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Dissipative nonequilibrium synchronization of topological edge states via self-oscillation
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The interplay of synchronization and topological band structures with symmetry-protected midgap states
under the influence of driving and dissipation is largely unexplored. Here, we consider a trimer chain of electron
shuttles, each consisting of a harmonic oscillator coupled to a quantum dot positioned between two electronic
leads. Each shuttle is subject to thermal dissipation and undergoes a bifurcation toward self-oscillation with
a stable limit cycle if driven by a bias voltage between the leads. By mechanically coupling the oscillators
together, we observe synchronized motion at the ends of the chain, which can be explained using a linear stability
analysis. Because of the inversion symmetry of the trimer chain, these synchronized states are topologically
protected against local disorder. Furthermore, with current experimental feasibility, the synchronized motion can
be observed by measuring the dot occupation of each shuttle. Our results open another avenue to enhance the
robustness of synchronized motion by exploiting topology.
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I. INTRODUCTION

Topology plays a fundamental role in several fields ranging
from condensed matter physics [1–7] to gauge field theories in
high-energy physics [8–10]. In gauge theories, for example, it
allows us to understand topological charges such as magnetic
monopoles and instantons [11]. In condensed matter physics,
topology is of utmost importance for our understanding of
the integer and fractional quantum Hall effects [12], topolog-
ical insulators, and superconductors [13,14]. Recent experi-
ments in platforms ranging from ultracold optical superlat-
tices [15–17] to waveguide arrays [18–20] have demonstrated
topological protection of transported particles. In mechanical
systems, one can exploit topological protection to design
materials with desired properties [21–23]. While topological
systems exhibit robustness against imperfections in closed
systems, it is a nontrivial problem to determine if this feature
is still available in open systems [24–27]. A recent example
of this is the theoretical prediction [28] and experimental
realization [29] of topological lasers [30,31].

Systems coupled to external reservoirs [32–34] exhibit
a variety of phenomena with no counterpart in closed sys-
tems [35–38]. One of these is synchronization, which is a
hallmark of collective behavior in nonequilibrium systems
[39]. This phenomenon was first observed by Huygens in
1665 in coupled clocks [40] and has been studied in diverse
communities since then. Synchronization plays an important
role in our understanding of electric networks in engineering,
circadian rhythms in biology, pattern formation, and chemical
reactions [41–43]. In nonlinear dynamics, synchronization
is related to the emergence of collective periodic motion in
networks of nonlinear coupled self-sustained oscillators [39].
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In physics, this phenomenon has been extensively explored in
classical systems both theoretically as well as experimentally
[41–43]. However, its quantum counterpart remains largely
unexplored. Recent works have reported synchronization of
quantum Stuart-Landau oscillators [44–48], arrays of coupled
spin systems [49,50], and other many-body systems [51,52].
In the theory of synchronization, the system usually reaches
a steady state that is independent of the initial conditions. In
this sense, the system is robust against changes in its initial
configuration. However, under perturbations of the system
parameters, the synchronized state of the system may change.

In our work, we exploit topological protection to enhance
the robustness of synchronization phenomena in quantum
transport. A key ingredient to achieve synchronized motion
is self-oscillation. The latter naturally appears in the electron
shuttle, a paradigmatic model of quantum transport [53–67].
There, the interplay between sequential electron tunneling and
mechanical motion of the oscillator leads to self-sustained
oscillations. Thus, an array of coupled electron shuttles (see
Fig. 1) serves as a natural platform to investigate synchronized
motion. In contrast to previous studies [68], we stress that in
our model the electron transport is transversal to the chain.
Inspired by models of condensed matter physics such as
Aubry-André [18,69] and Harper-Hofstadter [70] models, we
modulate the frequencies of the oscillators in space in order
to define topological band structures in our system. In this
way, topology allows us to synchronize the edge states so
that they oscillate with the same frequency, even under the
effect of imperfections as long as they preserve the symmetry
of the model. Furthermore, we show that signatures of edge
state synchronization are observable by measuring the local
dot occupation at the edges.

