time T , for a
square lattice of side L, the average number of measurements
in the circuit is the fraction Nmeas = pL2T , where 0 � p � 1.
These operations induce a nonlinearity in the dynamics, as the
wave function is renormalized after each collapse:

|ψ (t )〉 �→ Pα|ψ (t )〉
||Pα|ψ (t )〉|| . (6)

In the last equation, α is a label of the measurement type.
In this paper we consider the following rank-1 and rank-2
projective measurement (see Fig. 2):

P(1)
(x,y) = 1 ± σ z

(x,y)

2
, (7)

P(2)
〈(x1,y1 ),(x2,y2 )〉 = 1 ± σ z

(x1,y1 )σ
z
(x2,y2 )

2
. (8)

Here the single site measurement Eq. (7) acts on site (x, y),
while Eq. (8) acts on neighboring sites (x1, y1), (x2, y2) and
projects the state onto a Bell pair. Furthermore, the dynamics
can be tailored conditionally on the measurement outcomes.
In the present setting, we consider only unconditioned mea-
surement layers, as the dynamic of entanglement for stabilizer
states, is unaffected by the measurement outcomes.

For each circuit realization, we compute the entanglement
entropy as a function of time. Given a bipartition of the
system A ∪ B, the entanglement entropy is defined as the
Von Neumann entropy of the reduced density matrix ρA(t ) =
trB|ψ (t )〉〈ψ (t )|:

SA(ρA(t )) = −trAρA(t ) log ρA(t ). (9)

This quantity is an operational measure of entanglement, and
in the present setting, serves as an order parameter character-
izing distinct dynamical phases. The latter are a consequence
of the competing tendencies of the unitary evolution and the
local projective measurements, whose balance is controlled
by the rate p. A qualitative understanding of these dynamical
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phases is captured in the extreme limits [37–39]. When p ∼ 0,
the evolution is largely unitary and the system is driven toward
generic (“infinite temperature”) wave functions. For any given
basis, the number of components of the Hilbert space required
to sensibly capture this stationary regime scales exponentially
with the subsystem volume, thus resulting in an extensive
entanglement entropy SA ∝ vol(A). On the other hand, when
measurements are frequent p � 1, the projections impede
information spreading beyond arbitrary distant regions of the
system. In this regime, spins are correlated on a length-scale
proportional to the domain of the projective measurement. As
a consequence, the stationary wave function is localized in a
smaller subspace, resulting in an entanglement entropy scal-
ing with the area of the subsystem boundary SA ∝ area(∂A).
Finally, entanglement entropy is able to capture also a transi-
tion point between the aforementioned volume-law and area-
law phases (see Sec. III).

As randomness enters the model in both unitary and mea-
surement layers, we are interested in the average values over
many realizations for the hybrid circuits [75]:

SA(p, L) = SA(ρA(t )) = −trAρA(t ) log ρA(t ), (10)

where we denote as B the average of a given quantity B
over the ensemble of realizations. We note that, in defining
SA(p, L), the order of average is important, as the entangle-
ment entropy is a nonlinear functional of the density matrix.
In fact, the average density matrix � = ρA(t ) always presents
a volume-law compatible with that of thermal systems [38].

B. Stabilizer states and Clifford unitary gates

Truly generic random evolution would involve gates drawn
with Haar measure from the full unitary group (usually de-
noted Haar gates). However, the exponential scaling of the
Hilbert space hinders classical computations beyond a few
decades of spins. Despite the remarkable results in obtained
1 + 1D numerical investigations, Haar gates are inadequate to
tackle 2 + 1D dynamical problems. Thus, in order to achieve
large numerical simulations and have a consistent scaling
analysis, we restrict our attention to stabilizer states with
unitary gates drawn from the Clifford group. The Clifford
group is an approximation to the Haar gates, which fully en-
code statistical properties up to the second moment (2-unitary
design) [76]. Remarkably, entanglement entropy within either
Clifford or Haar circuits present similar features. Nonetheless,
we stress the approximation breaks down when considering
more complex objects. Important examples are out-of-time
correlation (OTOC) functions, as they are one of the hallmarks
of ergodicity in quantum systems. Simulations in 1 + 1D
Haar circuits present evidence of exponential growth in time
of the OTOC (signal of chaotic behavior), while analogous
computations for Clifford circuits result in trivial time scaling
[77–79].

