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Evolution of the magnetic and polaronic order of Pr1/2Ca1/2MnO3 following an ultrashort light pulse
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The dynamics of electrons, spins, and phonons induced by optical femtosecond pulses has been simulated for
the polaronic crystal Pr1/2Ca1/2MnO3. The model used for the simulation has been derived from first-principles
calculations. The simulations reproduce the experimentally observed melting of charge and orbital order with
increasing fluence. The loss of charge order in the high-fluence regime induces a transition to a ferromagnetic
metal. At low fluence, the dynamics is deterministic and coherent phonons are created by the repopulation of
electronic orbitals, which are strongly coupled to the phonon degrees of freedom. In contrast to the low-fluence
regime, the magnetic transitions occurring at higher fluence can be attributed to a quasithermal transition of a
cold-plasma-like state with hot electrons and cold phonons and spins. The findings can be rationalized in a more
complete picture of the electronic structure that goes beyond the simple ionic picture of charge order.
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I. INTRODUCTION

Unlike traditional spectroscopy, ultrafast pump-probe
spectroscopy is a powerful tool to dynamically track the
interactions in a strongly correlated system. Specifically, man-
ganites are a suitable model system because different types
of correlations between electrons, spins, and phonons have
similar strength. A number of different electronic ground
states can be realized just by changing temperature or dop-
ing. In these materials, high-resolution ultrafast pump-probe
spectroscopy experiments have unraveled interesting physical
effects, such as photoinduced phase transitions [1–3] and
transient “hidden” phases [4].

In manganite perovskites, a growing number of ultrafast
experiments provide access to the dynamics on different
timescales from femtoseconds to nanoseconds. The dynamics
depends on the phase of the selected manganite as well as
on the photon energy and intensity of the pump pulse. In
GdSrMnO3 close to half-doping, a photoinduced transition
from a charge-order phase to a ferromagnetic metallic phase
within 200 fs has been observed [2]. An ultrafast metal-
insulator transition has been induced in Pr0.7Ca0.3MnO3 by
selectively exciting phonon modes at 625 cm−1 [5]. On shorter
timescales, coherent oscillations in the sample resistance in
the insulator-to-metal dynamics with 30 THz are interpreted
as orbital waves [6]. Several ultrafast optical-pump terahertz-
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probe studies in manganites focused on probing the nature
of the quasiparticles and their dynamics within a given phase
[5–7].

Optical pump-probe experiments suggest a two-
component relaxation process in Nd0.5Sr0.5MnO3 [8] and
La0.7Ca0.3MnO3 [9–11]. In the paramagnetic insulating
phase of La0.7Ca0.3MnO3, the fast component <1 ps
involves thermalization of electronic subsystem and its
energy redistribution with the lattice subsystem. The slower
component on the 20–200 ps timescale, with a Tc-dependent
lifetime, is attributed to the spin-lattice relaxation [3,10,11].

Recently, long-lived polaron-type optical excitations with
lifetime of 1–2 ns are observed in the charge-ordered phase
of Pr0.7Ca0.3MnO3 [7]. Another long-lived intermediate state,
with a mixture of ferromagnetic metallic and charge-ordered
nanoscale domains, is observed in La0.325Pr0.3Ca0.375MnO3

[12]. Depending on the phase and excitation intensity, co-
herent acoustic phonons as well as oscillating strain waves
are observed on timescales of several 10 ps [13,14]; for
manganites, see [15].

The goal of this work is to augment previous experimen-
tal studies with a detailed description of the microscopic
processes occurring during the first few picoseconds. For
this purpose, we perform simulations that are verified by
comparing our findings with experimental observations. The
work presented here is parameter free in the sense that the
model parameters have been extracted from first-principles
calculations [16].

We simulate the photoexcitation of Pr1/2Ca1/2MnO3 by a
femtosecond light pulse and the subsequent relaxation of
the magnetic and polaronic microstructure for the first few
picoseconds. Ehrenfest dynamics [17] is adopted to propagate
wave functions, spins, and atoms. Peierls substitution has been
employed to incorporate the external light pulse. A systematic
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study is performed to investigate the relaxation process by
varying the intensity of the light pulse.

The paper is organized as follows: The methods of the
paper are covered in Sec. II: the tight-binding model used
for the electron, spin, and phonon degrees of freedom is
described first, followed by the dynamical equations of mo-
tion, the treatment of the optical excitation, and quantities
used in the analysis. In Sec. III, we revisit the ground state
of Pr1/2Ca1/2MnO3, which experiences the optical excitation.
Thereafter, we describe in Sec. IV the results of our simu-
lations and discuss the underlying mechanisms. Finally, we
summarize the findings in Sec. V.

II. METHODS

A. Tight-binding model

To investigate the electronic, atomic, and magnetic mi-
crostructure of manganites, we employ a tight-binding model
[18–20]. The selection of energy terms and the parameter val-
ues have been extracted from the first-principles calculations
[16].

The model describes the correlations between electron,
spin, and phonon degrees of freedom. The explicit electronic
degrees of freedom describe the Mn d electrons with eg

character. The spin degrees of freedom describe the three
majority-spin d orbitals of each Mn ion with t2g character.
The phonon degrees of freedom are two Jahn-Teller active
vibration modes and one breathing mode of each MnO6

octahedron. In addition, we allow for a global expansion of
the lattice.

The potential-energy functional of the system is

Epot = Ee + ES + Eph + Ee-ph + Ee-S, (1)

where the Ee, ES , and Eph are the energies of the isolated
electronic, spin, and phonon subsystems, respectively. Ee-ph

is the electron-phonon coupling of Mn eg electrons with the
Jahn-Teller active modes as well as with the breathing mode
of the MnO6 octahedra. Ee-S is Hund’s coupling between the
eg electrons and the spins of the Mn t2g electrons.

Our model avoids the common infinite Hund’s-coupling
limit [21] and uses a more realistic description with explicit
minority-spin electrons and a fully noncollinear treatment of
the electron spin. Furthermore, we include the strong coop-
erativity of Jahn-Teller distortions and octahedral breathing
modes by expressing them in terms of the explicit oxygen
positions, which are shared each by two adjacent MnO6

octahedra.
The Mn eg electrons are described by a Slater determinant

formed by the one-particle wave functions |ψn〉. The latter
are expressed as superposition of local orbitals |χσ,α,R〉 with
complex-valued coefficients ψσ,α,R,n:

|ψn〉 =
∑
σ,α,R

|χσ,α,R〉ψσ,α,R,n. (2)

The local orbital |χσ,α,R〉 is a spin orbital with eg character
at the Mn site R. It is a spin eigenstate with spin σ ∈ {↑,↓}
and spatial orbital character α ∈ {a, b} (where a=dx2−y2

and b=d3z2−r2 ) [16]. The wave functions are Pauli spinor

wave functions that account for the noncollinear nature of the
magnetization.

The three majority-spin t2g electrons of a Mn site with site
index R are described by a spin vector �SR [16]. The two Jahn-
Teller active phonon modes Q2,R and Q3,R for each MnO6

octahedron as well as the breathing mode Q1,R are expressed
by the displacements of oxygen ions along the Mn-O-Mn
bridge using Eq. (22) of [16].

B. Dynamics

The dynamics of the optical excitation and its relaxation
processes are described by Ehrenfest dynamics [17,22]: that
is, the electrons evolve under the time-dependent Schrödinger
equation, while the atoms are treated as classical particles and
obey Newton’s equations of motion:

ih̄∂tψσ,α,R,n = ∂Epot

∂ψ∗
σ,α,R,n

, (3)

∂t S j,R = 2mS

h̄
�BR × �SR, (4)

MO∂2
t R j = −∂Epot

∂Rj
. (5)

Rj are the structural degrees of freedom of the oxygen ions
and MO is their mass. mS is the absolute value of the magnetic
moment of the t2g spins and the quasimagnetic field �BR is

Bj,R = 3h̄

2mS

∂E

∂S j,R
. (6)

Further details are given in Appendices A and B. We also
allowed for a strain dynamics, which does not have notable
consequences on the results presented here. For the sake of
completeness, it is described in Appendix C.

C. Light pulse

The light pulse is described by a spatially homogeneous,
but time-dependent, electromagnetic field (see Appendix D)

�E (t ) = �eAω Im(A∗
0eiωt ) )g(t ), (7)

where A0 is the amplitude of the vector potential and h̄ω is
the photon energy. c is the speed of light. The polarization of
the electric field and of the vector potential is the unit vector
�eA. The temporal profile of the laser pulse is described by a
Gaussian

g(t ) = 1
4
√

πc2
w

e
− t2

2c2
w . (8)

The intensity, which is proportional to |g(t )|2, has the full
width at half-maximum (FWHM) of 2cw

√
ln 2. The light

pulse is implemented with the Peierls-substitution method
[23,24]. Details are given in Appendix D.

D. Parameters of the simulation

Table I summarizes the relevant parameters used in this pa-
per. We use a Cartesian coordinate system with the coordinate
axes �ex, �ey, and �ez pointing along the Mn-Mn nearest-neighbor
distances. The vectors �e j are defined with length 1.
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TABLE I. Simulation parameters. For explanation, see text.

k grid 1×1×1
Supercell Nx×Ny×Nz = 8×8×4
Mn sites per unit cell NMn = 256
O sites per unit cell NO = 768
Mn-Mn spacing dMn-Mn = 3.84 Å
Time step 	t = 0.040(4πε0 )2 h̄3/(mee4)

= 0.97 × 10−18 s
Oxygen mass MO = 15.998 u
Fictitious cell mass Mg = 8.0×1010 me

Photon energy h̄ω = 1.17 eV
Pulse length (FWHM) 2

√
ln 2cw = 100 fs

Polarization �eA = (�ex + �ey )/
√

2
Initial tetragonal distortion gx = gy = 1.0388, gz = 1.0077

The Mn-Mn nearest-neighbor vectors are gxdMn-Mn�ex,
gydMn-Mn�ey, and gzdMn-Mn�ez with dMn-Mn from Table I and scale
factors gx, gy, and gz. With Nx, Ny, and Nz, we denote the
number of Mn sites in each of the three spatial directions in
the supercell used in the calculation.

