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Thermoelectric transport properties of Floquet multi-Weyl semimetals
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We discuss the circularly polarized light (of amplitude A0 and frequency ω) driven thermoelectric transport
properties of type-I and type-II multi-Weyl semimetals (mWSMs) in the high-frequency limit. Considering
the low-energy model, we employ the Floquet-Kubo formalism to compute the thermal Hall and Nernst
conductivities for both types of mWSMs. We show that the anisotropic nature of the dispersion for arbitrary
integer monopole charge n > 1 plays an important role in determining the effective Fermi surface behav-
ior; interestingly, one can observe momentum-dependent corrections in Floquet mWSMs in addition to the
momentum-independent contribution as observed for Floquet single WSMs. Apart from the nontrivial tuning
of the Weyl node position ±Q → ±Q − A2n

0 /ω, our study reveals that the momentum-independent terms result
in leading order contributions in the conductivity tensor. This has the form of n times the single-WSM results
with effective chemical potential μ → μ − A2n

0 /ω. On the other hand, momentum-dependent corrections lead
to subleading order terms which are an algebraic function of μ and are present for n > 1. Remarkably, this
analysis further allows us to distinguish type-I mWSMs from their type-II counterparts. For type-II mWSMs,
we find that the transport coefficients for n � 2 exhibit an algebraic dependence on the momentum cutoff in
addition to the weak logarithmic dependence as noticed for n = 1 WSMs. We demonstrate the variation and
qualitative differences of transport coefficients between type-I and type-II mWSM as a function of external
driving parameter ω.

DOI: 10.1103/PhysRevB.102.014307

I. INTRODUCTION

Recent years have witnessed Weyl semimetals (WSMs) as
a focus of research attraction due to their exotic properties.
The upsurge of recent attention on this new class of quantum
materials is due to its unusual Fermi arc surface states and
chiral anomaly that is intimately related to topological order
[1,2]. In WSMs, the bulk band gap closes at an even number
of discrete points in the Brillouin zone. These special gap
closing points, protected by some crystalline symmetry, are
referred as Weyl nodes [3]; Weyl nodes act as a monopoles
or antimonopoles of Berry curvature characterized by integer
monopole charge n. Two Weyl nodes of different chirality
are located at different momenta when the system breaks the
time-reversal symmetry; four Weyl nodes are noticed in gen-
eral for systems with broken inversion symmetry only [2,4].
Moreover, inversion breaking may also lead to the energy-
separated Weyl points while time-reversal-symmetry breaking
can result in Weyl points at the same energy [5,6]. The
existence of Fermi arc surface states, chiral-anomaly-related
negative magnetoresistance, and the quantum anomalous Hall
effect is the direct consequence of the topological nature of
WSMs [7–9]. As compared to the conventional WSMs with
n = 1, reported in TaP, TaAs, and NbAs [10–12], it has been
recently shown that n can be generically greater than 1, with
the crystalline symmetries bounding its maximum value to 3
[13–15]. These are called multi-WSMs (mWSMs); interest-
ingly, the single WSM with n = 1 can be considered as a 3D
analog of graphene whereas the double WSM (triple WSM)

with n = 2 (n = 3) can be represented as a 3D counterpart of
bilayer (ABC-stacked trilayer) graphene [16–18]. Close to the
Weyl points, mWSMs host low-energy quasiparticles with the
dispersion which is, in general, linear only in one direction
leading to anomalous features in the transport properties
[19–25].

An ideal WSM has a conical spectrum and a pointlike
Fermi surface at the Weyl point. An interesting situation arises
when large tilting of the Weyl cones results in a Lifshitz
transition. This leads to a new class of materials called type-II
WSMs, where the Fermi surface is no longer pointlike [2,26–
30]. The existence of type-II WSMs has been experimen-
tally demonstrated [31,32], while theoretical prediction shows
that a type-II WSM can be engineered by applying strain
or chemical doping to the original type-I WSM [33]. The
type-II WSM phase is characterized by a different class of
Weyl fermions manifesting the violation of Lorentz symme-
try. Type-II WSMs can yield intriguing electronic transport
properties due to a markedly different density of states at
the Fermi level [34–37]. In addition to electric transport,
thermal responses also carry signatures of the exotic physics
of WSMs which have been studied theoretically [38–41] and
experimentally [42–45]. At the same time, optical conductiv-
ity of WSMs has been extensively studied along with other
characteristic signatures [46–51]. While much progress has
been made experimentally and theoretically in investigating
n = 1 type-I and type-II WSMs, the experimental discovery
of mWSMs with n � 2 is yet to be made; however, using
density functional theory calculations some materials are con-
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jectured to host Weyl nodes with monopole charges n = 2, 3
[13,14,52,53]. This further motivates the theoretical search for
finding additional tools to identify these exotic phases with
higher monopole charge. For example, mWSMs, in general,
can exhibit a smoothly deformed conical spectrum and a
pointlike Fermi surface at the Weyl point. Interestingly, for
type-II mWSMs, these features are expected to change and
might lead to distinct transport characteristics as compared to
type-I mWSMs.

On the other hand, periodically driven Floquet systems,
where the static Hamiltonian is perturbed with a time-periodic
drive, have attracted a great deal of interest recently. Floquet
systems can host unique phases which have no counterparts
in equilibrium systems, such as anomalous Floquet topo-
logical phases [48,54–60], dynamical freezing [61], many-
body energy localization [62], dynamical localization [63,64],
Floquet higher-order topological phases [65], and dynamical
generation of edge Majorana modes [66]. It has been shown
that circularly polarized light can be employed to switch
between Weyl semimetal, Dirac semimetal, and topological
insulator phases in a prototypical three-dimensional (3D)
Dirac material, Na3Bi [67]. Furthermore, the DC transport
is expected to be drastically modified under such irradiation
[55,68]. Interestingly, linearly polarized light can lead a band
insulator to a WSM phase where the relative separation of
Weyl points can be controlled [69]; similarly, circularly polar-
ized light drives nodal line semimetals into Weyl semimetals
[70]. In the high-frequency driving limit, the system does
not absorb energy via electronic transitions, resulting in a
nonequilibrium steady state. In this limit, an effective static
Sambe-space Hamiltonian picture successfully describes the
nontrivial outcomes [71,72].

Given the background on the generation and optical ma-
nipulation of Weyl nodes, our aim here is to study the thermo-
electric transport properties of mWSMs when it is driven by
a circularly polarized source in the high-frequency limit. The
irradiation can act differently depending on whether the un-
derlying static system obeys or breaks the time-reversal sym-
metry [54,69]. For example, the irradiated graphene, which
is intrinsically time-reversal invariant, becomes topologically
gapped whereas light-induced WSMs, which can be intrinsi-
cally time-reversal broken, remain gapless with renormalized
Weyl node position. A recent study using nonequilibrium
Kubo formalism has revealed that the thermoelectric response
of type-I WSMs can be distinguished from type-II WSMs
under the application of light [30]. One can hence note that
in mWSMs, the anisotropic dispersion may lead to unusual
outcome as compared to the single WSMs and graphene. It
is natural to ask the question, “How do the thermal Hall
conductivity and Nernst conductivity of the type-I phase differ
qualitatively and quantitatively from the type-II phase when
the underlying Weyl Hamiltonian supports higher topological
charge n > 1?” This paper is an attempt to answer the above
question; in particular, our work yields a general framework
for Weyl systems from which the single-Weyl results can be
obtained directly.