Our paper is arranged as follows: We start by introducing
our model. To this end, in Sec. II A, we first review the
single-electron shuttle. In Sec. II B, we discuss the topology
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FIG. 1. Dissipative nonequilibrium system with topological edge
states: An open chain of N coupled systems splits into trimers with
units A, B, and C. Each system consists of an electron shuttle,
that is a quantum dot (QD) hosted by a nanomechanical oscillator
positioned between electronic leads. The QD is tunnel coupled to
the leads, source (S) and drain (D), in a nonlinear fashion such
that electron tunneling is enhanced in the proximity of the lead
(indicated by the thickness of the arrows). The same bias voltage V is
applied to each shuttle and induces an electrostatic field αV between
the leads, which in turn forces the charged shuttle to move toward
the drain. Each shuttle is coupled to its nearest neighbors via the
mechanical coupling of the oscillators to build a chain. Trimerization
of the chain is then achieved by assigning different frequencies to
nanomechanical oscillators of each unit, e.g., by varying oscillator
length.

of a trimer chain of classical harmonic oscillators before
combining the aforementioned concepts into a trimer chain
of electron shuttles in Sec. II C. We then discuss different
synchronization scenarios present in the system and discuss
the local dot occupation as a witness of the synchronization in
Sec. III. Subsequently, in Sec. IV, we explain the synchroniza-
tion using a linear stability analysis. Furthermore, in Sec. V,
we demonstrate that the synchronization is topologically pro-
tected against disorder if the symmetry of the trimer chain is
preserved. Lastly, we summarize and conclude our findings in
Sec. VI.

II. MODEL

In our work, we investigate the interplay between topology
and synchronization. The first key ingredient to define syn-
chronization is the phenomenon of self-oscillation. Motivated
by this, in Sec. II A we consider the electron shuttle. The
latter exhibits self-oscillation due to the interplay of sequential
electron tunneling and mechanical motion of the oscillator.
Before discussing topology in the open system, we review
in detail topological phases appearing in a trimer chain of
(classical) oscillators in Sec. II B. With these elements at hand,
in Sec. II C we couple several electron shuttles to achieve
synchronized motion and define topological protection by
modulating the onsite energies of the oscillators.

A. Single-electron shuttle

The shuttle device considered here consists of a quantum
dot (QD) with on-site energy ε hosted by nanomechanical

oscillator with frequency ω. The QD is tunnel coupled to
two isothermal leads, source (S) and drain (D), with chemi-
cal potentials μS = ε + V/2 and μD = ε − V/2, respectively.
Here, V = μS − μD denotes the applied bias voltage between
S and D. Throughout this work, we consider units such that
the electron charge is e ≡ 1. Further, we focus on the strong
Coulomb blockade regime, where the number of charges in
the QD can only take the values 0 and 1 [71–73] and we
denote the probability of having one electron by q. Thus, q is
equivalent to the average charge in the shuttle and its average
state is fully described by the triple x = (x, p, q), where x and
p denote the (mass-weighted) position and momentum of the
oscillator, respectively. The applied bias voltage V induces an
electrostatic force F el

l = αV q on the charged shuttle. Here,
α is an effective inverse distance between the two leads.
Additionally, we consider damping of the nanomechanical
oscillator with friction coefficient γ . Hence, the total system is
dissipative, through friction and electron tunneling, and driven
out of equilibrium by the chemical gradient between source
and drain. For simplicity, we assume that the source and the
drain have the same temperatures. A depiction of the single
electron shuttle is shown in the boxes A, B, and C of Fig. 1.

In this work, we focus on the classical limit of the elec-
tron shuttle, sometimes referred to as classical shuttling of
particles [74], which is justified for specific experimental
realizations [75]. In this limit, we can model the dynam-
ics by a system of coupled nonlinear ordinary differential
equations [66],⎛

⎝ẋ
ṗ
q̇

⎞
⎠ =

⎛
⎝ p

−ω2x − γ p + αV q
−�out(x)q + �in(x)(1 − q)

⎞
⎠, (1)

where �out(x) and �in(x) are the tunneling rates from and to
the QD, respectively. These are exponentially sensitive to the
position x of the oscillator [53,59,76–78], motivated by the
exponential sensitivity of quantum mechanical tunneling. The
explicit form of the tunneling rates is as follows:

�out(x) = �e−x/λ[1 − f S(ε̄)] + �ex/λ[1 − f D(ε̄)],

�in(x) = �e−x/λ f S(ε̄) + �ex/λ f D(ε̄), (2)

where λ is a (mass-weighted) characteristic tunneling length,
ε̄ = ε − αV x denotes the charging energy of the filled QD,
and � denotes a bare tunneling rate. The Fermi function
f ν (ε̄) = [exp(β(ε̄ − μν )) + 1]−1 of lead ν ∈ {S, D} with in-
verse temperature β and chemical potential μν denotes the
probability of having an electron with energy ε̄ in lead
ν ∈ {S, D}. The dynamics described by Eq. (1) resembles a
mean field description [66], where the mechanical motion is
described purely deterministically. However, the state q of the
QD is represented by a probability and behaves stochastically.
Moreover, the underlying mechanism of electron tunneling
via Fermi’s golden rule is intrinsically quantum.