To describe perovskites, one usually refers to the lattice
vectors of Pbnm unit cell, a nonstandard setting of space group
62. The lattice vectors �a, �b, and �c of the Pbnm unit cell are

�a = (gx�ex − gy�ey)dMn-Mn,

�b = (gx�ex + gy�ey)dMn-Mn,

�c = 2gz�ezdMn-Mn. (9)

The pulse length has been chosen consistent with the laser
pulses used in ultrafast pump-probe experiments [7].

The parameters of the tight-binding model are summarized
in an earlier publication [16]. In the present model, we have
adjusted some of these values as follows: The antiferromag-
netic coupling has been set to JAF = 15 meV rather than JAF =
14 meV. The restoring force constant for the breathing mode
has been set to kbr = 9.04 eV/Å2 rather than 10.346 eV/Å2

in order to
√

Q2
2 + Q2

3/Q1 obtained with our first-principles
calculations for PrMnO3 (A type).

E. Diffraction patterns

In order to link our results with diffraction experiments, we
inspect the intensities of diffraction for charges, orbitals, and
spins.

The intensity of diffraction of an observable X̂ , such as
number of electrons, orbital occupations, or spins, with den-
sity x(�r) is [25]

IX (�q) := IX,0(�q)

∣∣∣∣
∫

V
d3r x(�r)e−i �q�r

∣∣∣∣
2

, (10)

where the integration is performed over the illuminated sam-
ple volume V . IX,0(�q) is the intensity of diffraction of a point
scatterer x(�r) = Xδ(�r).

For a periodic lattice of atom-centered distributions x(�r) =∑
R,�t xR(�r − �RR − �t ), the intensity of diffraction is

IX (�q) = IX,0(�q)N∈V �G

∑
G

δ(�q − �G)CX ( �G) (11)

with the correlation function [26]

CX ( �G) = 1

N

∣∣∣∣∣
N∑

R=1

e−i �G �RR XR( �G)

∣∣∣∣∣
2

. (12)

The distributions xR(�r) are placed at the lattice sites �RR + �t ,
where �RR is the position of an atom inside the first unit cell and
�t is the lattice translation vector of a specific unit cell. N is the
number of atoms in the unit cell, �T is the unit-cell volume,
�G = (2π )3/�T is the unit-cell volume of the reciprocal
lattice, and �G are the corresponding general reciprocal-lattice
vectors. N∈V is the number of sites in the illuminated region.
XR(�q) := ∫

d3r xR(�r)e−i �q�r is the form factor of xR. Note that
the correlation function is meaningful only at the reciprocal-
lattice vectors �G.

Specifically, we address the following diffraction patterns:
(i) The charge-order correlation function [26]

CQ( �G) := 1

N

∣∣∣∣∣
N∑

R=1

ei �G �RR (nR − 〈n〉)

∣∣∣∣∣
2

(13)

probes the deviation of the electron density from its mean
value, i.e., XR = nR − 〈n〉, where nR = ∑

α,σ ρσ,α,R,σ,α,R is the
number of eg electrons on Mn site R and 〈n〉 = 1 − x with the
doping x = 1

2 is the average number of electrons on Mn sites.
The one-particle-reduced density matrix

ρσ,α,R,σ ′,α′,R′ =:
∑

n

fnψσ,α,R,nψ
∗
σ ′,α′,R′,n (14)

is given by the wave-function coefficients ψσ,α,R,n and the
occupations fn.

(ii) The orbital-order correlation function

CO( �G) := 1

N

∣∣∣∣∣
N∑

R=1

ei �G �RR (nx,R − ny,R)

∣∣∣∣∣
2

(15)

probes difference between the orbital occupations Xj,R =
nx,R − ny,R, where

n j,R =
∑
α,β

〈θ j |χα〉
(∑

σ

ρσ,α,R,σ,β,R

)
〈χβ |θ j〉 (16)

are calculated for the set of orthonormal orbitals |θ j〉 with
j ∈ {x, y}, which are nearly axial in the x, respectively the y
direction. These orbitals are defined in terms of the original
basis states |dx2−y2〉 and |d3z2−r2〉 as

|θx〉 := (|d3z2−r2〉 − |dx2−y2〉)
1√
2

(17)

and

|θy〉 := −(|d3z2−r2〉 + |dx2−y2〉)
1√
2
. (18)

We skip spin and site indices of the Wannier-type orbitals
for scalar products, where they are identical.

(iii) The spin-correlation function [26]

CS ( �G) := 1

N

∣∣∣∣∣
N∑

R=1

ei �G �RR (�SR + �sR)

∣∣∣∣∣
2

(19)
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a

b

w1

w3

w2

w4

FIG. 1. Left: CE-type magnetic order and orbital order in the
ab plane of the ground state of Pr1/2Ca1/2MnO3. Black and white
symbols indicate up and down spins. The orbital-polarized central
orbitals are indicated by a d3z2−r2 orbital symbol in the corresponding
direction. The corner sites have no orbital polarization and are
indicated by circles. The gray square indicates the magnetic unit cell
of the material in the ab plane. Also shown are the lattice vectors
a and b of the orthorhombic Pbnm unit cell. Right: Wannier-type
orbitals along a trimer of the zigzag chains of the CE-type magnetic
structure. The sign of the orbital lobes are indicated by black and
white. The Wannier-type orbitals are orthogonal within and between
trimers. The arrows connect orbitals with dipole-allowed transitions.
Transitions between all other orbital pairs within and between trimers
are dipole forbidden. The orbital |w1〉 in the majority-spin direction
is filled. The optical excitation lifts electrons from |w1〉 to |w2〉 in the
majority-spin direction.

probes the total spin �XR = �SR + �sR of the Mn sites, where �SR is
the spin of the t2g electrons and �sR is the spin of the eg electrons
at Mn site R.

In order to account for the blurring of the diffraction peaks
due to fluctuations, we included for the time-dependent spin
correlation functions, in Figs, 13, 19, and 23, the contribution
from a (3 × 3 × 3) set of reciprocal lattice vectors of the
supercell centered at the specified reciprocal-lattice vector.

III. EQUILIBRIUM

Before investigating the optically induced dynamics, let
us remind of the salient features of the spin, charge, orbital,
and lattice order of Pr1/2Ca1/2MnO3 in equilibrium. The low-
temperature phase serves as initial state for the excitation and
it determines the time evolution of the system.

PrxCa1−xMnO3 has a perovskite lattice formed by a net-
work of corner-sharing MnO6 octahedra. Large cations such
as Ca2+ and Pr3+ fill the voids in-between the octahedra. The
octahedral network distorts to optimize the Coulomb energy
between the ions, which results in a characteristic pattern of
the octahedral tilts. This tilt pattern fits into the orthorhombic
Pbnm unit cell, which holds four octahedra.

The Mn ions occur in the formal Mn4+ and Mn3+ oxidation
states, with spin-aligned d electrons on each Mn site. The
additional electron of Mn3+ produces a Jahn-Teller distortion,
which is highly cooperative.

At half-doping, PrxCa1−xMnO3 has a low-temperature
phase, which is described as charge and orbital ordered
[27–29]. The low-temperature phase of Pr1/2Ca1/2MnO3 is
shown schematically in Fig. 1. It has a CE-type antiferro-

TABLE II. Typical diffraction patterns. The diffraction spots are
shown for various spin orders according to the notation of Wollan
[27] as well as for charge and orbital diffraction of the CE-type
low-temperature structure of Pr1/2Ca1/2MnO3. (h, k, l ) are the rela-
tive coordinates in the reciprocal lattice of the orthorhombic Pbnm
setting. h, k, l are integer unless mentioned otherwise.

Spin h + k l

B type Even integer Even integer
A type Even integer Odd integer
C type Odd integer Even integer
G type Odd integer Odd integer

CE type h k l

Spin Half-integer Half-integer Odd integer
not integer or integer

Charge h + k = odd integer Even integer
Orbital Integer Half-integer Even integer

not integer

magnetic order exhibiting ferromagnetic zigzag chains in the
ab plane, which proceed along the b direction. These zigzag
chains are antiferromagnetically coupled among each other.
Along the zigzag chain, we can distinguish alternating central
and corner sites. The central sites are described formally as
Mn3+ ions and exhibit Jahn-Teller distortion, while the corner
sites are formally Mn4+ ions with a negligible Jahn-Teller
distortion.

A. Diffraction patterns

A transition at 250 K is attributed to the emergence of
charge and/or orbital order [29] from a disordered polaron
distribution at higher temperatures. The charge and orbital
order has been explored experimentally by x-ray diffraction
of the Mn K edge [30].

The diffraction patterns for the low-temperature phase are
listed under the header CE-type in Table II. The diffraction
peaks are quoted as relative coordinates (h, k, l ) of the recip-
rocal lattice vectors in the setting of the orthorhombic (Pbnm)
crystal structure obtained at room temperature.

Zimmermann et al. [30] exploited that the diffraction spots
of charge and orbital order can be distinguished when scan-
ning (h, k, l ) = (0, k, 0) along the b direction, the direction of
the zigzag chain. The dominant peaks of the Mn K edge with
even integer k are due to the pseudocubic atomic lattice of Mn
sites. The charge order introduces additional diffraction peaks
at odd integer k, and the orbital order produces diffraction
spots at half-integer (but not integer) values of k, as shown
in Fig. 2 and listed in Table II. At 175 K, Pr1/2Ca1/2MnO3

undergoes a Néel transition. Neutron-diffraction studies [29]
identify the magnetic lines characteristic for the CE-type spin
order for Pr1/2Ca1/2MnO3.