We find for n > 1 (n = 1) that the position of the Weyl
point can be tuned in a nontrivial (trivial) manner and
the Fermi surface gets renormalized with both momentum-
dependent and -independent (only momentum-independent)
terms. These additional interesting features in the n > 1 case
heavily influence the subsequent transport properties. The
momentum-independent term gives n times the single-Weyl
results for a conductivity tensor in its leading order while
the dependent terms can lead to subleading correction in
the conductivity tensor. Our study further suggests that the
vacuum contribution becomes cutoff dependent, unlike the
n = 1 case, due to the coupling of the U (1) gauge field to
the anisotropic dispersion that contains higher momentum
modes. In addition to the logarithmic cutoff dependence in
the Fermi surface contribution for type-II n = 1 WSMs, we
find a strong algebraic cutoff dependence for n � 2. Inter-
estingly, the Fermi surface contribution for type-I mWSMs
continues to show a cutoff-independent response, similar to
the observation for n = 1 mWSMs. Type-I mWSMs behave
in a dissimilar manner as compared to type-II mWSMs, as a
function of the chemical potential; this is very clearly visible
when the Nernst conductivity is investigated. We wish to note
that the results presented here pertain to the minimal model
and further investigation is needed to verify our claims.

The paper is organized as follows: Sec. II discusses the
equilibrium and nonequilibrium low-energy model Hamilto-
nian and compares it with the single-WSM case. We then
study the Berry curvature and anomalous Hall conductivity
in detail in Sec. III. Next in Sec. IV, we present our an-
alytical results for optical conductivity using Floquet-Kubo
formalism and extensively analyze the vacuum and Fermi
surface contribution. In Sec. V we pictorially represent the
distinctive behaviors of type-I and type-II mWSMs, and dis-
cuss the underlying physics. We present our conclusions in
Sec. VI.

II. EFFECTIVE FLOQUET HAMILTONIAN

The low-energy Hamiltonian for a multinode WSM of
monopole charge n near each Weyl point is given by [73]

Hs
k = h̄Cs(kz − sQ) + sh̄αnσ · (nk − se). (1)

The lattice model for mWSMs can be shown to reduce in
the above low-energy model [74]. Here, s = ± indicates
the chirality of nodes, nk = [kn

⊥ cos(nφk ), kn
⊥ sin(nφk ), vkz

αn
].

e = (0, 0, Q), and 2Q is the separation between two Weyl
nodes. σ = [σx, σy, σz] is the vectorized Pauli matrix, and αn

is the mWSM coupling which reduces to the Fermi velocity
v when n = 1. We define the x-y plane azimuthal angle φk =
arctan( ky

kx
), and the in-plane momentum k⊥ =

√
k2

x + k2
y . The

Hamiltonian (1) represents the two Weyl nodes (0, 0,±Q),
located at the same energy and separated by a distance 2Q,
while Cs indicates the tilt parameter associated with the s Weyl
node. Type-I mWSMs correspond to |Cs|/v � 1 while for
type-II mWSMs we have |Cs|/v � 1. We restrict ourselves
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to the inversion-symmetric tilt given by sCs = C. We cast the above Hamiltonian in matrix notation:

Hs
k =

[
h̄Cs(kz − sQ) + sh̄v(kz − sQ) sh̄αn(kx − iky)n

sh̄αn(kx + iky)n h̄Cs(kz − sQ) − sh̄v(kz − sQ)

]
. (2)

Hereafter, we use natural units and set h̄ = c = kB = 1. We
now examine the effect of circularly polarized light on the
mWSM. Under the influence of a periodic optical driving with
electric field of frequency ω, E(t ) = E0(− cos ωt, sin ωt, 0),
the Hamiltonian transforms via the Peierls substitution ki →
ki − Ai, where the vector potential is given by A(t ) =
E0
ω

(sin ωt, cos ωt, 0), in the Landau gauge. The gauge-
dependent momenta transform as kx → k′

x = kx − A0 sin ωt ,
ky → k′

y = ky − A0 cos ωt , and kz → k′
z = kz. The driving am-

plitude of the vector potential is related to the amplitude of
the electric field by A0 = E0

ω
. Considering the fact that (k′

x ±
ik′

y)n = ∑n
m=1(k⊥e±iφ )n−m(A0)me±im( π

2 −ωt ) n
Cm, where nCm =

n!
(n−m)!m! represents the combinatorial operator, the time-
dependent Hamiltonian takes the form

Hs
k(A, t ) = sσ+(k′

x + ik′
y)n + sσ−(k′

x − ik′
y)n

+C(kz − sQ) + v(kz − sQ)σz. (3)

Solving the problem with a time-dependent potential may
be out of the reach of analytical tractability. Instead, we resort
to using Floquet’s theorem and the extracting the subleading
order term in the high-frequency Van Vleck expansion, to
obtain a closed-form expression for the effective Hamiltonian
HF

k . We note that one can numerically solve an extended
Floquet Hamiltonian, defined in the Hilbert space T ⊗ H
(with H being the Hilbert space of static Hamiltonian and T
being the Hilbert space associated with multiphoton dressed
states), to obtain the quasistates and quasienergies [75]. From
a mathematical point of view, one can also use the Lie algebra
technique and a decomposition of the evolution on each group
generator to obtain an effective Hamiltonian [76]. However,
the Van Vleck expansion is more tractable as the whole
Hilbert space of extended Floquet Hamiltonian gets projected
onto the zero-photon subspace: T ⊗ H → T0 ⊗ H = H. All
the eigenvectors of the effective Hamiltonian, obtained from
Van Vleck expansion, are the projection of the original eigen-
vectors onto the model space H with the true quasienergies.
This shows the real usefulness of the Van Vleck expansion
where one can get a closed-form expression under the high-
frequency approximation.

In this limit, one can describe the dynamics of the driven
system over a period T in terms of the effective Floquet
Hamiltonian: HF

k ≈ Hs
k + V s

k , where V s
k represents the pertur-

bative driving term. We restrict ourselves to contributions of
order 1/ω throughout the paper, and the form of V s

k is given
by

V s
k =

∞∑
p=1

[V−p,Vp]

pω
, (4)

with Vp = 1
T

∫ T
0 Hs

k(A, t )eipωt dt and ω = 2π
T . Evaluating V s

k
for our system, we arrive at

Vp = sαn

n∑
m=1

(k⊥)n−m(−A0)m nCm

=
[

0 e−i[(n−m)φ+m π
2 ]δp,−m

ei[(n−m)φ+m π
2 ]δp,−m 0

]
. (5)

Using the result in (5) and evaluating the commutator in
(4), we find that the effective Floquet Hamiltonian takes the
form

HF
k = Hs

k + V s
k

= Cs(kz − sQ) + sαnσ · (nk − sQêz )