The tunneling rates �in(x) and �out(x) in Eqs. (1) and (2)
depend nonlinearly on the shuttle position x. If the shuttle
is close to the source (x < 0), the probability of electron
tunneling between the source and the QD is exponentially
enhanced while it is exponentially suppressed between the
QD and the drain. Conversely, if x > 0 the tunneling between
QD and drain is enhanced. Above a critical value of the
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applied bias voltage, the interplay of electronic tunneling and
mechanical motion of the oscillator leads to a bifurcation
of the system into a stable stable limit cycle with periodic
motion of the oscillator [53–67]. Since the energy supply from
the chemical gradient lacks a corresponding periodicity, the
electron shuttle is a good example of self-oscillation with
stable periodic motion without active regulation from the
outside [79]. We would like to remark that self-oscillation
is inherently a phenomenon of nonlinear dynamics, i.e., an
equivalent model with linear tunneling rates would not exhibit
self-sustained oscillations.

B. Topology of a trimer chain

Symmetry-protected phases constitute one of the most
striking applications of topology in physics [1–7,13,14]. One
of the first examples of this is the integer quantum Hall effect,
where the conductivity of a two-dimensional electron gas
is proportional to a topological invariant [1,4]. By varying
the magnetic field, there are transitions between a series
of topological phases characterized by different values of a
topological invariant known as the Chern number [1,4,80]. In
this case, the topological protection emerges as a consequence
of broken time-reversal symmetry, due to the external mag-
netic field [13,14]. In one spatial dimension, the Aubry-André
model describes a system of particles with modulated on-site
energies in space ωl = 
[2 + cos (2π lb + φ)], where l de-
notes the site index and 
 is the frequency amplitude [18,69].
Furthermore, b is a real number related to the magnetic field in
the integer quantum Hall effect and φ is a parameter that acts
as a synthetic dimension [4,18]. When b is rational, the system
exhibits a finite number of bands. For example, in the case
of b = 1/3, the system has three energy bands with different
topological numbers and in the case of b = 1/2, the system
is connected to the Su-Schrieffer-Heeger model [81,82]. The
Aubry-André model is closely related to the two-dimensional
integer quantum Hall effect and inherits topological properties
associated to two-dimensional topological invariants [18].

Motivated by the Aubry-André model [18,69], our aim
here is to define topological properties of classical mechanical
oscillators [83]. We consider a one-dimensional chain of N
units, each consisting of a harmonic oscillator with frequency
ωl . The chain is trimerized into units A, B, and C by choosing
b = 1/3. Adjacent units can exchange excitations via mechan-
ical coupling with strength g between neighboring oscillators.
In Fig. 2(a), we plot the frequencies ωl of the units A (pink), B
(yellow), and C (blue) as function of the global phase φ. The
system of coupled oscillators is described by the Hamiltonian

Hosc(φ) = 1
2 pᵀp + 1

2 xᵀωx = 1
2 p̄ᵀp̄ + 1

2 x̄ᵀ�x̄, (3)

where x ≡ (x1, x2, ..., xN )ᵀ and p ≡ (p1, p2, ..., pN )ᵀ are
mass-weighted position and momentum vectors, respectively.
Furthermore, ω is a tridiagonal matrix, where the main di-
agonal is given by diag(ω2

1, ω
2
2, ..., ω

2
N ) and the upper and

lower diagonal by diag(−g2, ...,−g2). Hamiltonian (3) can be
diagonalized by a normal mode transformation O, such that
� = OωOᵀ = diag(2