Our simulations reproduce the diffraction patterns due
to charge, orbital, and spin order for the CE-type ground
state as shown in Fig. 2. The diffraction spots of other
magnetic orders listed in Table II will be used to characterize
the evolution of the magnetic order following the light
pulse: B type refers to a pure ferromagnet, A type refers to
ferromagnetic planes that are stacked antiferromagnetically
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FIG. 2. Diffraction patterns for charge order (left), orbital order
(middle), and spin order (right) of the CE-type low-temperature
phase of Pr1/2Ca1/2MnO3. The a axis points right, the b axis toward
the back, and the c axis up. The small white spheres indicate points
with integer h, k, l in the Pbnm setting. Reciprocal space is shown
for h, k, l ∈ [−1.25, 1.25].

in the c direction, C type refers to ferromagnetic Mn lines
running along the c direction, which are antiferromagnetically
aligned with respect to neighboring strands. In a G-type
antiferromagnet, the Mn sites are antiferromagnetic with
respect to all their neighbors. The magnetic orders can also
be described by their wave vector of the magnetization.
Expressed by the pseudocubic lattice formed by the Mn sites,
the B-type order refers to �k = π

dMn-Mn
(0, 0, 0), A type refers to

�k = π
dMn-Mn

(0, 0, 1), C type refers to �k = π
dMn-Mn

(1, 1, 0), and G

type refers to �k = π
dMn-Mn

(1, 1, 1).

B. Charge order, orbital order, and Jahn-Teller distortions

The pattern of Jahn-Teller distortions in Fig. 1 has been
attributed to checkerboardlike charge order in the ab plane
with Mn3+ ions at the central sites of each segment and
Mn4+ ions at the corner sites of the zigzag chains [28]. More
recently, this picture of charge order has been challenged:
Rather than deducing the charge state from the pattern of
Jahn-Teller distortions, experimental techniques such as core
level spectroscopy, (XANES, ELNES) and neutron diffraction
measurements of the magnetic moments provide a more direct
access to the charge on the ions. These experiments rule out a
fully ionic picture and indicate the absence of a considerable
charge disproportionation [29,31–34].

This seeming contradiction between atomic structure and
charge distribution can be reconciled by considering orbital
polarization [16]. A Mn ion has a complete orbital polariza-
tion, when only one of the two spatial eg orbitals is occu-
pied, while the other is empty. Hereby, the shape and spin
orientation of the occupied orbital is not relevant. When both
spatial eg orbitals are equally occupied, the atom lacks orbital
polarization.

To quantify the orbital polarization at site R, we determine
the difference | f orb

1,R − f orb
2,R | of the orbital occupations f orb

α,R,
which are the eigenvalues of the spin-averaged local density
matrix ρorb

R with matrix elements

ρorb
α,β,R :=

∑
σ

ρσ,α,R,σ,β,R. (20)

The orbital polarization PO is defined as

PO := | f orb
1,R − f orb

2,R |
=

√(
ρorb

a,a,R − ρorb
b,b,R

)2 + 4
∣∣ρorb

a,b,R

∣∣2
, (21)

where a and b denote the two Mn eg orbitals.

w2

w1

w3

w4

w2

w1

w3
w4

FIG. 3. Density of states of the ground state of Pr1/2Ca1/2MnO3

projected on the Wannier-type states |w1〉 (red), |w2〉 (white), |w3〉
(blue), and |w4〉 (green). The axis of the majority-spin direction
points right and that of the minority-spin direction points left.

Orbital polarization can be recognized indirectly via the
resulting Jahn-Teller distortions. Mn ions without orbital po-
larization do not exhibit a Jahn-Teller distortion, irrespective
of the number of electrons in the eg shell. Hence, there
is a direct link between Jahn-Teller distortions and orbital
polarization. The connection to the charge order is, however,
indirect. It is present only in the case of complete orbital
polarization. This assumption is violated in Pr1/2Ca1/2MnO3

[16]. The Jahn-Teller distortions of the corner sites are small,
not because of their charge, but because of their lack of
orbital polarization. The orbital polarization of the corner
sites is small because Wannier-type orbitals from two seg-
ments of the zigzag chain contribute equally to the two eg

orbitals [16].
As shown earlier [16], the electronic structure of the low-

temperature phase of Pr1/2Ca1/2MnO3 can be rationalized using
a specific set of Wannier-type states formed from the Mn
eg orbitals. These states, shown in Fig. 1, are localized on
specific segments of the zigzag chains, which we denote,
in the following, as trimers. The Wannier-type states are
constructed as orthonormal eigenstates of a pseudosymmetry
of a trimer, namely, three orthogonal mirror planes through
the central Mn ion of a trimer. The functional form of the
Wannier-type orbitals has been given in an earlier publication
[16]. The requirements given above determine the Wannier-
type orbitals up to a single parameter, which governs the
charge disproportionation between central and corner sites.
With a suitable choice of this parameter, the first Wannier-type
state |w1〉 describes the occupied states almost perfectly. This
can be seen in Fig. 3, which shows that the occupied portion
of the density of states can be attributed almost exclusively to
|w1〉. To be specific, the one-particle-reduced density matrix
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of the eg states is well described by

ρσ,α,R,σ ′,β,R′ =
∑

m

〈
χσ,α,R

∣∣wσm,1,m
〉
δσ,σmδσ ′,σm

×〈
wσm,1,m

∣∣χσ ′,β,R′
〉
, (22)

where |wσ,α,m〉 is a Wannier-type orbital with spin σ , spatial
type j with j = {1, 2, 3, 4} according to Fig. 1, and the index
m specifying a particular trimer. σm denotes the majority-spin
direction of the trimer with index m.

In our model calculations, the charge on the central site is
3.75e and that of the corner site is 3.25e, which corresponds to
a charge disproportion of q/e = 3.5 ± δ with δ = 0.25. This
value lies within the range of values obtained from various
experimental probes as discussed earlier [16].

The shape of the orbital |w1〉 is responsible for the orbital
order with strong orbital polarization on the central size and
negligible orbital polarization on the corner sites. Thus, the
electronic structure is consistent with both the observed Jahn-
Teller pattern and the more direct measurements of the charge
state [29,31–34].

When the charge order is described in terms of inte-
gral charge states, they should be understood as oxidation
states, which, per definition, attribute electrons as a whole
to the more electronegative partner [35]. This is, however,
a definition rather than a detailed description of an electron
distribution. The notion of integral charge states Mn3+ and
Mn4+ ions shall be understood in this context. The real charge
distributions in manganites are more subtle.

IV. RESULTS AND DISCUSSION

A. Choice of the photon energy

The photoexcitation in manganites occurs through both
d-to-d and p-to-d transitions in the spectral energy range
∼0.5–2.3 eV [16,36–39]. While the d-to-d transitions occur
between Mn 3d states, the p-to-d transitions occur between
O 2p and Mn d states [16,40,41]. The transitions observed
experimentally in the ∼0.5–0.75 eV energy range are mainly
dipole-allowed transitions from the occupied to the unoccu-
pied eg states. While d-d transition on a single Mn site are
dipole forbidden, there are dipole-allowed transitions, which
involve charge-transfer oscillations between different Mn sites
[16]. In this work, we focus entirely on transitions within
the Mn eg shell. The charge-transfer transitions from O p to
Mn d states dominate only at comparatively higher energies
[16,36–39].

A quantity used to describe the excitation is the photon-
absorption density Dp, which is the total number of photons
absorbed per Mn site and pulse. We calculate it as

Dp := 	E tot
f −i

NMnh̄ω
(23)

from the energy 	E tot
f −i added by the light pulse to the system

with NMn Mn ions (see also Fig. 31). The division by the pho-
ton energy h̄ω and NMn provides the number Dp of absorbed
photons per Mn ion and pulse.

Another quantity, often used to characterize experiments, is
the pump fluence Fp. It is the energy transmitted to the sample

FIG. 4. Photon-absorption density Dp defined in Eq. (23) as
function of the photon energy E = h̄ω for different intensities and
pulse lengths. The dashed line indicates the photon energy h̄ω =
1.17 eV chosen for the simulations described below.

per pulse and unit area. The pump fluence determines together
with the pulse duration the intensity of the light field.

The pump fluence Fp is

Fp = 1

2
|A0|2ω2cε0

∫
dt g(t )2 = 1

2
|A0|2ω2cε0, (24)

where c is speed of light and ε0 is vacuum permeability.
With A0 we denote the amplitude of the vector potential [see
Eq. (7)]. The photon energy is h̄ω. Due to the normalization
of the pulse-shape function g(t ) [Eq. (8)], the relation (24) is
independent of the pulse duration. The spectral distribution of
the photon-absorption density is shown in Fig. 4.

For the simulations discussed below, we have chosen the
photon energy equal to the absorption maximum of h̄ω =
1.17 eV. The position of the absorption maximum appears to
be rather independent of pulse length and light intensity.

Figure 5 shows the photon-absorption density Dp as a
function of the amplitude A0 of the light field, as defined
in Eq. (7). At the largest fluences, every third electron is
excited, which explains the large changes of the magnetic and
polaronic microstructure observed in those simulations.

The photon-absorption density in Fig. 5 grows approxi-
mately linearly with the amplitude of the light field. This
behavior differs from the low fluence regime, where the

FIG. 5. Photon-absorption density Dp defined in Eq. (23) as
function of the amplitude of the exciting field A0 and a photon energy
of h̄ω = 1.17 eV. Also given are the pump fluences Fp in units of
mJ/cm2 according to Eq. (24) for the boundaries of the four regimes
discussed below in Sec. IV B.
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FIG. 6. Identification of the distinct regimes on the basis of the
intensity of magnetic diffraction spots. The pulse lengths are 50, 75,
and 100 fs from top to bottom. Open blue circles show the minimum
values of the spin-correlation function CS ( 1

2 , 1, 1) characteristic for
the CE-type magnetic structure during the first 2 ps following the
excitation. Red-filled circles are the maximum intensities Cs(0, 0, 1)
characteristic of the A-type magnetic structure and open green
squares are maximum intensities CS (0, 1, 1) characteristic for the
G-type structure.

photon absorption grows quadratically with the amplitude.
The approximate linear behavior can be attributed to damping
and decoherence. For a two-state system, the optical Bloch
equations with damping have a steady-state solution with an
excited-state population of Pe(A0) = A2

0/(a + A2
0), where a is

constant determined, among others, by detuning and friction
parameters [42]. Pe has a point of inflection at a population of
25%, which explains the approximate linear behavior on the
amplitude for the fluences studied here. Additional features
seen in Fig. 5 can be attributed in parts to strongly damped
Rabi oscillations.