+ α2
n

ω

n∑
p=1

1

p

(n

CpAp
0

)2

k2n−2p
⊥ σz

= Cs(kz − sQ) + sαn(n′
k − sQêz ) · σ (6)

with n′
k = (kn

⊥ cos (nφk ), kn
⊥ sin (nφk ), Tk/αn). In all subse-

quent analysis, we define Tk ≡ vkz + α2
n

ω

∑n
p=1 βn

pk2(n−p)
⊥ ≡

	n + T ′
k , with T ′

k ≡ vkz + α2
n

ω

∑n−1
p=1 βn

pk2(n−p)
⊥ , and βn

p =
(nCpAp

0 )2/p. The momentum-independent contribution to the

Floquet Hamiltonian acquires the form 	n = α2
n A2n

0
nω

. It clear
from the construction of (6) that the effective Hamiltonian em-
bodies terms which couple higher momentum modes (modes
which diverge faster than k as k → ∞) of the Weyl fermion to
the photon. This can induce a “non-renormalizable” nature to
the theory, which as we shall see becomes strongly dependent
on a momentum cutoff. This phenomenon is very similar
to the theory of quantum electrodynamics with massive op-
erators in high-energy physics. The extra terms, absent for
n = 1, appear due to the anisotropic energy dispersion of
the static mWSM Hamiltonian (1). A close inspection of
effective Hamiltonian (6) suggests that circularly polarized
light cannot open up a gap in WSMs as the time-reversal
symmetry is intrinsically broken in static Hamiltonian (1); in-
stead the position of the Weyl points shifts from (0, 0, sQ) →
(0, 0, sQ − 	n). We note here T ′

k = vkz for k = (0, 0, kz ).
Interestingly, unlike the single-Weyl case where the shift Q
quadratically varies with driving amplitude A2

0, the shift in the
Weyl point for mWSMs 	n is coupled with monopole charge

n as 	n = α2
n A2n

0
nω

. Therefore, Weyl points receive a topological-
charge-dependent shift under irradiation. The terms contain-
ing k⊥ in T ′

k would lead to subleading corrections in transport
properties.

The effective quasienergies obtained from the effective
Floquet Hamiltonian (6) are thus

EF
k = Cs(kz − sQ) ± s

√
α2

nk2n
⊥ + T 2

k , (7)
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leading to the established result: EF
k (n = 1) = Cs(kz − sQ) ±

s
√

v2k2
⊥ + (vkz + 	1)2 as α1 = v. One can observe that the

k⊥ term in Tk is absent for conical dispersion while for n > 1,
the distortion anisotropy in conical dispersion leads to terms
dependent on k⊥ in Tk. For completeness, we note that the
static energy of an mWSM Hamiltonian with no driving is
obtained by diagonalizing the Hamiltonian (1) to obtain E0

k =
Cs(kz − sQ) ±

√
α2

nk2n
⊥ + v2k2

z . Therefore, one can clearly see
that the external optical field parameters get coupled with
momentum k⊥ leading to the complicated form of Tk in
Eq. (7). In particular, the nature of the Floquet dispersion (7)
changes due to the coupling of the incident light parameter A0

and ω with the momentum k⊥ and the topological charge n.
Another interesting feature of the Floquet dispersion is that kz

gets coupled to k⊥, which is not noticed for irradiated single
WSMs. Apart from these characteristic changes, the Floquet
spectrum remains gapless at (0, 0,±Q − 	n). The extensive
analysis of the Floquet dispersion can be shown to exhibit a
few distinct behaviors as compared to static dispersion [74].

III. BERRY CURVATURE

It is very important to study geometric phases in any topo-
logical system as the anomalous response function is directly
given by the Berry curvature. Here our aim would be to
investigate the effect of the driving on the Berry curvature and
subsequently on the anomalous transport. Before going into
detail, we begin by defining the Berry curvature associated
with the Floquet Hamiltonian HF

k . The Berry curvature of the
mth band for a Bloch Hamiltonian H (k), defined as the Berry
phase per unit area in the k space, is given by [77]


m
a (k) = (−1)m 1

4|nk|3 εabcnk ·
(

∂nk

∂kb
× ∂nk

∂kc

)
. (8)

The explicit form of the Berry curvature associated with
the Weyl node having chirality s as obtained from Floquet
effective Hamiltonian (6) is given by


±,s
F (k) = ±1

2

1∣∣EF
k

∣∣3

(
nvα2

nk2n−1
⊥ cos φk, nvα2

nk2n−1
⊥ sin φk,

− nβkα
2
nk2n

⊥ + Tkn2α2
nk2n−2

⊥
)
, (9)

with βk = α2
n

ω

∑n
p=1(2n − 2p)βn

pk2n−2p−2
⊥ . We note that the

+ (−) sign refers to the valence (conduction) band and chiral-
ity s = ±1. The Berry curvature remains unaltered irrespec-
tive of the chirality of the Weyl nodes, i.e., 
±,+ = 
±,−.
This is due to the fact that the chirality factor s appears in the
Hamiltonian with all σi’s; a close inspection suggests that s
gets canceled from the numerator and denominator in Eq. (8).

One can obtain regular static Berry curvature when A0 =
0, βk = 0, and Tk = vkz. The static Berry curvature using
Hamiltonian (1) becomes


±,s
0 (k) = ±1

2

1∣∣E0
k

∣∣3

(
nvα2

nk2n−1
⊥ cos φk, nvα2

nk2n−1
⊥ sin φk,

× n2vα2
nk2n−2

⊥ kz
)
. (10)

Therefore, one can observe that 
z(k) is modified due to
the driving, while the remaining two components of 
±

F (k)
receive the correction from the effective energy EF

k appearing
in the denominator. This suggests that anomalous conductivity
σ a

xy would be heavily modified due to the driving as compared
to σ a

xz and σ a
yz. We shall analyze this extensively in what

follows.
Now, turning to the n = 1 case, the Berry curvature for

the driven single-WSM case is given by 
±,s
F (k, n = 1) =

(kx, ky, kz + v3	1)/|E0
k (n = 1)|3. One can clearly observe

that for driven mWSMs all components of 
(k) depend on k⊥,
while for the driven single-WSM case individual components
are composed of separate momentum. Thus the dispersion
anisotropy of the n > 1 mWSMs imprints effects which are
absent for the single-WSM case. Importantly, even for 
z(k)
in single WSMs, the momentum-independent term 	1 ∼ A2

0
bears the signature of periodic driving. For n > 1, the topo-
logical charge gets coupled with the driving parameter which
leads to a more complex form of 
z(k) as compared to the
n = 1 case.

We shall compute the anomalous Hall conductivity σ a
F,xy,

considering the effective Floquet Hamiltonian, from the z
component of Berry curvature in Eq. (10). In order to obtain
a closed-form result in the leading order, we neglect βk as
ω → ∞ as the effective energy in the denominator bears the
correction terms due to driving as shown in Eq. (7). On the
other hand, we consider the effect of the Floquet driving on
the cutoff limit of kz integration. In particular, zl = − −
sQ → z′

l and zu =  − sQ → z′
u with z′

l = − − sQ + s	n

and z′
u =  − sQ + s	n. Therefore, one can safely consider

the static energy in the denominator, and we shall motivate this
assumption extensively while discussing the vacuum contribu-
tion Sec. IV A. The anomalous contribution to leading order
is thus given by

σ a
F,xy = e2

∫
dk

4π2

∑
s


−,s
F (k)

� − ne2

4π2

∫ z′
u

z′
l

∫ ∞

0
dk⊥dkz

kzk⊥
(k2

z + k2
⊥)3/2

� − ne2

2π2
(Q + 	n). (11)

We have considered cylindrical polar coordinates for the con-
venience of the integration along with the following rescaling:
kz → kz/v and k⊥ → k1/n

⊥ α−1/n
n . It is noteworthy that this

anomalous Hall coefficient has a topological property due to
the appearance of the monopole charge. For the static system,
it is just given by − ne2

2π2 Q. Since the Berry curvature of the
filled valence band remains the same for both the nodes with
opposite chiralities, the result obtained considering these two
nodes is just double that obtained in the single node.