1,
2
2, ..., 

2
N ). The collective modes

are given by x̄ = Ox with collective momentum p̄ = Op.
We plot the frequency spectrum l of ω for N = 24 sites

as function of the global phase φ in Fig. 2(b). The spectrum

FIG. 2. (a) Frequencies ωl of units A (pink), B (yellow), and C
(blue) as function of the global phase φ. (b) Frequency spectrum of
ω [see Eq. (3)] for N = 24 and 
/g = 1. At the crossings in the
spectrum (φ = 2π/3 and φ = 5π/3) the Hamiltonian is inversion-
symmetric with topologically protected edge states. [(c)–(e)] Corre-
sponding eigenstates of the pink and blue branch in panel (bb) for
different values of φ indicating bulk states (φ = 3π/2), edge states
located at one side of the chain (φ = π/2), or inversion symmetric
edge states located at both sides of the chain (φ = 2π/3). The
behavior of the orange states is similar (not shown).

consists of three dispersive bands with two band gaps. Two
exemplary bulk states, which are delocalized across the chain,
are shown in Fig. 2(c), corresponding to the middle (pink)
and lower (blue) bands of the spectrum shown in Fig. 2(b)
for φ = 3π/2. However, as the global phase φ is changed,
these band gaps can host edge states located at either end
of the chain [see Fig. 2(d)]. For the special cases of φ =
2π/3 and φ = 5π/3 with exponentially small avoided midgap
crossings in the frequency spectrum, we find a symmetric and
an antisymmetric edge state localized at both ends of the chain
as shown in Fig. 2(e) for the case of φ = 2π/3.

The above model describes an effective two-dimensional
system, where φ is seen as an additional dimension to spatial
dimension [84,85]. Therefore, the topology can be studied
using concepts known from two-dimensional (2D) systems.
Assuming periodic boundary conditions on the system and
performing a Fourier transformation of the positions, we can
write the Hamiltonian as

Hosc(φ) = 1

2
pᵀp +

∑
k

xᵀ(k, φ)ω̃(k, φ)x(−k, φ), (4)

with Bloch modes x(k, φ). For b = 1/3, there are three bands
and three Bloch modes xn(k, φ). The Chern numbers of the
individual (nth) bands can then be defined over the Brillouin
zone (0 � k < 2πb, 0 � φ < 2π ) with b = 1/3 as

Cn = 1

2π ı

∫ 2π/3

0
dk

∫ 2π

0
dφ

(
∂kAn

φ − ∂φAn
k

)
, (5)

where An
μ = xn(k, φ)∂μxn(k, φ). We compute the Chern num-

bers numerically [86] and find C1 = C3 = 1 and C2 = −2
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(see Fig. 2), such that
∑

n Cn = 0. Furthermore, ω̃(k, φ) is
inversion symmetric for φ = 2π/3 and φ = 5π/3, that is,
Pω̃(k, 2π/3)P−1 = ω̃(−k, 2π/3), where

P =
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠. (6)

This corresponds to a complete inversion of the chain. Hence,
only the edge states located at both ends of the chain are
topological as the inversion symmetry is preserved. These
states are protected against local imperfections as long as the
symmetry is preserved.

C. Trimer chain of electron shuttles

So far, we have discussed the onset of self-oscillation in
the electron shuttle and how topology can be defined for
systems of coupled oscillators. Now we have all the ingre-
dients to define topology in synchronized systems. We first
begin by coupling several electron shuttles, which allows us
to synchronize them. Afterward, motivated by the Aubry-
André model and the discussion in the previous section, we
modulate the energies of the oscillators to define topological
protection. In fact, due to the nature of the electron shuttle, the
system is inherently out of equilibrium and the challenge here
is to investigate topological protection in non-Hamiltonian
systems.

The full model we are interested in consists of a chain of N
electron shuttles labeled by the index l . The state of the chain
is fully described by the vector X with entries Xl = (xl , pl , ql )
describing the state of the electron shuttle l . One can model
the dynamics of the chain by a differential equation Ẋ = f (X),
where every unit l is governed by the nonlinear equations [see
Eq. (1)]

Ẋl = fl (X) =
⎛
⎝ pl

−ω2
l xl − γ pl + αV ql + g2(xl−1 + xl+1)
−�out(xl )ql + �in(xl )(1 − ql )

⎞
⎠.

(7)

Here, the electron tunneling rates �in(xl ) and �out(xl ) are
defined as in Eq. (2). To fulfill the open boundary conditions, it
must hold that x0 = xN+1 ≡ 0. Note that the different electron
shuttles only differ by the assigned oscillator frequency ωl .
Hence, Eq. (7) is inversion symmetric for φ = 2π/3 and
φ = 5π/3 inherited from the inversion symmetry of Hosc(φ).
We apply the same bias voltage V to all shuttles.