In order to maintain the paper self-contained, we conclude
this section with a technical summary on the stabilizer for-
malism and on the Clifford gates (we refer for a general
review to Refs. [76,80]). For readers already familiar with
such formalism, the rest of the section is hopefully useful to
clarify notations. After general considerations, we recall the
Gottesman-Knill theorem [76,81] and the Hamma-Ionicioiu-

Zanardi theorem [82,83]. The former explains how polyno-
mial classical computation resources are needed to simulate
the HRC of interest, while the latter gives an efficient way to
compute entanglement for stabilizer states.

Stabilizer states are vectors of the Hilbert space satisfying
the condition:

Oi|ψ〉 = +1 · |ψ〉, (11)

for some set of operators Oi (for spin-1/2 systems, we an-
ticipate here these are Pauli strings that will be discussed
below). This set, under matrix multiplication, forms a group
G = {Oi}. In principle, the vectors satisfying Eq. (11) form
a vector space associated to the group G. However, if the
number of generators of the group is equal to the number of
sites Ns = L2, a unique state (up to normalization) is fixed
by the knowledge of G (see Ref. [80]). Stabilizer formalism
has been largely discussed in the context of quantum error
correction (see Ref. [80] and reference therein) and have
recently appeared [37–43,60–64] in tailored nonunitary quan-
tum dynamics as they can be efficiently simulated.

The key result behind the simulations of stabilizer states
under the action of the Clifford group is the Gottesman-Knill
theorem, which explains: (i) how unitary evolution affects
stabilizer states, (ii) how projective measurements change the
state within the stabilizer formalism. Let us briefly sketch the
ideas behind this result. Under unitary evolution, Eq. (11)
holds for the evolved stabilizer:

Oi(t )|ψ (t )〉 = +1 · |ψ (t )〉, Oi(t ) = U (t )OiU
†(t ). (12)

In general, Oi(t ) is a linear combinations over exponentially
many Pauli strings. However a major simplification occurs
when the unitary U is drawn from the Clifford group. The
latter is defined as the set of unitary operations that map a
Pauli string into a single Pauli string. Since the number of
stabilizers does not grow under Clifford gates, the knowledge
of the system only requires keeping track of the evolution of
Ns stabilizers at each time step. However, a Pauli string is
totally given by a binary vector of exponents and a phase:

Oi = eiφ
(
σ x

1

)vx
1
(
σ z

1

)vz
1
(
σ x

2

)vx
2
(
σ z

2

)vz
2 . . .

(
σ x

Ns

)vx
Ns

(
σ z

Ns

)vz
Ns

≡ (
vx

1, v
z
1, v

x
2, v

z
2, . . . , v

x
Ns

, vz
Ns

∣∣φ)
. (13)

As a consequence, the state evolution under Clifford circuits
is encoded by a Ns × (2Ns + 1) matrix. We shall neglect the
phase, as it does not contribute to entanglement. Thus our final
state is encoded in a Ns × (2Ns) matrix with binary entries.

Throughout this paper, we consider the Clifford group Cn

acting on n = 4 sites. For an efficient algorithm on how to
implement uniform peaking over the Clifford group we refer
to Ref. [84].

Projective measurement on Pauli string is less intuitive
but easy to implement. Let us consider a Pauli string Op we
want to projectively measure on |ψ〉 a stabilizer state. Give its
stabilizer group:

G = span(O1, O2, . . . , Ok, Ok+1, . . . , ONs ), (14)

suppose that [Oj, Op] = 0 for j � k and {Oj, Op} = 0 for j >

k (either one holds for Pauli strings). The wave function gets
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mapped after measurement to:

|ψ〉± �→ 1 ± Op

2
|ψ〉. (15)

The Gottesman-Knill theorem states that the measured state
expressed in term of the stabilizer group is given by:

G± = span(O1, O2, . . . , Ok, Ok+1 · Ok+2, . . . ONs−2

· ONs−1, ONs−1 · ONs ,±Op). (16)

If the outcome measure is of interest, for example in comput-
ing observable, the overall phase plays a relevant role as if
affects expectation values. However, as already remarked, the
phase is negligible for the entanglement computation and it is
neglected in our computations. In the case of study, Op = σ z

i ,
or Op = σ z

i σ z
j .