We now connect our findings to the transport phenomena
in the mWSMs. It has been shown that there exist n Fermi
arcs for a mWSM with topological charge n [25], and we
know the transport is mainly governed by the surface states
present in the Fermi arc for WSMs. Interestingly, driving
shifts the position of Weyl points ±Q → ±Q + 	n; this leads
to the modification in Fermi arc for the irradiated case as
compared to the static case. As a result, transport properties
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receive additional corrections from driving. It has been shown
that the Fermi arc can be tuned using the Floquet replica
technique when a WSM is irradiated with circularly polarized
light [78]. The factor n in front of Eq. (11) signifies that the
effective Floquet Hamiltonian still supports n Fermi arcs. We
here mention that the neglected βk term would give rise to
subleading nontopological contributions. Since we wish to
probe the question of transport due to laser driving, it would
be appropriate to investigate the optical conductivity using
Floquet-Kubo formalism. However, we note at the outset that
one can find an expression similar to that given in Eq. (11)
while calculating the vacuum contribution of optical conduc-
tivity up to leading order.

IV. CONDUCTIVITY TENSOR

Having derived the Berry-curvature-induced anomalous
Hall conductivity, we shall now systematically formulate the
conductivity tensor using the current-current correlation func-
tion. This is constructed using the Matsubara Green’s function
method. The current-current correlation is written as∏

μν

(
, k) = T
∑
ωn

∑
s=±

∫
d3k

(2π )3
J (s)
μ Gs(iωn, k)

× J (s)
ν Gs(iωn − i
m, k − q)|i
m→
+iδ. (12)

Here, μ, ν = {x, y, z}, T is the temperature, ωn and 
n are
the fermionic and bosonic Matsubara frequencies, and G is
the single-particle Green’s function. The Hall conductivity
can now be derived from the zero frequency 
 → 0 and
zero-wave-vector limit.

Using the current-current correlation (12), one can define
the static conductivity tensor σ 0

ab. We here use the form of the
time-averaged conductivity tensor σ F

ab in the form of the Kubo
formula, modified for the Floquet states as

σ F
ab = i

∫
d3k

(2π )3

∑
α =β

fβ (k) − fα (k)

εβ (k) − εα (k)

× 〈�α (k)|Jb|�β (k)〉〈�β (k)|Ja|�α (k)〉
εβ (k) − εα (k) + iη

, (13)

which resembles the standard form of the Kubo formula where
Ja(b) represents the current operator, the |�α (k)〉 represents
the states of the effective Floquet Hamiltonian (6), and εα

represent the corresponding quasienergies. The fα represent
the occupations which in general could be nonuniversal in
systems which are out of equilibrium. In such cases, the
steady-state occupations can take the form of a Fermi-Dirac
distribution associated with the quasienergies of the Floquet
states, depending on the characteristics of the drive. The
Matsubara formalism turns out to hold for Floquet states as
well [30]. The method of Floquet Kubo formalism has been
widely used in calculating optical Hall conductivity in open
and closed quantum systems [79].

One can start from Luttinger’s phenomenological transport
equations [80] for the electric and energy DC currents. The
energy current originates from the combination of heat current
JQ and energy transported by the electric current JE in the
presence of electromagnetic field while the underlying system
is characterized by a finite chemical potential μ and temper-

ature T . Within the Fermi liquid limit kBT � |μ|, the Mott
rule and the Wiedemann-Franz law relate the thermopower
α and thermal conductivity K , respectively, to the electric
conductivity σ [81–83]:

αab = eLT
dσab

dμ
, Kab = LT σab. (14)

Here, αab is the Nernst conductivity, Kab is the thermal Hall
conductivity, and L = π2k2

B/3e2 is the Lorentz number. These
formulas are assumed to be valid for the effective time-
independent Floquet Hamiltonian setup [30], and we shall
investigate them in what follows.

One can define the current operator from the effective
Floquet Hamiltonian HF

k [Eq. (6)]:

Jμ = e
∂HF

k

∂kμ

. (15)

In order to derive Jμ, we consider the leading order term
neglecting the ∂Tk/∂kμ term as it contains the 1/ω factor. We
note that the current operator obtained in this manner would
be the same as the static current operator for the mWSM
Hamiltonian. This leading order term can be further confirmed
by the zeroth-order Fourier component of the current operator
as shown in the Supplemental Material [74]. However, one
can indeed consider the full current operator with ∂Tk/∂kμ to
obtain the higher-order corrections. The effect of the Tk term
is also encoded in the single-particle Green’s function Gs.
We compute the optical conductivity by using the complete
expression of G and approximated current operator.

In terms of σ ’s, we can write up to leading order as

Jx ≈ esnαnkn−1
⊥ {cos[(n − 1)φk]σx + sin[(n − 1)φk]σy},

(16)

Jy ≈ esnαnkn−1
⊥ {cos[(n − 1)φk]σy − sin[(n − 1)φk]σx}.

(17)

The point to note here is that Jx and Jy both depend on kx

and ky, which is in contrast to the single-WSM case where
Ji ∼ kiσi. The anisotropic nature of dispersion of the mWSM
Hamiltonian thus engraves its effect on the current operator.

Employing the current-current correlation and performing
a detailed calculation [74], we arrive at the conductivity tensor
as

σxy = e2n2α2
n

4π2

∑
s=±

∫ ∞

0
dk⊥k2n−1

⊥

∫ 

−

dkz

× sv(kz − Q) + sα2
n

ω

∑n
p=1 βn

pk2(n−p)
⊥{[ sα2

n
ω

∑n
p=1 βn

pk2(n−p)
⊥ + sv(kz − sQ)

]2 + α2
nk2n

⊥
}3/2

× [
nF (EF,−

k ) − nF
(
EF,+

k

)]
, (18)

where  is the ultraviolet cutoff of the kz integral, nF (E ) =
1

eβ(E−μ)+1 is the Fermi-Dirac distribution function, and β =
1/T is the inverse temperature. The total optical conductivity
(18) is the sum of vacuum and Fermi surface contributions
that we shall extensively calculate below. We note that due to
the existence of external and internal energy scale ω and μ,
the cutoff  plays an important role in achieving physically
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meaningful results. This cutoff is ultraviolet in nature and can
in principle depend on the details of the material.

A. Vacuum contribution

In this section, we investigate the vacuum contribution
which is obtained in the limit [nF (EF,−

k ) − nF (EF,+
k )] → 1.

Physically this means that the valence (conduction) band is
completely filled (empty). This vacuum contribution amounts
to an intrinsic contribution that remains finite for μ → 0.
Computationally, this refers to the situation where the upper
limit k⊥ is considered to be ∞ in the literature. With suitable
redefinitions and linear integration variable shifts, we arrive at

σ vac
xy = e2n2α2

n

4π2

∑
s=±

∫ ∞

0
dk⊥k2n−1

⊥

∫ −sQ+ sα2
n

ω
A2n

0

−−sQ+ sα2
n

ω
A2n

0

× [svkz + α2
n

ω

∑n−1
p=1 βn

pk2(n−q)
⊥ ]

[( α2
n

ω

∑n−1
q=1 βn

q k2(n−q)
⊥ )2 + α2

nk2n
⊥ ]3/2

. (19)

We will compute the vacuum contribution using two sep-
arate procedures involving suitable approximations and then
compare the results obtained.