From the previous section, we know that the spatial mod-
ulation of the oscillators leads to topology. As a matter of
fact, the energies of the collective modes form bands and
determine the topology of the system. In the system of coupled
electron shuttles, the friction as well as the bias voltage is local
in space. Therefore, to study nonequilibrium effects on the
topology, it is convenient to perform a transformation of the
equations of motion in terms of collective modes. Hence, we
apply the same normal mode transformation O with entries
Olk that diagonalizes Hosc(φ) defined in Eq. (3). In terms of
the collective coordinates X̄ = (x̄, p̄, q̄), where x̄ = Ox and
similarly for the collective momentum and charge, Eq. (7)

takes the form

˙̄Xl =

⎛
⎜⎝

p̄l

−2
l x̄l − γ p̄l + αV q̄l

−�out
[
(Oᵀx̄)l

]
q̄l + �in

[
(Oᵀx̄)l

]
(Ol − q̄l )

⎞
⎟⎠. (8)

Here, Ol = ∑
k Olk . Hence, under the coordinate change, the

collective modes are now only dissipatively coupled, because
the tunneling rates depend on all the collective positions x̄.

III. DISSIPATIVE NONEQUILIBRIUM
SYNCHRONIZATION OF TOPOLOGICAL EDGE STATES

The model introduced in the previous section describes a
dissipative nonequilibrium system: By applying a bias voltage
V between the source and drain of each shuttle, the system
is driven out of equilibrium. However, the tunneling of elec-
trons as well as the friction of each oscillator accounts for
dissipation, such that a stable nonequilibrium steady state
can emerge. Since each single-electron shuttle undergoes a
transition into a stable limit cycle, it is expected that also
collective modes of the coupled chain of these shuttles can
be excited. In fact, we find that for a sufficiently large V and
depending on the global phase φ synchronized states may
appear, which persist in the long time limit. In the following,
we only discuss (periodic) steady states, that is, after initial
relaxation.

Besides the trivial scenario (φ < 0.41π and φ > 0.92π ), in
which all collective modes are damped, there are three differ-
ent dynamical scenarios present in the system, for which we
show examples in Figs. 3(a)–3(c). To visualize the synchro-
nization of shuttles, we show the deviation δxl (t ) of the shuttle
position from its time-averaged position, that is, δxl (t ) =
xl (t ) − 〈xl〉. Here, the averaged position 〈xl〉 = ∫ Tl

0 xl (t )dt/Tl

with period Tl of the lth shuttle. Hence, δxl (t ) = 0 implies
that the shuttle is not moving over time; however, 〈xl〉 may be
unequal to 0.

If φ ∈ [0.41π, 0.58π ), only the shuttles on the right end of
the chain chain oscillate with the same frequency and a fixed
phase difference. Thus, the right end of the chain performs
synchronized motion while the left end of the chain is at
rest. Moreover, the amplitude decreases exponentially toward
the bulk, which is a direct consequence of the existence of
the edge states in the system of trimerized oscillators. We
show this situation for the case of φ = π/2 in Fig. 3(a) as
an example. The opposite behavior, where only the left end of
the chain performs synchronized motion, can be observed for
φ ∈ (0.75π, 0.92π ].

If the trimer chain is inversion symmetric (φ = 2π/3),
both ends of the chain are fully synchronized and the oscilla-
tion amplitude again decreases exponentially toward the bulk
[see Fig. 3(b)]. While the phase difference between the units
belonging to the same edge is independent of the initial condi-
tions, the phase between the two ends of the chain does show
such a dependency: A fully inversion symmetric or inversion
antisymmetric initial state of the shuttles will be preserved
such that the phase difference is 0 and π , respectively. On the
other hand, random initial conditions will lead to a superposi-
tion of the inversion symmetric and inversion antisymmetric
state with random phase difference. However, after initial
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FIG. 3. Synchronization of a trimer chain of electron shuttles
for N = 24. [(a)–(c)] Oscillating position δxl (t ) of the shuttles,
[(d)–(f)] corresponding dot occupation δql (t ) at steady state after
initial relaxation. For φ = π/2 (top figures), only the right end of
the chain performs synchronized motion while the left end is at
rest. Consequently, only the dot occupation on the right end of
the chain oscillates in time. For φ = 2π/3 (middle figures) the
inversion symmetry is preserved and both edges of the chain are
synchronized with an inversion symmetric initial state. For φ =
0.7π also, both edges oscillate; however, each side of the chain
oscillates with its own frequency, such that only shuttles on either
side of the chain are synchronized. Parameters: βV = 150.0, αλ =
0.06, 
/g = 1.0, �/γ = 1.0.

relaxation the units are phase locked and synchronized across
the whole chain. As an example, in Figs. 3(b) and 3(e) we
choose a inversion symmetric initial state.