Lastly, entanglement entropy can be extracted directly
for the binary matrix Ns × (2Ns) encoding the state. Given
a bipartition A ∪ B of dimension, respectively, NA and NB,
we extract the Ns × (2NA) matrix GA corresponding to the
sites belonging in A. The Hamma-Ionicioiu-Zanardi theorem
state the entanglement entropy for a stabilizer state is simply
given by:

SA(ρA) = rank(GA) − NA. (17)

As the rank is invariant under unitary operations, in 1 + 1D
this gauge freedom has been used to fix a convenient “stan-
dard” form (clipped gauge). There, due to the simplicity of
one-dimensional spin chains, a quasiparticle interpretation of
the entanglement entropy has been given, as well as insights
on the stabilizer length distribution [37]. We were not able to
extend this picture to our 2 + 1D setting, thus we used SVD
factorization to compute the rank in Eq. (17). Let us conclude
by remarking that all Rényi entropies for stabilizer states have
the same values, implying a trivial spectrum of entanglement.
This simply reflects the lack of complexity for higher-order
cumulants for the Clifford circuits.

III. ENTANGLEMENT DYNAMICAL PHASES
AND UNIVERSAL CRITICALITY

We simulate the model in Sec. II and compute the entangle-
ment entropy averaged over N = 104 circuit realizations for
each system size and each measurement rate considered. We
consider periodic boundary conditions and consider biparti-
tion for strips between NA = L × LA and NB = L × (L − LA).
The latter choice allows us to isolate boundary contributions
and neglect effects due to corners. We vary both L and LA and
store, after convergence is reached, the stationary value of the
entanglement entropy S(p, LA).

We have checked that, in the stationary regime, our results
are independent of the initial state chosen (see Ref. [37] for
similar results in 1 + 1D systems). Below we separately dis-
cuss the numerical results for rank-1 and rank-2 measurement
considered (see Sec. II). We find that for both protocols, a
volume-law phase is separated by an area-law phase via a
second-order phase transition (at a point pc which depends on
the projector operator used). This point exhibits a universal
behavior, in the sense that the computed correlation length
critical exponents are compatible in the two cases within one
error bar.

FIG. 3. Entanglement for various linear system sizes L and for
various rates p, with LA = L/2. We can see that the values p < 0.65
present a volume-law entanglement S(p, LA) ∝ L2

A, while for values
p > 0.65 we have a quantum Zeno phase, with entanglement saturat-
ing to an area law S(p, LA) ∝ L. The line pc = 0.65 characterize the
critical point, which exhibits a scaling S(pc, LA) ∝ L log(LA). The
slope for a volume-law phase is provided in blue to guide the eye;
this is quantitatively accurate for purely unitary dynamics. All error
bars are smaller than the size of the symbols.

A. Rank-1 measurements

We consider the local projectors P(1)
i [cf. Eq. (7)]. We sim-

ulate for various p ∈ [0, 1), expecting a volume-law average
entanglement entropy for p � 0 and an area law for p � 1.
The case p = 1 is fine tuned, as the local projections applied
to each sites project the state after each time step in a product
state, hence not considered here.

In Fig. 3 (top panel) we show the average entanglement
entropy at half-system S(p, LA = L/2) for various values of
system sizes L and different measurement rates p. Here, error
bars are present but are smaller than the size of the markers;
thus they are not presented in the figures. Since in two spatial
dimensions the area law is proportional to the entanglement
cut length LA, it is instructive to analyze S(p, LA)/L, as this
quantity saturates to a constant for an area-law phase and
scale linearly with the system size in the volume-law phase. In
Fig. 3 (bottom panel) we plot S(p, LA)/L for LA = L/2. In the
figure, it is possible to identify two distinct scaling regimes:
For p � 0.65, the entropy increases linearly with the volume
of the system. For p � 0.65, after an initial growth for small
sizes, the entropy saturates to a size-independent value. These
results are expected from our previous discussion, except for
the exact location of the critical point, which is extracted from
a careful finite-size scaling analysis (presented below).

Furthermore, in order to gain more information on the
critical regime, we investigate the ratio S(p, LA)/L for a fixed
system size and varying the subsystem dimension. Specifi-
cally, we consider a lattice with side of length L = 48 and
consider a subsystem of dimension NA = L × LA, with LA =
4, 8, . . . , L/2. Also in this case, our simulations distinguish
between the volume-law, area-law, and critical regimes, as
presented in the main panel of Fig. 4. To clearly characterize
the critical line and its scaling, in the inset of Fig. 4 we plot the
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FIG. 4. (Main) Stationary entanglement entropy near the critical
point as a function of LA. To spot the correct scaling, we divide the
entanglement entropy by the uncut system size S(p, LA)/L. Clearly
one can distinguish three regimes: one superlogarithmic (volume-
law), one logarithmic (critical point), and one sublogarithmic (area
law). (Inset) Scaling of entanglement entropy close to the transition
in logarithmic scale. To guide the eye, we plot the fitted log LA for
the ratio of interest. All error bars are smaller than the size of the
symbols.

results in a semilogarithmic scale. Our data strongly support
scaling at the transition of type S(pc, LA) ∝ L ln LA.