1. Coordinate transformation method

The method prescribed in this section relies on the fact that
while several quantities are set to infinity in a computation,
in order to get physically plausible answers one might need to
define the order in which the limits are taken. For computation
of the integrals, the following coordinate map M : R2 → R2

is prescribed with the action k⊥ → k′
⊥ = k

1
n
⊥α

− 1
n

n and kz → kz.
With this coordinate transformation, the vacuum contribution
of the conductivity tensor looks like

σ vac
xy = −e2nα

2− 2
n

n

4π2

∑
s=±

s
∫ zu

zl

∫ xu

xl

k⊥Tk

(k2
⊥ + T 2

k )3/2
dk⊥dkz. (20)

Here, the upper and lower limits of the integrals have been
determined with appropriate physical justifications [74]:

xl = 0, xu = ⊥, (21)

zu = v( − sQ) + s

⎛
⎝	n + α2

n

ω

n−1∑
p=1

βn
pα

2(p−n)
n

n 
2(n−p)

n
⊥

⎞
⎠,

zl = v(− − sQ) + s

⎛
⎝	n + α2

n

ω

n−1∑
p=1

βn
pα

2(p−n)
n

n 
2(n−p)

n
⊥

⎞
⎠.

⊥ is the cutoff for the k⊥ integral. One can seg-

regate zl,u from ⊥: zl,u = z′
l,u + s α2

n
ω

X⊥ with X⊥ =∑n−1
p=1 βn

pα
2(p−n)

n
n 

2(n−p)
n

⊥ and z′
l,u = v(∓ − sQ) + s	n. Hence

one has to handle this cutoff with care, and the issue reduces
to the order of taking limits. We again stress that the high-
frequency Floquet effective Hamiltonian is valid when ω is
larger than the bandwidth not permitting any real electronic
transitions. Keeping this in mind, the subleading 1/ω order
correction that we want to extract is preserved as we execute

the k⊥ integral followed by the kz integral. We note that
while solving the k⊥ integral, without loss of generality ⊥
is considered to be large as compared to . Importantly,
⊥/ω is small compared to  and hence X⊥ is a subleading
term since ω sets the dominant energy scale in the problem.
Taken collectively, the subleading X⊥ term is held finite
during the k⊥ integration and this leads to the ⊥ dependence
reappearing through the limits of the kz integral. In a nutshell,
our result is applicable when ω � ⊥ � . We justify the
above assumptions for the high-frequency Floquet effective
Hamiltonian HF

k (6) that is derived from a low-energy mini-
mal model (1).

Finally, we obtain the vacuum contribution of conductivity
in mWSMs,

σ vac
xy = n

e2Qα
2− 2

n
n

2π2
− n

e2α
2− 2

n
n

2π2

[
	n − α2

n

ωv

n−1∑
p=1

βn
p

2(n−p)
⊥

]
.

(22)
Here, 	n and βn

p are the contributions appearing as an effect
of light. For mWSMs, the light-induced Weyl node position
depends on the topological charge associated with the Weyl
node. This shift in Weyl nodes reduces to a driving-parameter-
dependent constant value as observed in the irradiated single
WSMs. One can easily recover the n = 1 behavior of the gap
where 	1 varies quadratically with the amplitude of driving
A0 [30]. For n > 1 further corrections, due to higher-order
curvature of the Floquet Hamiltonian, contribute in terms of
the cutoff of the low-energy model.

2. Series expansion method

We shall now proceed with a physically justified alternative
method to compute ⊥ in terms of the kz cutoff. The idea here
is to expand the denominator around its unperturbed static
energy in increasing powers of driving period 1/ω → 0 as
ω → ∞. The perturbative expansion is then given by

k2
⊥ + T 2

k ≈ E2
k + 2vkzα

2
n

ω

n−1∑
p=1

β p
n α

2(p−n)
n

n k
2(n−p)

n
⊥ . (23)

One can then note that for n = 2, only βn
1 exists while for n =

3, βn
1 and βn

2 both exist. Ek =
√

k2
⊥ + v2k2

z is the bare static
energy of the single WSM in the absence of tilt. Considering

Xk⊥ = ∑n−1
p=1 βn

pα
2(p−n)

n
n k

2(n−p)
n

⊥ , we now express the integrand as

Tk(
k2
⊥ + T 2

k

)3/2 ≈ 1

E3
k

[
vkz − 3v2k2

z α
2
n

E2
kω

Xk⊥

+ α2
n

ω
Xk⊥

(
1 − 3vkzα

2
n

E2
kω

Xk⊥

)]
. (24)

We explicitly write σ vac
xy for n = 2 (neglecting the 1/ω2

term) as

σ vac
xy (n = 2)

= −e2nα
2− 2

n
n

4π2

∑
s=±

s
∫ z′

u

z′
l

∫ ∞

0

k⊥Tk

(k2
⊥ + T 2

k )3/2
dk⊥dkz
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≈ −e2nα
2− 2

n
n

4π2

∑
s=±

s
[
v(zl + zu) + v2αnβ

n
1 (z′

l − z′
u)

]

≈ −e2nα
2− 2

n
n

4π2

[
v(−2Q + 2	n) + 2v2αnβ

n
1

ω


]
. (25)

In this derivation, we ignore the divergent contributions com-
ing from the integrals having higher powers of k⊥ in the
numerator. These types of terms, being artifacts of the under-
lying low-energy model, do not appear in the lattice model.
In order to obtain ⊥, we equate the coefficient of 1/ω from
Eq. (25) and Eq. (22). We find that ⊥ linearly depends on
′: ⊥ = 2v2′. For n = 3, we find

σ vac
xy (n = 3) = −e2nα

2− 2
n

n

4π2

{
v(−2Q + 2	n)

− 2v2α
2
n
n βn

1

ω
√

π
�

(
5

6

)
�

(
5

3

)(
|zl | 4

n + z
4
n
u

4/3

)

+ βn
2

ω

[
− 3v2α

4
n
n

2
√

π
�

(
7

6

)
�

(
7

3

)(
|zl | 2

n + z
2
n
u

2/3

)

+ α
4
n
n√
π

�

(
1

6

)
�

(
4

3

)(
|zl | 2

n + z
2
n
u

2/3

)]}
. (26)

It is noted that contrary to the n = 2 case, ⊥ is nonlin-

early related to ′ for n = 3: 
4
n
⊥ = η1(|zl | 4

n + z
4
n
u ) and 

2
n
⊥ =

η2(|zl | 2
n + z

2
n
u ), where η1,2 can be obtained by matching the

coefficient of βn
1/ω and βn

2/ω. The relationships between 

and ⊥ derived here are consistency conditions for the model
parameters.

B. Fermi surface contribution

We take note of the point that for the calculation of the
Fermi surface contribution, one has to consider the finite upper
limit in the k⊥ integral as b, a parameter which we compute
below. The Fermi surface contribution for a given n becomes

σ FS
xy (n) = nα2−2/n

n

∑
s

s
∫ z′

u

z′
l

dkz

∫ b

0

k⊥Tk

(k2
⊥ + T 2

k )3/2
dk⊥

× [�(v2k2
z + (Ckz + sC	n − μ)2) − 1]. (27)

In the equation above, �(x) represents the Heaviside function
which arises from the zero-temperature Fermi-Dirac distri-
bution. It is then more convenient to write Tk explicitly for
n = 2 as Tk = vkz + βn

1α−2/n
n k2/n

⊥ and for n = 3 as Tk = vkz +
βn

1α−4/n
n k4/n

⊥ + βn
2α−2/n

n k2/n
⊥ . In a more compact notation, for

n = 3, we define β ′
2 = βn

2α−2/n and β ′
3 = βn

1α−4/n
n , and for

n = 2, we define β ′
2 = βn

1α−2/n and β ′
3 = 0. On the other

hand, b = {Ckz + sCβ1 − μ)2 − v2k2
z }1/2. Below we shall ex-

press all our findings in terms of β ′
2 and β ′

3 for a general n.
In the leading order approximation, β1 = O( 1

ω
), kz → 0

and μ is held finite. We shall consider the type-I and type-
II cases separately: |C| � v, b = μ − Ckz and |C| � v, b =
(μ2 − v2k2

z )1/2. We again resort to the leading order method

where we permit the O(1/ω) order term and obtain the
following:

σxy(n) = nα2−2/n
n

v

∫ z′
l

z′
l

dkz

∫ b

0
dk⊥k⊥(Fk,1 + Fk,2 + Fk,3)

(28)

with Fk,1 = kz

E3
k
, Fk,2 = β ′

2k
2
n
⊥ +β ′

3k
4
n

E3
k

, Fk,3 = − 3k2
z Fk,2

E5
k

. We note

that in Eq. (28) the leading order term Fk,1 is also present for
the n = 1 Weyl node case. Similarly to the vacuum contri-
bution of optical conductivity, the multi-Weyl nature appears
here through a multiplicative factor nα2−2/n

n . The additional
anisotropic and band-bending corrections appear in terms of
1/ω in Fk,2 and Fk,3. To obtain a minimal expression, the
above derivation is simplified by neglecting the term Fk,3 as
k2

z /E3
k → 0 for kz → 0 considered for the low-energy model.

A close inspection suggests that Fk,3 contains O(kp
⊥/ωp′

) and
O(kq

z /ω
q′

) with p, q (p′, q′) < 1 (>1). As a result, for ω →
∞, Fk,3 can be neglected compared to the leading order terms
Fk,1.

For type-I mWSM, one can keep in mind the fact that b
remains always positive. The total contribution from the Fermi
surface is given by

σ FS(I )
xy ≈ −e2nα2−2/n

n

4π2

{
(μ − C	n)

[
v

C2
ln

(
v + C

v − C

)
− 2

]

+β ′
2a(M )

[
μ

2M
n −3 2v(μ − C	n)

v2 − C2

−
(

2M

n
− 3

)
v2μ

2M
n −5

(
μ − C	n

v2 − C2

)3(
3C2 + v2

)]

+β ′
3{M → 2M}

}
(29)

with

a(M ) = �( M
n + 2)

( 2M
n + 2)( 2M

n − 3)�( M
n + 1)

, (30)

with M = 1. Therefore, the leading contribution is not just
given by nα2−2/n

n multiplied by the n = 1 contribution. In this
first term μ gets renormalized by μ − C	n while 	n depends
on topological charge n. The other subleading order terms are
of order 1/ω. The multi-Weyl nature thus imprints its effect
on the Fermi surface part of the optical conductivity. We can
write a closed-form expression for v � |C| as follows,

σ FS(I )
xy = n

α2−2/n
n

v

e2

4π2

[
C(μ − C	n)

6v2

+ 4β ′
2a(M )

(
(2μ)2/n−2

v
+ (2/n − 3)μ2/n−2

v

)

+ 4β ′
3a(2M )

(
2μ4/n−2

v
+ (4/n − 3)μ4/n−2

v

)]
.

(31)
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Therefore, the total conductivity of a type-I mWSM for a
given n is expressed as

σ I
xy(n) = n

e2

4π2

α2−2/n
n

v

[
(Q + 	n) + C

(
μ − C	n

6v2

)

+ 4β ′′
2 a(M )μ2/n−2 + 4β ′′

3 a(2M )μ4/n−2

]
, (32)

with β ′′
2 = β ′

2( 2
v

+ 2/n−3
v

) and β ′′
3 = β ′

3( 2
v

+ 4/n−3
v

). This helps
us to write the anomalous thermal Hall conductivity KI

xy and
Nernst conductivity αI

xy respectively for the type-I mWSMs as

KI
xy(n) = π2

3e2
k2

BT σ I
xy

= n
T k2

B

12

α2−2/n
n

v

[
(Q + 	n) − C

(
μ − C	n

6v2

)

+ 4β ′′
2 a(M )μ2/n−2 + 4β ′′

3 a(2M )μ4/n−2

]
. (33)

One can find

αI
xy(n) = π2

3e2
k2

BT
dσ I

xy

dμ

= n
ek2

B

12

α2−2/n
n

v

[
− C

6v2
+ 4β ′′

2 a(M )

(
2

n
− 2

)

×μ2/n−3 + 4β ′′
3 a(2M )

(
4

n
− 2

)
μ4/n−3

]
. (34)

One can now easily derive the expressions for σ I
xy, KI

xy, and
αI

xy for n = 2 by considering β ′
3 = 0. Comments on the new

results for n = 2 and n = 3 and their characteristic dissimi-
larities from the n = 1 case are now in order. In general, the
nonlinear μ dependence comes from the order 1/ω term in
the n > 1 multi-Weyl case while the linear μ dependence term
only appear for n = 1.

Let us now explore the thermal responses for the type-II
case of mWSMs where the sign of the k⊥ momentum cutoff
b depends on kz. Handling of the k⊥ integral requires extra
care as sgn(b) becomes + (−), depending on kz being − (+).
|C| � v refers to the fact that v2k2

z − (Ckz + sC	n − μ)2 <

0. Keeping in mind the k⊥ integral, we find

σ II
xy (n) = n

e2

4π2

α2−2/n
n

v

{
(	n + Q)

(
−1 + v

C

)

− v(C	n − μ)

C2
ln

(
C2

v(C	n − μ)

)
+ β ′

2a(M )

×
[
μ

2M
n −3

(
2	nv

C
− 2Q

)
+

(
2M

n
− 3

)
Cμ

2M
n −4

2

×
(

4	2
nv

C
−22− 2Q2

)]
+ β ′

3{M → 2M}
}

(35)

with M = 1. The remarkable point to note here is that the
momentum cutoff  shows up algebraically in the Fermi
surface contribution. However, this is accompanied with the
subleading term O(1/ω). This is indeed a new feature for the
anisotropic character of the dispersion in type-II mWSMs. In

type-II single WSMs, the momentum cutoff can only appear
logarithmically.

Using the results obtained above, we write the anomalous
thermal Hall conductivity for type-II mWSMs:

KII
xy (n) = nT

k2
B

12
α2−2/n

n

{
(	n + Q)

(
v

C
− 1

)

− v

C2
(C	n − μ) ln

(
C2

v(C	n − μ)

)
+ β ′

2a(M )

×[
μ2M/n−3a2(M ) + μ2M/n−4a3(M )

]
+β ′

3{M → 2M}
}

(36)

with a2(M ) = (2	nv/C − 2Q), a3(M ) = C(2M/n −
3)(4	2

nv/C − 22 − 2Q2), and M = 1. On the other hand,
the Nernst conductivity is given by

αII
xy(n) = ne

k2
Bα2−2/n

n

12

{
1

C2

[
− 1 + ln

(
C2

v(C	n − μ)

)]

+β ′
2a(M )

[(
2M

n
− 3

)
μ2M/n−4a2(M )

+
(

2M

n
− 4

)
μ2M/n−5a3(M )

]
+ β ′

3{M → 2M}
}
.

(37)

One can easily obtain the n = 2 results by considering β ′
3 = 0.