B. Regimes with distinct relaxation behavior

The relaxation following the optical absorption depends
strongly on the pump fluence Fp. Based on the diffraction
patterns, we identify four regimes with distinct relaxation be-
havior. The diffraction intensities of the characteristic diffrac-
tion spots are shown in Fig. 6. The boundaries of the different
regimes depend little on the pulse duration.

The nature of these regimes is discussed in detail below.
They can be characterized as follows:

TABLE III. Photon-absorption density Dp and fluence Fp for the
A0 values used in the graphs.

Regime I II III IV

A0(h̄/(ea0 )) 0.20 0.45 0.53 2.50
Dp(ph/Mn) 0.025 0.058 0.094 0.326
Fp(mJ/cm2) 0.063 0.32 0.44 9.81

(1) In regime I, the spin, charge, and orbital order is
preserved. Coherent phonons with long lifetime are observed.

(2) In regime II, the spin dynamics sets in, but the spin
pattern relaxes back to the original state on a picosecond
timescale. The charge order remains unaffected. Coherent
phonons are present as in regime I.

(3) In regime III and beyond, the charge order is disrupted
and the system is driven into a photoinduced ferromagnetic
state.

(4) In regime IV, the system enters a photoinduced antifer-
romagnetic state.

For the demonstration of the characteristic behavior in
the four fluence regimes, we selected the fluence values in
Table III.

The time-dependent distributions of excited electrons and
holes are shown in Fig. 7. While the band structure for regimes
I and II are qualitatively similar, in regime III the band
gap at the Fermi level collapses as a ferromagnetic metallic
state is formed. Also, the band gap between minority and
majority spins collapses. The band gap between majority- and
minority-spin orbitals reoccurs in regime IV, where the system
evolves into a new antiferromagnetic state. The antiferromag-
netism is accompanied by a smaller bandwidth of majority-
and minority-spin bands so that the gap between them opens.
Like in the ferromagnetic regime III, the system is metallic in
regime IV.

C. Regime I

For the weak pump fluences of regime I, the magnetic,
charge, and orbital orders remain intact. The excitation can be
described as formation of electrons and holes in an essentially
rigid band structure. The electron-hole pairs are strongly
coupled to breathing modes and Jahn-Teller active phonons
at the � point. As a consequence, two coherent phonons with
a long lifetime are excited.

The excitation can be rationalized using the Wannier-type
states introduced previously. They are shown in Fig. 1 for one
segment of the zigzag chain. Unless mentioned otherwise, the
electric field of the light wave points along the b direction of
the Pbnm unit cell, that is, along to the zigzag chains of the
ground-state magnetic structure.

1. During the light pulse

In the initial phase of the excitation, i.e., during the 100-fs
light pulse, charge and orbital order drop to lower values.
Furthermore, long-lived oscillations, discussed below, are ini-
tiated. On top of these effects, high-frequency oscillations of
the electronic system are induced that, however, decay after
few tenths of picoseconds. These oscillations are apparent in
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FIG. 7. Time evolution of the electron and hole distributions
induced by a femtosecond pulse of different intensities. Regimes I to
IV from top to bottom, i.e., A0 = 0.20, 0.45, 0.53, 2.50 h̄/(ea0 ). The
instantaneous one-particle spectrum of Born-Oppenheimer energies
is shown in gray. The intensity of blue color indicates conduction
electrons and that of red color indicates holes.

the charge-order and orbital-order diffraction peaks in Figs. 8
and 9.

The only dipole-allowed transitions are between the bond-
ing orbital |w1〉 and the nonbonding orbital |w2〉 as well as
between latter |w2〉 and the antibonding orbital |w3〉 with the
same spin direction shown in Fig. 1. There are no dipole-
allowed transitions to |w4〉. Furthermore, there are no dipole-
allowed transitions between Wannier-type orbitals from dif-
ferent segments of the zigzag chains.

There is only one type of dipole-allowed transition from
the filled states. It lifts an electron from the majority-spin

FIG. 8. Charge-order correlation CQ(1, 0, 0) (black) and orbital-
order correlation CO(0, 1

2 , 0) (red) as function of time for regime I
with A0 = 0.2 h̄/(ea0). The correlations are scaled each so that their
initial value is unity. The correlations can be represented well by
a superposition of two harmonic oscillations with frequency ν1 =
10 THz and ν2 = 16 THz, which are the frequencies of the two
coherent phonons.

bonding orbital |w1〉 to the nonbonding orbital |w2〉 of the
same segment and with the same spin.

The nature of the high-frequency charge oscillation on a
segment of the zigzag chain is rationalized via the Bloch
waves of |w1〉 and |w2〉 character shown in Fig. 10, which are
connected by the optical excitation. The excitation depends on
the polarization of the light. Two representative Bloch waves
of the initial state with |w1〉 character and the corresponding
final state with |w2〉 character are shown schematically in
Fig. 10 for each polarization in the ab plane. The product
of initial- and final-state wave functions is proportional to
the first-order change of the charge density, which is in turn

FIG. 9. Short-term dynamics for polarization along the a axis
(top) and along the b axis (bottom) in regime I with A0 =
0.20 h̄/(ea0 ). Shown are the deviations 	q of the charges from
a trimer of the CE-type ground state as function of time: central
site (blue) and corner sites (red/green). The instantaneous amplitude
(arbitrary scale) of the light pulse is shown in gray.
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FIG. 10. Schematic drawing of Bloch waves involved in the pho-
toexcitation with the electric field ( �E ‖ �eA) polarized perpendicular
( �E ‖ �a) (1) and (2) or along ( �E ‖ �b) (3) and (4) to the zigzag chains
of the CE-type spin order. Each box shows the initial state with |w1〉
character in the upper left and the final state with |w2〉 character in
the lower right. For each polarization, two pairs of initial and final
states, one without and one with sign change from one segment to
the other, are shown. The induced charge density is related in first
order to the product of initial and final states.

responsible for the dipole oscillation that couples to the light
field.

For an electric field along the a axis, i.e., perpendicular
to the zigzag chains, large dipole oscillations between the two
corner sites are visible in Fig. 9. The charges of the two corner

sites (red/green in Fig. 9) oscillate out of phase and with
the frequency of the light field. They describe the oscillating
charge transfer between the corner sites. This is consistent
with the Bloch waves (1) and (2) in Fig. 10 for �eA ‖ �a. The
product of initial, |w1〉-derived, states and final, |w2〉-derived,
Bloch waves lead to charge contributions with alternating sign
on the corner sites of a zigzag chain. The central site (blue in
Fig. 9) has a smaller oscillation with twice the frequency of
the light field. This oscillation is due to the rescaling of the
|w1〉 contribution required to maintain a normalized overall
wave function, while |w2〉 is mixed in.

When the electric field is polarized along the b axis, i.e.,
parallel to the zigzag chain, we observe in Fig. 9 only oscilla-
tions with small amplitude and with the doubled frequency of
the light wave. The two corner sites oscillate in phase with the
doubled frequency. The charges on the central sites oscillate
out of phase with the corner sites. This is consistent with
the Bloch waves (3) and (4) in Fig. 10: the product of |w1〉-
and |w2〉-derived waves has contributions only on the corner
sites. However, there, the product of two orthogonal orbitals
is formed, which does not contribute to the net charge. The
net charge dipole coupling to the light field is not apparent
in the bulk. It would show up at the surface of the material.
Thus, only the second-order charge oscillations describing the
charge transfer from the central site to the corner sites are
visible in the bulk. The charge oscillations between the corner
sites are initially absent and only kick in at later times.

2. Orbital order

Let us now turn from the high-frequency electronic ex-
citations during the light pulse to the changes that persist
beyond the light pulse. For the analysis, we expand the time-
dependent one-particle wave functions |ψn(t )〉 in Wannier-
type orbitals

|ψn(t )〉 =
∑
j,σ,m

|w j,σ,m〉〈w j,σ,m|ψn(t )〉. (25)

The Wannier-type orbitals |w j,σ,m〉 have spin σ (σ ∈ {↑,↓})
and belong to the trimer m of the unit cell. Index j ( j ∈
1, 2, 3, 4) selects one of the four Wannier states from a given
trimer according to Fig. 1.

The instantaneous occupancy F tot
j (t ) of the jth Wannier-

type state |w j〉 is

F tot
j = 2

NMn

∑
m

∑
σ

Qj,m,σ,σ (26)

and its spin polarization is

F spin
j = 2

NMn

×
∑

m

√
(Qj,m,↑,↑ − Qj,m,↓,↓)2 + 4Qj,m,↑,↓Qj,m,↓,↑

(27)

with the number of Mn sites NMn and

Qj,m,σ,σ ′ =
∑

n

〈w j,σ,m|ψn〉 fn〈ψn|w j,σ ′,m〉. (28)

As shown in Fig. 11, the dipole-allowed optical transitions
from |w1〉 to |w2〉 dominate at the low pump fluences of
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FIG. 11. Total occupancies F tot
j (t ) (full lines) of Wannier-type

orbitals |w j〉 and their spin polarization F spin
j (t ) (dashed lines) as

function of time for fluence regime I with A0 = 0.20 h̄/(ea0). Oc-
cupancies of |w1〉 (red), |w2〉 (black), |w3〉 (blue), and |w4〉 (green).

regime I. Thus, the occupancy of |w2〉 grows at the expense
of |w1〉 during the light pulse, while the occupancies of |w3〉
and |w4〉 remain small. After the light pulse, the occupation
of |w2〉 remains almost constant, which is one sign of the
preservation of the ordered state of the material.

Often, e.g. [43], the excitation is attributed to an onsite
d-to-d transition at the central Mn site of a trimer segment,
which formally is the Mn3+ ion. The picture, which emerges
from our calculations, is more subtle. Rather than a dipole-
forbidden excitation on central Mn ion from |w1〉 to |w4〉, the
excitation is a |w1〉-to-|w2〉 charge-transfer excitation, which
displaces electrons from the central Mn ions to the corner Mn
ions. This transition does not exist in the limit of complete
charge order. The description in terms of Wannier-type or-
bitals in Fig. 1 explains the strong optical absorption and it
has consequences on the coherent modes described below.