The synchronization described so far only involve a single
frequency in the system. However, there also exists the case
where the left and right ends of the chain oscillate with differ-
ent frequencies. Moreover, the oscillation amplitudes differ on
both sides of the chain. This is the case for φ ∈ [0.58π, 2π/3)
or φ ∈ (2π/3, 0.75π ] and an example is shown in Fig. 3(c)
for the case of of φ = 0.7π . Nevertheless, shuttles belonging
to the same end of the chain are still synchronized and phase
locked.

As the self-oscillation of an electron shuttle relies on the
interplay of electron tunneling and mechanical motion of the
oscillator, the mechanical synchronization of the chain has a
direct consequence on the dot occupation ql of each shuttle.
For visualization purposes, we again show in Figs. 3(d)–
3(f) the deviation δql (t ) = ql (t ) − 〈ql〉. If the shuttles are
oscillating, the dot occupation is altered in time due to the
exponential dependency of the tunneling rates [see Eq. (2)].
For the examples we have discussed above [Figs. 3(a)–3(c)],
we show the corresponding modulations of the dot occupation
in Figs. 3(d)–3(f)], which clearly show the same synchroniza-

tion patterns as the mechanical motion. As the dot occupation
may be observed directly by nearby quantum point contacts,
the synchronization may be probed directly with current tech-
nology [87,88]. Note that 0 � ql (t ) � 1 for all times and only
the deviations δql (t ) may become negative.

We have discussed three different dynamical scenarios of
synchronization present in the system depending on the global
phase φ. As only the ends of the chains are excited the
underlying topology of the chain influences synchronization.
For a better understanding of this interplay of topology and
synchronization, we investigate the system using a linear
stability analysis in the next section.

IV. LINEAR STABILITY ANALYSIS

Linear stability analysis has been proven a useful concept
to investigate the emergence of stable periodic motions in
nonlinear systems [39]. To perform this analysis in the system
at hand of coupled electron shuttles, we work in the collective
mode basis X̄ such that the dynamics is described by ˙̄X =
f (X̄) [see Eq. (8)]. We expand this nonlinear equation around
the fixed point X̄fix with f (X̄fix) ≡ 0, which needs to be found
numerically, up to first order, i.e.,

˙̄X ≈ J(X̄fix)(X̄ − X̄fix). (9)

Here, J(X̄fix) denotes the Jacobian matrix with entries Ji j =
∂fi/∂X̄ j and eigenvalues zi evaluated at X̄fix.

The real part of the eigenvalues, Re(zi ), gives us informa-
tion about the stability of the fixed point X̄fix. As long as
Re(zi) < 0 for all i, all solutions of the dynamical system
˙̄X = f (X̄) are attracted into the fixed point X̄fix for long
times. However, the fixed point becomes linearly unstable
if Re(zi ) > 0 for at least one i. Then, the corresponding
collective mode undergoes a Hopf bifurcation into a stable
limit cycle with periodic motion and Im(zi ) determines the
oscillation frequency of this mode [39].

We show the relevant excerpts of the real part [Fig. 4(a)]
and imaginary part [Fig. 4(b)] of the eigenvalues of J(X̄fix)
as function of the global phase φ, where each zi comes as a
conjugated pair. We indicate the left (pink) and right (blue)
edge states accordingly to Fig. 2(b). As φ is varied, we can
understand the different synchronization scenarios discussed
in Sec. III by means of the linear stability analysis. First, for
φ < 0.41π and φ > 0.92π (white area in Fig. 4), the real part
of all eigenvalues is negative, such that all collective modes
are linearly stable and fall into the fixed point for long times.
This corresponds to the trivial situation, where all shuttles are
at rest.