V. DISCUSSION OF RESULTS

We now discuss some important aspects of our findings
on the distinguishing transport features of type-I and type-II
mWSMs. First of all, we emphasize the significant results that
show the characteristically different features of the effective
chemical potential μ and the cutoff  for two different types
of mWSMs. We also narrate the key roles played by the
topological charge n and the tilt C in the thermoelectric
transport properties of mWSMs in its two counterparts. We
note that dispersion becomes anisotropic due to the multi-
Weyl nature; tilt can additionally make it anisotropic in the
tilt direction. For mWSMs, the Fermi surface becomes a
distorted circle or cone depending on the tilt in the static
limit. The distribution of chiral Weyl fermions also takes part
importantly in transport. Floquet driving can lead to further
complicated deformation of the static Fermi surface. More-
over, it can influence the distribution of chiral Weyl fermions
in the electron and hole pockets. Therefore, Floquet transport
can noticeably be altered upon the introduction of the tilt. In
terms of the physical parameters, the differences in transport
are clearly visible, which originate from the nature of the
Fermi surface. Having qualitatively analyzed the differences,
we below present their quantitative nature.

It is to be noted that 2 is associated with μ2M/n−4 and
μ2M/n−5 (with M = 1, 2) for optical Hall conductivity and
Nernst conductivity in the case of type-II mWSMs, respec-
tively. Therefore, the transport properties in this phase are
heavily influenced by the coupling of μ and . This is
contrary to the type-I mWSM where only μ can affect the
transport in addition to the driving field;  does not appear
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FIG. 1. Type-I WSM: (a) Variation of thermal anomalous Hall conductivity with optical frequency, for three different values of the
monopole charge. (b) Variation of anomalous Nernst conductivity with optical frequency, for three different values of the monopole charge.
The values of the various parameters are specified in natural units as follows: vF = 0.005, α1 = vF , α2 = 0.00012 eV−1, α3 = 0.00012 eV−2,
E0 = ωA0 = 1000.0 eV2, C = 0.1, μ = 1.0 eV, Q = 2.0 eV, and T = 3.4 × 10−2 K.

in the transport coefficients. For the type-II single WSM,
a purely logarithmic cutoff dependence is only observed.
Hence, the anisotropy in the tilted dispersion nontrivially
couples with the field parameters to generate the unusual
cutoff dependence. The shape of the Fermi pockets for type-II
mWSMs is very different from type-I mWSM as is evident
from the cutoff dependence of transport coefficients. Notably,
in the case of irradiated tilted mWSMs, the topological charge
imprints its effect not only in a simple multiplicative fashion
but also in a much more fundamental way, by coupling
to the tilt-dependent effective chemical potential, where 

appears algebraically. This algebraic cutoff-dependent term
is associated with the additional corrections of O(1/ω). The
leading order term in the off-diagonal conductivity is given
by n times the single-Weyl result; here, the anisotropic nature
of the dispersion is partially encoded in the renormalized
chemical potential μ → μ − C	n, where 	n = O(A2n

0 /ω).
The effective chemical potential is also dependent on the
frequency of the driving potential and the monopole charge.

Having discussed the implication of the cutoff, we here
investigate the nonlinear μ dependence that arises in the con-
ductivity tensor, besides the effective μ. In type-I mWSMs,
considering v � |C|, the vacuum contribution σ I

xy associated
with the β ′

2,3 term becomes a decreasing function of μ for
both n = 2 and n = 3; the β ′

2 term decays inversely (as μ−1)
for n = 2 and β ′

2,(3) decays nonlinearly μ−4/3 (μ−2/3) for
n = 3. The Nernst conductivity on the other hand goes as μ−2

for n = 2 and for n = 3, it becomes a decreasing function
of μ (as μ−7/3 and μ−5/3). In type-II mWSMs, considering
|C| � v, the vacuum contribution σ II

xy associated with the
β ′

2,3
2 term becomes a decreasing function of μ for both the

n = 2 and n = 3 cases. We note that the subleading correction
decays more rapidly with μ for type-II as compared to type-I
mWSMs. In particular, the cutoff-independent contributions
associated with the β ′

2 term vary as μ−2 and μ−3 for n = 2,
while for n = 3, these contributions associated with the β ′

2,(3)

term go as μ−7/3 and μ−10/3 (μ−5/3 and μ−8/3). The Nernst
conductivity in this regime becomes a strongly decreasing

function of μ for both n = 2 and n = 3 with the lowest power
as μ−3 and μ−8/3, respectively.

After investigating the transport behavior analytically, we
below illustrate them as a function of driving frequency to
analyze some salient qualitative features. We note that our aim
is to pictorially differentiate the type-I from type-II mWSMs
based on our low-energy model. Hence, at the outset, we
confess that certain lattice effects might not be captured
following our analysis. However, our study uncovers some
trends which we believe can be probed in real materials.

We now discuss the transport coefficients for type-I
mWSMs as shown in Fig. 1(a) for thermal Hall conductivity
and Fig. 1(b) for Nernst conductivity. We here depict the high-
frequency behavior of Kxy and αxy, calculated using Eq. (33)
and Eq. (34), respectively. Noticeably the response from the
external field for a general n > 1 mWSM is not related to
the n = 1 single WSM by a simple multiplicative factor. This
is also very clearly evident from the variation of Kxy and
αxy with driving frequency ω. The subleading terms play an
important role due to the fact that the chemical potential μ

gets nontrivially coupled to the frequency; these terms are
associated with the factors β ′

2, β ′
3. The important point to

note here is that Kxy decreases and eventually saturates with
optical frequency ω, while |αxy| remains unchanged with ω

for n = 2. In the case with n = 3, |αxy| increases followed by
a saturation at sufficiently large frequency. We note that even
though β ′′

2 = β ′′
3 = 0 for both n = 1 and n = 2, Kxy depends

on ω as the first two terms in Eq. (33) encompass the factor
	n. The ω-independent nature of αn=1

xy and αn=2
xy stems from

the fact that β ′′
2 = β ′′

3 = 0 in the leading order; the first term in
Eq. (34) does not depend on ω. β ′′

2 , β ′′
3 = 0, which results in

ω-dependent behavior of αn=3
xy . The absence and lower degree

of anisotropy can thus lead to ω-independent nature of αn=1
xy

and αn=2
xy , respectively; a substantial amount of anisotropy can

significantly modify the light-induced transport as observed in
αn=3

xy . However, the crossing of αn=3
xy with αn=1

xy and αn=2
xy might

be restricted to the leading order, and higher-order correction
can be frequency dependent, which we do not calculate here.
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FIG. 2. Type-I WSM: Variation of thermal anomalous Hall con-
ductivity with anomalous Nernst conductivity, for n = 3 mWSM.
The frequency range sampled is 0.50 eV to 2.50 eV. The tempera-
ture values sampled are T = 1 × 10−2, 2 × 10−2, 3.4 × 10−2 K. The
values of the other various parameters are the same as in Fig. 1.

We can comment that one needs to investigate the lattice
model to get the complete picture.

It is now important to analyze the behavior of Kxy as a
function of αxy that could be useful from the experimental
perspective. One can understand that Kxy and αxy behave in
an independent manner for n = 1 and 2 as Kxy depends on ω

while αxy does not. Interestingly, we see that this no longer
holds for n = 3 and we plot this in Fig. 2. Here, Kxy increases
with |αxy|. A qualitative change in the transport character
is observed with the increase in the degree of anisotropy,
characterized by n.