3. Charge order

The |w1〉-to-|w2〉 repopulation rearranges electrons from
the central to the corner sites, which reduces the charge dis-
proportionation between central and corner sites. The reduced
charge disproportionation reflects on the charge-order corre-
lation CQ(0, 1, 0) shown in Fig. 8. The light pulse induces a
sharp drop of the charge-order diffraction intensity CQ(1, 0, 0)
from the initial value. Then, the intensity oscillates around
this reduced intensity, with little sign of recovery during our
simulation.

In our simulation, the orbital-order peak CO(0, 1
2 , 1) has

a characteristic frequency of 10 THz, while the charge-order
diffraction peak CQ(1, 0, 0) exhibits one frequency at 10 THz
and a second one at 16 THz.

4. Coherent vibrations

The removal of electrons from the central site during the
|w1〉-to-|w2〉 transition reduces its Jahn-Teller distortion. The
sudden change excites a Jahn-Teller mode with ν = 10 THz,
which affects predominantly the central site. The displace-
ments as function of time are shown in Fig. 12.

FIG. 12. Phonon modes of region I with A0 = 0.20 h̄/(ea0 ).
Shown are the expansions 	d of the oxygen distances along the
octahedral axes. The superscript 3+ refers to the formal charge state
of the central Mn ion in a trimer of the zigzag chain of the CE-type
magnetic structure, while 4+ refers to the corner site. For the central
octahedron, the expansion along the trimer axis is 	d3+

‖ and the
expansion in the ab plane perpendicular to the trimer axis is 	d3+

⊥ .
The planar displacements at the corner atoms along and in the ab
plane perpendicular to the trimer axis 	d4+

x and 	d4+
y are identical.

The expansions in the c direction, indicated by a subscript z, vanish.
Visible is the initial reduction of the Jahn-Teller distortion, followed
by the coherent breathing mode with 16 THz on the corner sites and a
Jahn-Teller mode at the central site with 10 THz. The displacements
are averaged over equivalent atoms.

The charge transfer from central to the corner sites reduces
the charge order and thus induces a planar breathing mode on
the corner sites with a frequency of ν = 16 THz. Note, that an
electron addition to a Mn site populates the Mn-O antibonds,
which, in turn, expands the nearest-neighbor distances. The
expansion of the corner sites also affects the Jahn-Teller
vibration on the central site.

On the timescale of a few picoseconds, the vibrations do
not dissipate significantly. Furthermore, the phonon modes are
fully coherent on the picosecond timescale of our calculation.
We attribute the lack of dissipation to the absence of heat
conduction. In an experiment, a limited spot is illuminated
and the energy can escape from the illuminated region by
heat conduction. In our simulation, this process is prohibited
because the infinite material is illuminated homogeneously.

Another reason for an unexpectedly slow dissipation is the
specific nonequilibrium state at hand. The coherent phonons
are in contact with a phonon bath that is extremely cold. Thus,
the collision probability of the coherent phonon with another
one is extremely small.

Pump-probe reflectivity measurements [44] of
Nd1/2Ca1/2MnO3, another manganite with the CE-type
ground state, provided frequencies with 2.5 THz (82 cm−1),
6.7 THz (224 cm−1), 10.2 THz (339 cm−1), and 14.1 THz
(469 cm−1). A coherent vibration with 14 THz has been
experimentally observed also for La1/2Ca1/2MnO3 [45] and
Pr1/2Ca1/2MnO3 [43,46] for a weak photoexcitation, i.e., below
a photoabsorption density of Dp < 0.01, and attributed to
Jahn-Teller modes.

The two highest frequencies measured in Nd1/2Ca1/2MnO3

[44] at 10.2 and 14.1 THz agree very well with those in
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our simulations. This suggests a different assignment of the
coherent vibrational modes: the mode previously assigned to
a octahedral rotation mode at 10 THz is in our simulation
a Jahn-Teller oscillation on the central site of a segment.
The mode assigned as Jahn-Teller mode at 16 THz is in
our simulation a symmetric breathing mode at the corner
sites. Overlapping with the 10-THz vibration, we also find
the antisymmetric expansion of the corner sites along the
trimer axis. This latter vibration, however, is not coupled to
the optical excitation. It should be noted that displacements of
the oxygen ions in our model, denoted as the Jahn-Teller and
breathing modes, also have a small implicit component from
octahedral tilting.

Vibrations observed in the low-frequency range 2.4–7 THz
[7,43–46] have been attributed to A-type ion motion and
rotational modes of MnO6 octahedra. Our model does not
describe these low-frequency modes because it does not
contain explicit A-type ions. Pure octahedral rotations are
not included because our model does not describe oxygen
vibrations perpendicular to the oxygen bridge.

Our description of the coherent phonons differs from that
given earlier [44] as being due to an instantaneous melting
of the charge and orbital order. The picture emerging from
our simulations is that of a mechanistic rather than a thermal
process.

5. Magnetic order

In the fluence regime I, the magnetic order is preserved:
The spin angles deviate by about 10◦ from the ideal ground-
state arrangement.

D. Regime II: Transient changes of the magnetic order

In the fluence regime II, the Jahn-Teller-active phonons
respond similar to regime I. After an initial period of about
200 fs, however, also the spin order is perturbed. The spin
system relaxes back into the ground state within a few pi-
coseconds, while the reduction of charge and orbital order
persists much longer.

1. Magnetic order

As shown in Fig. 13, the spin correlations of the initial
CE-type order drop to lower values at about 0.2 ps, while a
prominent but short-lived signal of an A-type magnetic order
shows up. This signal lives for about 0.2 ps before it dies out
again. The spin-diffraction pattern during this period, which
reflects the superposition of CE-type and A-type spin patterns,
is shown in the left graph of Fig. 14.

As shown in Fig. 15, the angle of antiferromagnetic neigh-
bors changes by up to 90◦. Aside from some fluctuations, the
ferromagnetic order within the zigzag chain is preserved in the
fluence regime II. What is affected most is the spin correlation
between neighboring chains in the ab plane. The onset time
decreases with increasing fluence.

We attribute the response of the spin system to the optically
induced intersite spin transfer (OISTR) [47] caused by the
coupling of the majority-spin |w2〉 states with minority-spin
states |w1〉 and |w4〉 of a neighboring zigzag chain: the time-
dependent populations of the relevant Wannier-type orbitals

FIG. 13. Spin-correlation function of regime II with A0 =
0.45 h̄/(ea0 ). The correlation functions CS ( 1

2 , 1, 1) and CS ( 1
2 , 1

2 , 1)
are characteristic for the CE-type ground state. The correlation
function CS (0, 0, 1) is characteristic for A-type magnetic structure.
The ferromagnetic (B-type) peak CS (0, 0, 0) is shown in orange. The
CE-type structure recovers after a transient period.

are shown in Fig. 16. The |w2〉 state is populated by the
photoexcitation. It is located at the corner sites and has lobes
pointing toward the central atom of a neighboring zigzag
chain. Thus, there is a spatial overlap of the |w2〉 orbitals
with the minority-spin |w1〉 and |w4〉 orbitals of a neighbor-
ing chain. The excitation into the |w2〉 orbital is therefore
accompanied by a spin transfer between neighboring zigzag
chains in the ab plane. The delocalization of electrons among
the antiferromagnetically coupled zigzag chains changes the
magnetization of the eg electrons, which in turn acts onto the
classical spins describing the t2g electrons and which causes
transient or permanent changes of the magnetization pattern.

In the period from 0.2 to 0.4 ps in Fig. 16, we observe a
transfer of weight from |w1〉 orbitals of one chain to the ma-
jority spin |w4〉 of a neighboring chain. This is a consequence
of the transient magnetic transition, which takes place during
this period. The hybridization between these orbitals becomes
possible because the spin orientation of neighboring chains
deviates from 180◦.

In order to obtain a better understanding of these spin
fluctuations, we investigated the spin structure as function of
the ratio of excited electrons. For this purpose, we reduce the
occupation for the 1

2 NMn occupied states from 1 to 1 − δ and
we increase the occupation of the first 1

2 NMn unoccupied states

FIG. 14. Spin-diffraction patterns in regime II with A0 =
0.45 h̄/(ea0 ). At about 0.29 ps (left), the magnetic structure is a
superposition of patterns of the CE-type and the A-type antiferro-
magnetic structures. At 0.5 ps (middle), a spin wave emerges, which
is similar to obtained in equilibrium with δ = 15% excited electrons
(right).
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FIG. 15. Spin correlations in regime II with A0 = 0.45 h̄/(ea0 )
as function of time. �n,n′ is the angle between the spins 〈�S〉n of
neighboring zigzag chains Cn and Cn′ . The mean angle of a chain
is 〈�S〉n = 1

N

∑
j∈Cn

�Sj , where N is the number of Mn sites in the
chain. The top four figures show the angles �n,n′ for neighboring
chains in the same ab plane. The middle four figures show the angles
for neighboring chains stacked along the c direction. The bottom
four figures show the ferromagnetic spin correlations within a chain

	n =
√

1
N

∑
j∈Cn

[∠(�Sj, 〈�S〉n)]
2
.

from 0 to δ. Then, we investigate the ground state as function
of δ, where all degrees of freedom except strain are relaxed.

The original CE-type spin order is preserved up to δ =
11%. For larger δ, a noncollinear but coplanar spin-wave
structure emerges, where every two antiferromagnetic zigzag
chains in the ab plane pair up and form a finite spin angle
with the spin axis of the next pair. The ferromagnetic spin
order within the zigzag chains and the strict antiferromagnetic
coupling in the c direction remain intact. The angle of the
spin axes grows with increasing δ until the angle approaches
90◦. At this point, δ ≈ 16%, the system collapses into a
ferromagnetic metallic state.