For φ ∈ (0.41π, 0.58π ) or φ ∈ (0.75π, 0.92π ) (light gray
area Fig. 4), the real part of exactly one edge state is positive.
Hence, this edge state, located either at the right (blue) or
left (pink) end of the chain, becomes linearly unstable and all
shuttles belonging to this edge state oscillate synchronously
with a frequency according to the frequency in Fig. 4(b). If
Re(zi) > 0 for both edge states (dark gray area in Fig. 4),
both edges become unstable. In general, the two ends of
the chain will oscillate with different frequencies as seen by
the imaginary part of the eigenvalues, Fig. 4(b). Thus, two
shuttles located at different sides of the chain oscillate with
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FIG. 4. Linear stability analysis: Real (a) and imaginary part
(b) of eivenvalues zi of the Jacobian J(X̄fix) evaluated at the fixed
point. As the global phase φ is varied, collective edge states are
excited if Re(zi ) > 0. The corresponding oscillation frequency is
given by Im(zi ). In the light gray shaded area, only one edge state
is excited (blue right and pink left), whereas in the dark gray shaded
area, both edge states are excited in general with different oscillation
frequencies. At φ = 2π/3, the oscillation frequencies cross in panel
(b), such that both edge states are synchronized. Inset: Real part
of zi for a single shuttle as function of the oscillator frequency.
Parameters: βV = 150.0, αλ = 0.06, 
/g = 1.0, �/γ = 1.0.

different frequencies and cannot be phase locked. However,
for the special case of φ = 2π/3, the two branches cross
and the frequencies of the edge states coincide. Then, all
shuttles oscillate synchronized and phase locked as discussed
in Sec. III.

For a better understanding of why the edges of the chain
are excited while the bulk shuttles are at rest, we investigate
the influence of the oscillator frequency on the self-oscillation
of a single-electron shuttle described by Eq. (1). In the inset
of Fig. 4(a), we show Re(zi ) of the linear stability analysis for
a single shuttle as function of the oscillator frequency ω. For
ω < 0.9g and ω > 2.3g, the fixed point is linearly stable and
the shuttle is at rest in the long time limit. However, for 0.9g �
ω � 2.3g the stability of the fixed point changes, leading to
self-oscillation of the system. Moreover, the largest values of
Re(zi ) are centered around ω ≈ 1.5g. We therefore argue in
the case of a chain of electron shuttles, which in the collective
mode basis is described by Eq. (8), that collective states with
frequencies similar to the self-oscillation frequency of a single
shuttle are excited. Examining Fig. 2(b), we find that this is the
case for the midgap edge states located between the first and
second bands.

We can interpret this as follows: The applied bias voltage V
is just large enough to excite collective modes with matching
frequencies located at the ends of the chain. If the inversion
symmetry of the trimer chain is preserved for φ = 2π/3 (see
Sec. II B) and the edge states are topological, long-ranged
correlations along the chain lead to synchronization at the
ends of the chain. On the other hand, if the edge states are
not of topological nature, they oscillate with different fre-

quencies. Hence, the underlying topology manifests itself in
the dissipative nonequilibrium system as synchronized motion
of the chain ends. If V is increased further, not only the
edge states but also bulk states with additional frequencies
would be excited, destroying the synchronization observed
here. Note that by changing system parameters, for example,
the bare tunneling rate �, the excitable frequencies of the
single shuttle can be shifted. We then expect that the midgap
edge states located between the second and third bands can be
excited instead of the ones located between the first and the
second bands.

V. ROBUSTNESS AGAINST DISORDER

From the discussion about the topology of trimer chains
of harmonic oscillators in Sec. II B, we know that not all
edge states are of topological nature. They are topological
only if for φ = 2π/3 and φ = 5π/3 the inversion symmetry
is preserved and the edge states are protected against local
disorder. We first discuss the topological protection in the
trimer chains of harmonic oscillators alone. The inversion
symmetric case relevant for the discussion of synchroniza-
tion of electron shuttles is described by the Hamiltonian
Hosc(2π/3) [see Eq. (3)]. Here, we consider spatial disorder,
which preserves the intratrimer symmetry, and thus we only
allow for disorder in the coupling between trimers. To be
specific, the nanomechanical coupling between oscillators of
units A and C is given by (g + δgi )2, where δgi is a uniformly
distributed random number δgi ∈ {−r, r}. In Fig. 5(a), we
show the frequency spectrum of Hosc(2π/3) for increasing
amount of disorder r for 30 realizations. We can observe
that even if details of the spectrum are modified through the
disorder, the midgap state (blue) is topologically protected for
very large amounts of disorder.