As remarked earlier, a correction of this kind has been,
at present, observed only in Fermi liquid and in U (1) gauge
field coupled with matter. For Fermi liquids, the origin is
hidden in the peculiar Fermi surface of the models [67,71,73],
and the entanglement scaling can be obtained analyzing the
entanglement Hamiltonian. Similarly, the scaling of entangle-
ment of critical spin liquids [U (1) gauge fields coupled to
fermions] has been observed numerically in Ref. [70]. The
authors suggest this may be related to the fermionic matter of
the theory and their Fermi surface. In the present setting, the
appearance of logarithmic corrections ∝L ln LA is puzzling as:
(i) the transition point is out of equilibrium, (ii) the system
does not transparently have a Fermi surface. We postpone a
discussion on the emergence of this scaling at the end of this
section.

To access the correlation length critical exponent, we per-
form a finite-size scaling analysis (FSS) around the critical
point. To compare with the literature in 1 + 1D HRC and the
critical exponents of percolation theory, we use the scaling
ansatz:

S(p, LA) − S(pc, LA) = F
(
(p − pc)L1/ν

A

)
. (18)

Specifically, given the scaling variables:

xdat (pc, ν) = (p − pc)L1/ν, (19)

ydat (pc) = S(p, L) − S(pc, L), (20)

we implement polynomial fits for different degree polyno-
mials and different subsets of system sizes. Given a fixed
polynomial Pm(x) of degree m and given a subset of lengths

FIG. 5. Finite size analysis for the model of interest. The land-
scape of the residual is plotted for a suitable range of ν and pc

considered in the FSS. The gray stars locate the optimal parameters.
For the rank-1 HRC, this is at ν = 0.56, pc = 0.650, while for the
rank-2 HRC it is at ν = 0.54, pc = 0.890.

{L1, L2, . . . , Lk}, the best fit is obtained minimizing the nor-
malized least-square distance between the data and the poly-
nomial computed on the scaling variable xdat:

ε =
√∑

i

∣∣y2
dat (i) − P2

m(xdat (i))
∣∣∑

i y2
dat (i)

. (21)

Our final results are obtained averaging over different values
of the degree m and different subsets of system sizes; simi-
larly, the error is the propagated error. In Fig. 5 (left panel) we
present the landscape of the residual for the optimal fit varying
ν and pc. The estimated critical parameters ν = 0.56(1) and
pc = 0.650(5), give us the data collapse in Fig. 6, presented
in both linear and logarithmic scale.

Let us conclude this subsection by comparing our results
with the critical exponents of percolation theory. If a quantum-
to-classical similarity has to hold in higher dimension [with

FIG. 6. Data collapse for the hybrid circuit with rank-1 projective
measurements. Here pc = 0.650(5) and ν = 0.56(1). In the inset, we
present a closer look on the critical point.
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FIG. 7. Data collapse of hybrid circuits with rank-2 projec-
tive measurements. Here pc = 0.890(3) and ν = 0.54(1). The inset
shows a closer look to the critical point.

respect to the results of 1 + 1D HRC], we should test our
findings against 3D percolation on a cubic lattice. Here the
correlation length critical exponent is ν3D

perc = 0.877(1), more
than 50% different from our estimate. Consequently, this
quantum critical point is sensibly different from the percola-
tion one in the same dimension.

B. Rank-2 measurements

These circuits have local projectors P(2)
〈i,〉j [cf. Eq. (8)]. In

this case, the measurement projects the neighboring qubits
into a Bell pair. We perform a finite-size analysis analogous
to the previous subsection. The landscape of the residual
equation varying the parameters pc and ν is plotted in Fig. 5
(right panel). The critical point in this case is shifted to higher
values [the estimated pc = 0.890(3)]. This is not a surprise,
as the rank-2 projectors have less disentangling power than
the correspondent rank-1 measurements, and the critical point
is affected by changes in the microscopic physics of the
system. Nevertheless, the universal information contained in
the critical exponent is preserved, as we estimate ν = 0.54(1)
(see Fig. 7 for the data collapse). This robust check confirms
our previous analysis, in particular the distinction between this
critical point and the percolation theory one.