Hence, we interpret the spin fluctuation observed in the
simulations as the onset of a Néel transition, which, in this
case, is driven by photoexcited rather than by thermal |w1〉 →

FIG. 16. Total occupancies F tot
j (t ) (full lines) of Wannier-type

orbitals |w j〉 and their spin polarization F spin
j (t ) (dashed lines) as

function of time for fluence regime II with A0 = 0.45 h̄/(ea0 ). Occu-
pancies of |w1〉 (red), |w2〉 (black), |w3〉 (blue), and |w4〉 (green).

|w2〉 electron-hole pairs. In this context, the OISTR concept
may be generalized to a temperature-induced intersite spin
transfer (TISTR).

2. Charge order

Charge and orbital order, Fig. 17, as well as coherent
phonons, Fig. 18, show the same behavior as in regime I,
albeit with larger amplitude. The oscillations of the phonon
displacements and the correlation functions for charge and
orbital order are long lived. Unlike regime I, a slow decay of
the oscillations is noticeable in regime II.

The coherent phonons, charge order, and orbital order are
only little affected by the transient change of the magnetic
structure. The reason is that the charge order and orbital order
remain intact during the transient change of the magnetic
correlations.

Coherent phonons, charge order, and orbital order are
strongly coupled via electron-phonon coupling. They are due
to the same physical mechanism, namely, the |w1〉 to |w2〉
excitation. Thus, they are expected to exhibit similar decay
properties.

FIG. 17. Charge-order correlation CQ(1, 0, 0) (black) and
orbital-order correlation CO(0, 1

2 , 0) (red) as function of time for
regime II with A0 = 0.45 h̄/(ea0 ). The correlations are scaled each
so that their initial value is unity.
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FIG. 18. Phonon modes of regime II with A0 = 0.45 h̄/(ea0 ). For
a description of the symbols, see Fig. 12.

E. Regime III: Photoinduced ferromagnetism

In regime III, the system undergoes a photoinduced phase
transition, which converts the CE-antiferromagnetic order into
a ferromagnetic metallic state without charge and orbital
order.

1. Magnetic order

Initially, the antiferromagnetic correlation between the
zigzag chains is perturbed rather similar to regime II, leading
to an A-type magnetization as seen in Fig. 19. Unlike regime
II, however, the A-type diffraction pattern persists for several
picoseconds. During this time, the diffraction pattern of the
ferromagnet builds up until it replaces the A-type diffraction
pattern altogether.

The ferromagnetic state obtained is not fully established in
the simulation: the nonrelativistic Schrödinger equation em-
ployed in the simulations conserves the total spin. As a result,
the system evolves into a state that is better characterized as a
spin wave or a lattice of ferromagnetic domains.

Nevertheless, the diffraction pattern obtained is very sim-
ilar to the ferromagnetic structure. For each diffraction spot

FIG. 19. Spin-diffraction intensity of regime III with A0 =
0.53 h̄/(ea0 ). The peaks CS (0.5, 1, 1) and CS (0.5, 0.5, 1) shown in
red, respectively green, are characteristic for the CE-type ground
state. The peak CS (0, 0, 1) shown in blue is characteristic for A-type
magnetic structure. The ferromagnetic (B-type) peak CS (0, 0, 0) is
shown in orange. The original CE-type magnetic pattern is quickly
destroyed, while an A-type magnetic pattern emerges. The latter
evolves over time into a the ferromagnetic phase.

FIG. 20. Magnetic diffraction patterns of region III with A0 =
0.53 h̄/(ea0 ) at 0.3, 1.2, and 6.1 ps. The a axis points right, the b-axis
toward the back, and the c axis up. The small white spheres indicate
points with integer h, k, l in the Pbnm setting. Reciprocal space is
shown for h, k, l ∈ [−1.25, 1.25]. At 0.3 ps the diffraction pattern
is dominated by an A-type pattern. At 1.2 ps the diffraction pattern
exhibits spots from both A and B types, while at 6.1 ps the diffraction
pattern is ferromagnetic, i.e., B type. The double spots are a sign
of ferromagnetic magnetic domains, respectively a long-wavelength
spin wave, rather than a pure ferromagnet.

of the ferromagnetic structure, we do not obtain a single spot,
but a set of two “twin peaks.” The two peaks are located at
the supercell reciprocal-space vectors adjacent to those of the
ideal ferromagnet as seen in Fig. 20. The displacement of the
twin peaks from the diffraction spot of a true ferromagnet
is governed by the size of our supercell, which limits the
wavelength of the spin wave, respectively the domain size.

The ferromagnetic spin correlation function in Fig. 19
exhibits a finite signal by considering the contribution from
the immediate neighborhood of the specified reciprocal-lattice
vector. The signal at the center of the spot is zero. We
envisage that a larger supercell leads to larger domains and
thus to twin peaks that are even closer together, making them
indistinguishable by experiment.

2. Charge order

As shown in Fig. 21, the charge-order correlation CQ and
the orbital-order correlation CO are completely wiped out after
about 0.2 ps. The loss of orbital order makes the system
metallic as seen in Fig. 7. The loss in charge and orbital order
is also reflected in attenuation of the phonon displacements
shown in Fig. 22.

We attribute the ferromagnetic order to a mechanism in
the spirit of the double-exchange picture [48–50]. The origin

FIG. 21. Charge-order correlation CQ(1, 0, 0) (black) and
orbital-order correlation CO(0, 1

2 , 0) (red) as function of time for
regime III with A0 = 0.53 h̄/(ea0 ). The correlations are scaled each
so that their initial value is unity.
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FIG. 22. Phonon modes of region III with A0 = 0.53 h̄/(ea0 ).
For a description of the symbols, see Fig. 12.

of the band gap in the ground state of Pr1/2Ca1/2MnO3 is the
formation of Zener polarons. These Zener polarons are also
the origin of charge and orbital order. Due to the repopulation
of electrons across the band gap, the stabilization due to
Zener polarons is lost and another, competing, mechanism
can take over. A ferromagnetic alignment of the spins lowers
the kinetic energy of the electrons, which can now spread
over a large area: an electron with a given spin is effectively
excluded from orbitals of Mn ions with opposite spin. A Mn
ion with opposite spin thus leads to an energy cost. Thus,
it is favorable, when all spins align ferromagnetically. In
other words, a configuration of ferromagnetic spins produces a
larger effective bandwidth of the majority-spin configuration.
The larger bandwidth stabilizes electrons which populate the
lower half of the majority-spin band formed.

3. Experiment

A recent ultrafast pump-probe experiment [46] carried out
on PrxCa1−xMnO3 at 100 K with different pump fluences
showed that the characteristic charge- and orbital-order reflec-
tion peaks of the CE-type ground state disappear for larger
fluences Fp > 2.5 mJ/cm2.

The experimental study with the same material class by Li
et al. [51] revealed a photoinduced ferromagnetic state within
about 120 fs above the threshold fluence Fp = 2.4 mJ/cm2. A
rise in magnetization has also been measured by Zhou et al.
[52].

The measured threshold fluence of Fp = 2.5 mJ/cm2 trans-
lates via Eq. (24) into an amplitude A0 = 1.26 h̄/(ea0). In
our simulations, the loss of charge and orbital order sets in
with A0 = 0.58 h̄/(ea0) (Fp = 0.52 mJ/cm2) as seen in Fig. 6
from the appearance of the A-type magnetic order, which
finally converts into the B-type (ferromagnetic) order. Our
simulations and experiments produce the transition in the
same fluence range. The remaining difference of a factor 5
in the threshold fluence may be attributed, for example, to the
different photon energies.

It is worth mentioning that the ferromagnetic states ob-
served in our study for region III is expected to per-
sist on longer timescale hinting toward its possible long
lifetime. Similar long-lived states are recently observed in

FIG. 23. Spin-diffraction intensity of regime IV with A0 =
2.50 h̄/(ea0 ). The peaks hkl = (0.5, 1, 1) and (0.5, 0.5, 1) shown
in red, respectively green, are characteristic for the CE-type ground
state. The ferromagnetic (B-type) peak CS (0, 0, 0) is shown in or-
ange. The peak with hkl = (1, 0, 1) is characteristic for G-type mag-
netic structure. Over time, a new, noncollinear magnetic structure
(see Fig. 25) emerges evidenced by the occurrence of the peak
hkl = (0.5, 0.5, 1).

PrxCa1−xMnO3 series within the charge-ordered region of the
phase diagram [7].

F. Regime IV: Noncollinear antiferromagnet

In regime IV with the highest fluence, the system evolves
first into a G-type antiferromagnet as shown in Fig. 23, rather
than forming an A-type antiferromagnet as in regime III. After
about 1.5 ps, the diffraction spots of the G-type structure
fall off again in favor of a more complicated structure with
noncollinear magnetic order. We note that this regime may be
difficult to access experimentally due to the limited stability
of the material.

The diffraction patterns calculated for characteristic times
along the trajectory are shown in Fig. 24. The spin structure
of the final state, which emerges at approximately 1.5 ps after
the light pulse has been extracted on the basis of the real-space
spin-correlation function. It is shown in its idealized form
in Fig. 25. All spins are perpendicular to its neighbors in
the ab plane and antiferromagnetic in the c direction. This
model produces the spin diffraction pattern of the final
spin configuration of regime IV. To our knowledge, this

FIG. 24. Magnetic diffraction patterns of region IV with A0 =
2.50 h̄/(ea0 ) at 0.3, 0.8, and 6.2 ps. At 0.3 and 0.8 ps the diffraction
pattern is dominated by a G-type pattern. At 6.2 ps a new diffraction
pattern occurs, which can be attributed to a noncollinear spin struc-
ture described in the text and in Fig. 25. Reciprocal space is shown
for h, k, l ∈ [−1.25, 1.25]. The a axis points right, the b axis toward
the back, and the c axis up. The small spheres indicate points with
integer hkl in the Pbnm setting.
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a

b

FIG. 25. Idealized model for the spin distribution reached in
regime IV beyond 2 ps. The noncollinear spin structure in the
ab plane of the Pbnm setting is shown on the left. Shown is
the grid of Mn sites with the orientation of the t2g spins. Planes
are stacked antiferromagnetically in the c direction. On the right, the
corresponding magnetic diffraction pattern is shown. The diffraction
pattern is nearly indistinguishable from the one shown in Fig. 24,
which is obtained in regime IV at 6.2 ps after the light pulse. The a
axis points right, the b axis toward the back, and the c axis up. The
small spheres indicate points with integer hkl in the Pbnm setting.
Reciprocal space is shown for h, k, l ∈ [−1.25, 1.25].

configuration has not been investigated before in the context
of manganites.