Motivated by the previous observation, we are interested if
synchronized edge states of the chain of electron shuttles are
similarly protected by topology. To this end, we investigate
the influence of the same disorder as above on the eigenvalues
zi of the Jacobian of the linear stability analysis discussed in
Sec. IV. In Figs. 5(b) and 5(c), we show Re(zi) and Im(zi )
for 30 realizations of disorder with increasing strength r. We
first observe that the frequency of the synchronized edge state
[yellow in Fig. 5(c)] is unaffected, similarly to the trimer chain
of harmonic oscillators. However, the spectrum of Re(zi),
which accounts for the emergence of stable collective motion
in the systems, is highly altered by the disorder. First, for weak
disorder strength r, only the synchronized edge states are
linearly unstable (Re > 0, pink), such that the synchronization
is equivalent to no disorder. This can also be seen in Fig. 5(d),
where we show again δxl (t ) for one realization of disorder
such that r/g = 0.1.

On the other hand, for large amounts of disorder, the real
part of additional eigenvalues are positive. The corresponding
collective modes are bulk states. Hence, shuttles belonging to
the middle of the chain oscillate. The associated frequencies,
however, are different from the edge states, such that shuttles
at the ends and in the middle of the chain are not synchronized
[see Fig. 5(e)]. Conversely, the ends of the chain still per-
form synchronized motion. However, Re(zi) may be different
for the two edges. Then, the edges oscillate with different
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FIG. 5. (a) Frequency spectrum of the trimer chain of N = 24
harmonic oscillators for φ = 2π/3 [vertical line in Fig. 4(a)] with
increasing amount of disorder r for 30 realizations of disorder.
The edge state (blue) is topologically protected against the disorder
for large values of r. [(b), (c)] Re(zi ) and Im(zi ) of the Jacobian
of the linear stability analysis with increasing amount of disorder.
The topologically protected edge state located at both ends of the
chain persists for large values of r; however, additional bulk states
with different frequencies may become linearly unstable. [(d), (e)]
Oscillating position δxl (t ) of the shuttles for one realization of disor-
der with r/g = 0.1 and r/g = 0.4, respectively, and inversion sym-
metric initial states. Parameters: βV = 150.0, αλ = 0.06, 
/g =
1.0, �/γ = 1.0.

amplitudes and are out of phase even with inversion sym-
metric initial states, as can be seen in Fig. 5(e). Hence,
the synchronized motion of the shuttles located at the ends
of the chain is topologically protected whereas the disorder
manifests itself in breaking the symmetry of the oscillation
amplitudes and phase and by the appearance of unsynchro-
nized bulk states.

VI. SUMMARY AND CONCLUSIONS

In summary, we discuss in this work a system which con-
nects synchronization with topology in a dissipative nonequi-

librium setup. Motivated by models of condensed matter
physics, we introduce topology into the system of coupled
electron shuttles by modulation of the oscillation frequency of
each shuttle. The obtained trimer chain exhibits synchronized
motion located at the ends of the chain. By investigation of a
linear stability analysis of the nonlinear dynamical system, we
explain the emergence of synchronized states by means of the
underlying topology. If the inversion symmetry is preserved,
long-ranged correlations lead to synchronized motion of both
ends of the chain. However, if the observed edge states are
not of topological nature, both ends of the chain oscillate
with different frequencies or one end does not oscillate at
all. Hence, the synchronization of the shuttles is a direct
consequence of the topology of the trimer chain. Moreover,
the synchronization of the ends is topologically protected
against local disorder, which preserves the intratrimer symme-
try. However, the local disorder manifests itself in breaking the
symmetry of the oscillation amplitudes and phase at the ends
of chain and by the appearance of unsynchronized bulk states.
The synchronized movement of the shuttles may be directly
probed by the dot occupation of each shuttle, which shows the
same synchronized periodicity as the shuttles itself.

As the symmetry protects the synchronization of the elec-
tron shuttles, we also expect the synchronized edge states to
persist if thermal fluctuations of the nanomechanical oscilla-
tors are taken into account or by considering a fully quantum
description of the shuttles. Beyond this, it would be very
interesting to explore the effects of well-known phenomena
from the field of topology on synchronization. Here, one may
extend the chain to a two-dimensional grid to investigate
synchronized traveling edge states or topologically pump the
synchronized edge states by varying the global phase φ over
time. Also, exploring the coexistence of synchronized and
unsynchronized states, so-called chimera states, which are
protected by topology, are of great interest. The presented
system thus may serve as a test bed not only theoretically
but also experimentally for very interesting physics to be
investigated and opens another avenue to explore topological
protection in synchronized systems.
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