C. Discussion and open questions

The obtained numerical results leave us with open ques-
tions. To which, if any, universality class do the measurement
induced critical points belong? For D > 1 hybrid quantum
circuits, is there a classical effective model or any mean-
field theory? Which is the origin of the area-law violation at
the critical point? We conclude this section addressing these
issues with speculative arguments based on our numerical
observations.

Our estimate of the critical exponents (mutually com-
patible within %2 error in both the considered models),
suggest both critical points belong to the same universality
class. However, we do not have enough information to fully

characterize the nature of such a universality class. A naive
comparison with D = 3 classical percolation theory rule out
a quantum-to-classical analogy between entanglement and
percolation in 2 + 1D circuits. In fact, our estimated critical
exponent ν � 0.55 is incompatible from the νperc � 0.87 of
percolation theory in 3D.

A key feature here is that the critical point exhibits an area-
law violation. Such violation is common to gapless fermionic
systems, such as free theories and Fermi liquids. It is however
very unusual for spin systems: In these cases, such violations
to area-law contributions are typically associated with the
emergence of an underlying U (1) gauge theory descriptions,
with emergent fermionic excitations responsible for the log-
arithmic corrections [85]. We note that some classes of these
gauge theories—directly connected to CP(N ) models—have
been reported to have critical exponents compatible with the
one observed here [68]. This analogy in terms of entanglement
scaling suggests that either the present critical regime has
no equilibrium analog or that emergent fractionalization of
quantum numbers might be taking place. The formulation of a
rigorous statistical mechanics mapping as done in the 1 + 1D
case or the investigation of gauge-invariant quantum circuits
may resolve this issue [86].

From a complementary, microscopically oriented view-
point, the logarithmic area-law violation we observe may
be justified from the stabilizer size distribution. In one-
dimensional systems, this quantity is defined in terms of the
length of stabilizers, i.e., the distance between the edge Pauli
matrices of a Pauli string. This has been related to entangle-
ment entropy in Refs. [36,37], where the authors deduce the
following scaling in one spatial dimension:

S1+1D
A (p, L) =

⎧⎨
⎩

α(p) log L + β(p)L p < pc,

α(p) log L p = pc,

α(p) log ξ p > pc.

(22)

Heuristically this argument extends to two spatial dimension,
with the important caveat that here, for lattice models, a
clear definition of stabilizer area distribution is missing. (It is
likely that corner effects may roughen a proper scaling limit).
Nonetheless, from our numerical data we conjecture this is the
case, and correspondingly the entanglement entropy behaves
as:

S2+1d
A (p, L) =

⎧⎨
⎩

α̃(p)L log L + β̃(p)L2 p < pc,

α̃(p)L log L p = pc,

α̃(p)L log ξ p > pc,

(23)

with α̃ and β̃ system-size independent. We leave for future
work elaborating a proper definition of the stabilizer area and
its implication on the hybrid quantum circuits dynamics.

IV. CONCLUSIONS AND OUTLOOK

We investigated the measurement-induced criticality in
two-dimensional hybrid quantum circuits generated by Clif-
ford random unitary gates. Our findings reveal that the en-
tanglement transition separating area and volume-law phases
present universal features: Those are signaled by the correla-
tion length critical exponent being insensitive to the choice
of the measurement and by the same functional form of
the entanglement entropy at criticality, showing logarithmic
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violations of the area law. This universality class is distinct
from that of 3D percolation theory.

Concerning the nature of the critical point, at equilibrium,
the entanglement scaling we report has been previously ob-
served only in systems with fermionic excitations, such as
Fermi liquids and U (1) gauge theories coupled to fermionic
matter. For future works, it may be interesting to charac-
terize such entanglement transitions by both studying the
interplay of unitary dynamics and measurements directly in
gauge-invariant circuits and elaborating generalizations of the
stabilizer length distribution.

From the computational side, additional insights may be
gathered via the computation of other observables, such as the
scaling of corner contributions in the entanglement entropy
and equal-time correlation functions. Regarding the latter, the
challenge is to implement these quantities within the stabilizer
formalism, thus preserving the technical advantage over full
(Haar) quantum dynamics. Moreover, it would be interesting
to seek the upper critical dimension of the system of interest,
and in particular, if a “mean-field” regime can be captured by

a classical statistical mechanics model. In fact, our estimate
of the critical exponent ν � 0.55 is close to the mean-field
limit νMFT = 1/2 of statistical field theory. It is possible that
already HRC in 3 + 1D saturate this limit, a fact that might be
detectable already at modest system sizes due to its mean-field
origin.
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