The charge and orbital orders are destroyed almost imme-
diately, that is, during the light pulse as shown in Fig. 26. This
destruction of the orbital order excites phonons, that, however,
dissipate on a picosecond timescale as seen in Fig. 27. The
amplitude of the phonon vibrations is considerably larger than
that in regime III.

We attribute the transition with increasing fluence from a
ferromagnet in regime III to the noncollinear antiferromag-
netic structure in regime IV to a mechanism analogous to that
described earlier [53]. The double-exchange mechanism fa-
vors ferromagnetism through the increase in bandwidth only,
when a majority of electrons populate the lower half of the
majority-spin eg states. Thus, increasing the fluence beyond
a certain point switches off the double-exchange mechanism
again, so that an antiferromagnetic structure can develop. The
reduction of the bandwidth of majority-spin and minority-spin
electrons opens a band gap between them, which is seen in

FIG. 26. Charge-order correlation CQ(1, 0, 0) (black) and
orbital-order correlation CO(0, 1

2 , 0) (red) as function of time for
regime IV with A0 = 2.5 h̄/(ea0 ). The correlations are scaled each
so that their initial value is unity.

FIG. 27. Phonon modes of region IV with A0 = 2.50 h̄/(ea0 ).
For a description of the symbols, see Fig. 12.

Fig. 7. Compared to the minimal model [53], our system
evolves into a more complicated noncollinear antiferromag-
netic structure.

G. Thermalization

One of the questions of interest is how thermal equilibrium
is established from the excited state. Therefore, we investi-
gated the evolution of the temperatures of the subsystems.

Below, we consider the quasitemperatures described in
Appendix D 1. As shown in Fig. 28, the light pulse imme-
diately raises the temperature of the electronic system to
high temperatures, i.e., several thousands of Kelvin, while the
temperatures of the phonon and spin systems remain low in
comparison. Thus, a state far from equilibrium is formed. The
state is analogous to that of a nonthermal (cold) plasma, where
the electrons reach 104 K, while the ions remain near room
temperature.

While the temperature of the phonon system remains cold,
the coherent phonons of regimes I and II are strongly coupled
to the electronic subsystem and reach comparable temper-
atures. When we attribute the complete thermal energy of
the ions considered to the two phonon modes, the resulting
temperature of the two modes is comparable to the electronic
temperature.

1. Nonequilibrium distribution of the electrons

In particular, the channel of the electrons is of interest
because the energy from this channel is most easily put into
practical use, such as in a solar cell. Our simulations may
shed light onto the workings of the Boltzmann equation.
For this purpose, we inspect the emergence of a distribution,
i.e., the occupations, as function of energy and we compare
the distribution obtained in our calculation with the Fermi
distribution. The approach to a Fermi distribution is one of
the common assumptions made for the Boltzmann equation.

In order to explore the approach to the Fermi distribution,
we choose a representation of atanh(1 − 2 f̄ j ) versus energy
εBO

j . In this representation, a Fermi distribution maps onto a
straight line with slope 1/kBTψ and zero μψ .

The Born-Oppenheimer energies εBO
j , their occupations f̄ j ,

and the Born-Oppenheimer wave functions |φBO
j 〉 are defined

in Appendix D 1 b.
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FIG. 28. Temperatures of the electron (blue), spin (red), and
phonon (black) subsystems as function of time. The phonon temper-
atures are scaled by 100. From top to bottom are the representative
examples from regime I to IV, i.e., A0 = 0.20, 0.45, 0.53 and 2.50.

The occupations for different time slices and for the four
regimes are shown in Fig. 29. Initially, that is 0.2 ps after
the maximum of the light pulse, the occupations do not lie
on a continuous function of the one-particle energies but
scatter wildly. This is expected because the occupations of the
electron states are dominated by the ground-state occupations,
the photon energy, and the dipole matrix elements.

Already after an initial period of about 0.5 ps after the
pulse maximum, the occupations form a continuous function
of the energy. This indicates that the thermalization between
electrons of the same energy is very efficient. This result is
specific to the choice of one-particle orbitals and energies,
namely, the Born-Oppenheimer states.

However, on the timescale of our simulation, the system
does not approach a Fermi distribution. Rather, occupations

of electrons further away from the chemical potential deviate
further from integral occupations than a Fermi distribution:
the electrons further away from the Fermi level seem to be
“hotter” than those close to the Fermi level. Surprisingly, the
tails of the distribution become even flatter with time, that is,
they seem to deviate even further from a Fermi distribution.

We attribute this behavior to the strong coupling between
different subsystems: Due to the dynamics of the spin and
phonon systems, the electrons experience a time-dependent
Hamiltonian, that constantly drives the electrons out of their
equilibrium distribution. For the one-particle basis |φBO

j (t )〉
used here, the approach to a Fermi distribution is not a
requirement.

2. Cold-plasma model

On the picosecond timescale after an excitation, we find a
large disparity between the high temperature of the electrons
on the one hand and the low temperatures of spins and
phonons on the other hand. This suggests that the optically
accessed states are the result of thermodynamic equilibrium
of the electron system alone. A quasiequilibrium state such as
this has been assumed earlier [14].

In order to test this conjecture, we investigated the phase
diagram by increasing the temperature of the electrons, while
spins and phonons are kept at zero temperature. That is, spins
and phonons are optimized for each electron temperature. The
lattice constants are kept equal to the values before excitation
because they are usually too slow on the short timescale under
consideration.

As shown in Fig. 30, we find four different temperature
ranges, which, however, do not directly correspond to the
ranges of different excitation behavior.

(i) For T < T1 with T1 ≈ 2500 K, we obtain the charge-
ordered phase with CE-type magnetic order. Charge-order
correlations and the corresponding Jahn-Teller distortions on
the central site vanish at T1 with an approximate square-root
behavior ∼(T1 − T )α with 0 < α < 1.

(ii) T1 < T < T2 with T2 = 4200 K: At T = T1 the charge
and orbital orders are completely lost, and the system trans-
forms abruptly from the CE-type antiferromagnetic structure
into a ferromagnet. The system is a pure ferromagnet only
at T = T1. For T > T1 the spin angle φc between adjacent
ab planes increases with an approximate square-root-like
behavior toward increasing temperatures, i.e., φc ∼ (T − T1)β

with 0 < β < 1. The spin orientation alternates between two
values from plane to plane.

(iii) T2 < T < T3 with T3 = 5000 K: At T = T2, the spins
in the ab planes become noncollinear. The angle φab between
adjacent spins in the ab plane increases approximately linearly
from 0◦ to 180◦ as the temperature is raised from T = T2 to
T = T3.

(iv) T > T3: At T = T3, both spin angles φab and φc are
180◦, which corresponds to the G-type magnetic order. This
is the favorable high-temperature phase for the temperature
range explored.

It is important to note that the phase diagram described here
has little to do with the equilibrium phase diagram of the mate-
rial. The phases described above are extreme nonequilibrium
states because spins and phonons are at T = 0.
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FIG. 29. Distributions of electron occupations f̄ at different times, namely, t = 0.2 ps (open circles) and 4.8 ps (blue filled circles). From
top to bottom are the representative examples from regime I to IV, i.e., A0 = 0.20, 0.45, 0.53, and 2.50 h̄/(ea0 ). The left figure shows the
occupations (circles) versus Born-Oppenheimer energy εBO

j . The dashed black line is the Fermi distributions at 0.2 ps obtained from the energy
and particle-number sum rules. The full blue line is the Fermi distribution at 4.8 ps. On the right, the occupations f̄ are transformed by
arctanh(1 − 2f̄ ) which maps a Fermi distribution to a straight line with slope 1/(kBTψ ) and zero μψ .

We can identify the excitation regimes I and II with the
temperature range T < T1. The ferromagnetic state obtained
in regime III can be attributed to the range T1 < T < T2.
A nonzero spin angle φc between the ferromagnetic planes
has not been apparent in our time-dependent simulation. We
expect this to be a fluctuating quantity that is averaged out.

In regime IV, we find configurations which are noncollinear
in the ab plane. Interestingly, the noncollinear state with φab =
90◦ shown in Fig. 25 is a typical state obtained for a range of

fluences, while in Fig. 30 it is just one point in a region with
continuously changing angles φab. At even higher fluences,
also the G-type structure is encountered.

V. SUMMARY

The optical excitation of half-doped Pr0.5Ca0.5MnO3 has
been simulated to study the physical interplay between elec-
tronic, spin, and lattice degrees of freedom in response to
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FIG. 30. Nonequilibrium phase diagram with hot electrons and
cold spins and phonons. Top: spin angles. φc is the spin angle
between spins in the c direction of the Pbnm setting. φab is the spin
angle of neighboring Mn sites in the ab plane. Below T = T1, the
angle φab is replaced by one angle φa perpendicular to the zigzag
chains of the CE-magnetic structure and φchain is the angle within
the zigzag chains. Bottom figure: charge-order correlation function
CQ and Jahn-Teller distortion QJT of the central site as function of
temperature. Both are divided by their zero-temperature value.

a femtosecond light pulse. The simulations use Ehrenfest
dynamics, in which electrons and spins follow the time-
dependent Schrödinger equation while the nuclei proceed on
a classical trajectory.

Femtosecond excitations with various intensities and pulse
lengths are studied. The pulse acts on the charge-ordered, low-
temperature phase with CE-type antiferromagnetism. Four
different intensity regimes with qualitative different behavior
could be identified.

(1) In regime I, the electron-band structure remains essen-
tially rigid. The electron-hole distribution excitation transfers
weight from the central Mn ions of the zigzag chain to the
corner sites. The dipole oscillations shuffle charge between
two adjacent corner sites. Two coherent phonons with long
lifetime are excited as result of the electron-phonon coupling.