Similarly, for type-II mWSMs, we depict the behavior of
Kxy, obtained from Eq. (36), in Fig. 3(a) and αxy, obtained
from Eq. (37), in Fig. 3(b). One can find here for the type-II
mWSM, unlike the type-I mWSM, that Kxy and αxy both
decrease with ω. This may be due to the fact that they are
influenced by the quadratic momentum cutoff 2 dependent

subleading term in addition to the terms containing the func-
tion f (μ,ω, n). We note in the sufficiently large frequency
regime that conductivities for type-I triple WSMs are at a
higher magnitude as compared to single and double WSMs,
while this is not the case for type II. The responses from
type-II double WSMs acquire maximum value. For type I,
conductivities of double WSMs become lowest in the suffi-
ciently large frequency regime; in contrast, the conductivi-
ties for type-II single WSMs becomes vanishingly small as
shown in the insets of Figs. 3(a) and 3(b). We note that αxy

behaves identically with temperature for type-II single WSMs
and mWSMs as shown in Fig. 3(b). Having investigated
anomalous thermal Hall and Nernst coefficients for a range of
physically viable parameters such as ω, we show that type-I
and type-II mWSMs can be qualitatively distinguished in
terms of their transport behavior.

Now we shall focus on the role of the topological charge
n in different transport properties. For that, we plot Kxy as
a function of αxy for n = 2 in Fig. 4(a), and for n = 3 in
Fig. 4(b). It is known that Kxy and αxy share a linear relation-
ship [30] for n = 1, and we notice that this holds for n = 2:
This can be attributed to the fact the first subleading order
term remains small for a given chemical potential. This no
longer holds for n = 3 as is evident from Fig. 4(b) where
the subleading order terms play a crucial role. Therefore,
one finds a qualitative change in the transport character with
n, as the degree of anisotropy is enhanced. A comparison
between Fig. 2 and Fig. 4(b) suggests that Kxy decreases with
increasing |αxy| for type II while Kxy increases with increasing
|αxy| for type I. Therefore, tilt can significantly modify the
transport even for the irradiated mWSMs.

Having thoroughly investigated the transport coefficients
of type-I and type-II mWSMs, we would now like to com-
ment on the differences between these two phases in single
WSMs as far as the other magnetotransport conductivities are
concerned. As a start, planar Hall coefficients vary quadrat-
ically (linearly) for type-I (type-II) single WSMs [84]. The
type-I single WSMs can be differentiated from type II while

FIG. 3. Type-II WSM: (a) Variation of thermal anomalous Hall conductivity with optical frequency, for three different values of the
monopole charge. (b) Variation of anomalous Nernst conductivity with optical frequency, for three different values of the monopole charge.
The plot (b) shows a strong overlap between the curves for fixed n as a function of temperature. To highlight this issue, the data points sampled
for overlapping curves are at distinct values of frequency. The values of the various parameters are specified in natural units as follows:
vF = 0.005, α1 = vF , α2 = 0.00012 eV−1, α3 = 0.00012 eV−2, E0 = ωA0 = 1000.0 eV2, C = 0.1, μ = 1.0 eV, Q = 2.0 eV,  = 900.0 eV,
and T = 1 × 10−2, 2 × 10−2 K.
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FIG. 4. Type-II WSM: (a) Variation of thermal anomalous Hall conductivity with anomalous Nernst conductivity, for n = 2 mWSM.
(b) Variation of thermal anomalous Hall conductivity with anomalous Nernst conductivity, for n = 3 mWSM. For both cases, the frequency
range sampled is 4.1 eV to 6 eV. The temperature values sampled are T = 1 × 10−2, 2 × 10−2, 3.4 × 10−2 K. The values of the other various
parameters are the same as in Fig. 3.

the anomalous Nernst and anomalous Hall conductivities are
studied [85,86]. The tilt also causes distinguishably different
optical activities in Kerr and Faraday rotation as compared
to the nontilted case [50,87]. Our study considering the low-
energy irradiated mWSM model further strengthens the list of
distinction between these two types of mWSMs. The distinct
behavior coming from type-I and type-II single-Weyl lattice
models which do not suffer from any cutoff dependence can
thus be related to the different cutoff characteristics as derived
in the low-energy model. Therefore, the tilt even in the pres-
ence of anisotropy is able to influence the transport properties
in a different manner as compared to the nontilted case.

We shall now propose a relevant experimental setup where
our predictions can be tested. One can have candidate double
(HgCr2Se4) and triple WSM [Rb(MoTe)3] materials as the
samples. The Floquet driving can be realized by the con-
ventional pump (strong beam)–probe (weak beam) optical
setup where ultrafast electron dynamics of the samples are
observed as a function of time delay between the arrival of
pump and probe pulses. Recently, using polarized photons
at mid-infrared wavelengths, Floquet-Bloch states and pho-
toinduced band gaps have been shown to be clearly visible
in time-and-angle-resolved photoemission spectroscopy [88].
We believe that using similar arrangements with suitably cho-
sen frequency ranges of pump laser, one can experimentally
measure the transport properties derived here. One can also
consider a nonoptical substrate-terminal-based closed circuit
measurement of Nernst conductivity and thermal Hall con-
ductivity [44]. The electric and heat current can be measured
considering a mutually perpendicular arrangement of DC
power source and thermocouple, respectively.

VI. CONCLUSION

In this paper we have investigated the circularly polarized
light (of amplitude A0 and frequency ω) induced contributions
to the thermoelectric transport coefficients in type-I and type-
II mWSMs with topological charge n > 1 considering the
low-energy minimal model. Using the high-frequency ex-

pansion (ω → ∞) and appropriately employing the nonequi-
librium Floquet-Kubo formalism, where the energies and
states of the Hamiltonian are replaced by the quasienergy
and quasistates of the effective Hamiltonian, we study the
anomalous thermal Hall conductivity and Nernst conductivity.
The effective Floquet Hamiltonian suggests that the Weyl
nodes, separated by Q in the momentum space for the static
case, are further displaced by a distance 2	n ∼ A2n

0 /ω. Im-
portantly, the low-energy Hamiltonian of Floquet mWSMs
receives momentum-dependent corrections in addition to the
constant A2

0 shift in the single n = 1 Floquet WSMs. This
results in a change in the effective Fermi surface which in
turn leads to an array of nontrivial consequences for the
transport coefficients. The leading order contribution varies
linearly with the topological charge and the chemical potential
μ is renormalized to μ − C	n. Therefore, the light-induced
transport phenomena in type-I and type-II mWSMs become
significantly different. In particular, one can show that optical
conductivity increases with A0 for type-I mWSMs, while it de-
creases with A0 in the case of type-II mWSMs. However, the
leading order vacuum contribution to σxy remains topological,
which we verify by calculating the Berry-curvature-induced
anomalous Hall conductivity.

Going beyond the leading order contribution, we compute
the effect of the momentum-dependent correction term in
the Fermi surface effects to the conductivity tensor. We find
that the Floquet-driving-induced subleading contribution can
show nontrivial algebraic dependence on the chemical poten-
tial μ as μ f (n). Most surprisingly, unlike the case of type-II
single WSMs, for type-II mWSMs, the Nernst and thermal
Hall conductivity depends algebraically on the momentum
cutoff. However, for type-I mWSMs, the Fermi surface con-
tribution remains cutoff independent. On the other hand, it
decays slowly for type-I mWSMs as compared to type-II
mWSMs. Consequently, unlike the type-I single WSMs, the
Nernst conductivity for type-I mWSMs depends on μ. Com-
bining all these, we graphically represent the variation of the
total thermal Hall and Nernst conductivities as a function
of the optical driving frequency by evaluating the analytical
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expression numerically. These suggest that type-I and type-II
mWSMs exhibit distinct behavior while the multi-Weyl nature
can also be captured vividly. This would directly connect our
study with possible future experiments. In conjunction with
the previous point, we discuss the possible experimental mea-
surements and setups of our analytical findings. Therefore,
we believe that our work could motivate a plethora of studies

in the related experimental and theoretical areas dealing with
driven WSMs.
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