(2) In regime II, the spins react and rearrange into short-
lived A-type antiferromagnetic structure. The ground-state
CE-type antiferromagnetic structure is recovered within a
picosecond. The coherent phonons, present also in regime I,
survive this transition.

(3) In regime III, charge and orbital orders are destroyed
within a few hundred femtoseconds and a ferromagnet is
formed. In contrast to regimes I and II, the coherent phonons
are damped out rapidly. Due to spin conservation, the ferro-
magnet is not directly accessible. Rather, an A-type antifer-
romagnet is formed, which evolves over several picoseconds
into a ferromagnet having domains compatible with the size
of our simulation cell.

(4) In regime IV, charge and orbital orders are immedi-
ately destroyed as in regime III, but now a G-type antiferro-
magnet is formed rather than an A-type antiferromagnet. Over
time, the system evolves into a new noncollinear spin structure
with neighboring spins having 90◦ angles in the ab plane.

The transient magnetic state observed in regime II may
shed light onto the thermal Néel transition of Pr1/2Ca1/2MnO3

at 175 K. In regime II, the system maintains the orbital and
charge order, but it modifies the spin correlations of neigh-
boring zigzag chains of the CE-type spin structure in the ab
plane. Analogously, the Néel transition may be due to a melt-
ing of the antiferromagnetic correlations between the zigzag
chains, while maintaining the ferromagnetic order within the
chains. When the ferromagnetic order within the chains melts
at higher temperature, the integrity of the chains with their
orbital and charge order is destroyed as in regimes III and IV.

The long lifetime of the magnetic orders in regimes III and
IV may qualify for the concept of “hidden phases.” Hidden
phases [4] are states with unique order which can not be
accessed thermodynamically. It must be noted, however, that
the timescales covered in our simulations are short compared
to those studied experimentally.

In order to make contact with thermodynamics, we esti-
mated the temperatures of the individual subsystems, namely,
electrons, spins, and phonons. The temperature of the elec-
tronic subsystem raises quickly to several thousand Kelvin,
while phonon and spin degrees of freedom remain relatively
“cold.” An exception are the coherent phonon modes, which
initially reach the temperature of the electrons before dissipat-
ing their energy into other degrees of freedom.

Following this concept of hot electrons and cold phonons
and spins, we have been able to identify the phases accessed
by optical excitation with those obtained by raising only the
electron temperature.
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APPENDIX A: NUMERICAL INTEGRATION OF
TIME-DEPENDENT SCHRÖDINGER EQUATION

To solve the time-dependent Schrödinger equation for
wave functions and spinors, we use the second-order differ-
encing scheme proposed by Askar and Cakmak [54,55].

Given the wave function |ψ (0)〉 at time t = 0 and the time-
dependent Hamiltonian Ĥ (t ), the wave function |ψ (t )〉 can be
obtained as |ψ (t )〉 = Û (t, 0)|ψ (0)〉 using the propagator

Û (t ′, t ) = TD exp

(
− i

h̄

∫ t ′

t
dτ Ĥ (τ )

)
. (A1)

TD is Dyson’s time-ordering operator [56], which rearranges
all operators in a product into ascending time order from right
to left.

With the time step 	, subsequent wave functions of a time
sequence are related by

|ψn(	)〉 − |ψn(−	)〉 = (Û (	, 0) − Û (−	, 0))|ψn(0)〉
= −2i	

h̄
Ĥ (0)|ψn(0)〉 + O(	3).

(A2)
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FIG. 31. Energy conservation for three intensities of the excita-
tion. The initial rise is due to the excitation. The largest violation of
energy conservation is a slow dissipation of the quantum systems.

The error is reduced by splitting off the dynamical phase
using the corresponding energy expectation value En(t ) :=
〈ψn(t )|Ĥ (t )|ψn(t )〉:

e
i	
h̄ En(0)|ψn(	)〉 − e− i	

h̄ En(0)|ψn(−	)〉
= −2i	

h̄
(Ĥ (0) − En(0))|ψn(0)〉 + O(	3). (A3)

This leads to the following iterative scheme:

|ψn(t + 	)〉 = |ψ (t − 	)〉e− 2i	
h̄ En(t ) − 2i	

h̄
(Ĥ (t )

− En(t ))|ψ (t )〉e− i	
h̄ En (t ) + O(	3). (A4)

These equations of motion are time-inversion symmetric per
construction.

However, the equations of motion produce aside from
the correct solution also a spurious partial solution which
changes sign in each iteration. This implies that, over time, the
wave function will pick up a contribution from the spurious
solution. In order to purify the solution, we interrupt the
simulation at regular time intervals and perform a correction
step. In the correction step, we filter out the spurious partial
solution

|ψ ′(t )〉 = |ψ (t )〉 + 1
4 (|ψ (t + 	)〉e i

h̄ En(t )	

− 2|ψ (t )〉 + |ψ (t − 	)〉e− i
h̄ En (t )	) (A5)

and perform a Gram-Schmidt orthonormalization on the one-
particle wave functions for the two subsequent time steps
used in the next iteration. We use a time step of 	 ≈ 10−3

fs. Correction steps are performed every 20 time steps. The
energy conservation is shown in Fig. 31 for different light
amplitudes A0.

APPENDIX B: SPIN DYNAMICS

The dynamics of the spins �SR describing the t2g electrons
requires special attention. While the spin dynamics is intrinsi-
cally of quantum nature, we want to keep all three t2g electrons
of a given Mn ion strictly collinear. For this purpose, we
map the spin vector �Si onto a normalized, complex-valued,

two-component spinor (a↑,R

a↓,R
) such that

�SR = 3h̄

2

⎛
⎜⎝

a∗
↑,Ra↓,R + a∗

↓,Ra↑,R

−ia∗
↑,Ra↓,R + ia∗

↓,Ra↑,R

a∗
↑,Ra↑,R − a∗

↓,Ra↓,R

⎞
⎟⎠. (B1)

The magnetic moment �mS of the t2g shell is antiparallel to its

spin direction, namely, �mS = −mS ( 3h̄
2 )

−1 �S. The scalar mS :=
| �mS| is defined as the absolute value of the magnetic moment.

The equation of motion is derived from the Lagrangian

L = ih̄
∑

σ,α,R,n

fnψ
∗
σ,α,R,nψ̇σ,α,R,n + ih̄

∑
σ,R

a∗
σ,Rȧσ,R

+ 1

2

NO∑
j=1

MOṘ2
j − Epot[ψ, S[a], R]. (B2)

The spinors (a↑,R, a↓,R) evolve under the time-dependent
Schrödinger equation

ih̄∂t

(
a↑,R

a↓,R

)
= mS

(
Bz,R Bx,R − iBy,R

Bx,R + iBy,R −Bz,R

)(
a↑,R

a↓,R

)
(B3)

with

mS �BR =
(

3h̄

2

)−1

JAF

∑
R′∈NNR

�SR′

− JHund

∑
α

⎛
⎜⎝

ρ↓,α,R,↑,α,R + ρ↑,α,R,↓,α,R

−iρ↓,α,R,↑,α,R + iρ↑,α,R,↓,α,R

ρ↑,α,R,↑,α,R − ρ↓,α,R,↓,α,R

⎞
⎟⎠. (B4)

The summation index R′ ∈ NNR runs over nearest-neighbor
sites of site R. The first term in Eq. (B4) describes the anti-
ferromagnetic coupling with neighboring spins. The second
term in Eq. (B4) describes Hund’s coupling between t2g and
eg electrons on the same site. JAF is the antiferromagnetic
spin-coupling parameter and JHund is the Hund’s coupling
parameter.

The dynamical equation (B3) is equivalent to

∂t �SR = 2mS

h̄
�BR × �SR, (B5)

where × denotes the vector product.

APPENDIX C: STRAIN DYNAMICS

In this study, the scale factors gx, gy, and gz are dy-
namical variables, which describe long-wavelength acoustic
modes that are responsible for the strain effects in manganites
[45,46]. We enforce gx = gy.

In order to describe the sound wave observed in experi-
ment, we introduce a classical kinetic energy 1

2 Mg
∑3

m=1 ġ2
m,

which determines the Newton’s equations of motion for the
scale factors gm. In thin-film experiments, the wave vector of
a sound wave perpendicular to the film is quantized, which
results in a standing wave with a characteristic frequency.
The sound wave modulates the optical density of the material,
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which can be detected by the optical absorption measurements
[13–15].

We adjusted the fictitious mass Mg to simulate this effect.
In our model, a sound wave is excited in a material without
eg electrons with �q = 0 and with polarization along the c
direction. Mg is chosen so that our model material oscillates
with the same frequency as the film in experiment [7], namely,
≈25 GHz.

APPENDIX D: PEIERLS SUBSTITUTION

In this Appendix, we give a brief derivation of the Peierls-
substitution method [23,24]. The electric field �E = −∂t �A of
the light pulse is expressed by a vector potential

�A(�r, t ) = �eA

2
(A0ei(�k�r−ωt ) + A∗

0e−i(�k�r−ωt ) )g(t ), (D1)

where �eA is the polarization direction of the vector potential
and g(t ) is an envelope function, which is normalized so that∫

dt |g(t )|2 = 1. (D2)

The electrons experience a Hamiltonian of the form

Ĥ [ �A] = 1

2me
( �̂p − q �A(�̂r, t ))2 + V (�̂r), (D3)

where q is the electron charge, me its mass, and V is the lattice
potential.

The Hamilton matrix elements are evaluated in a basis set
of local orbitals centered at positions �Rα , that have the vector
potential explicitly built in. From a regular basis set of local
orbitals |χα〉, field-dependent basis functions

〈�r|χ̃α〉 = exp

[
i

h̄
q

∫ �r

�Rα

d �r′ �A(�r′, t )

]
〈�r|χα〉 (D4)

are constructed [23,24]. The integral of the vector potential
is path dependent: we choose a straight line from the central
atom �Rα to the position �r.

Substituting the above ansatz (D4), we obtain

〈�r|( �̂p − q �A(�̂r, t ))|χ̃α〉

= exp

[
i

h̄
q

∫ �r

�Rα

d �r′ �A(�r′, t )

]
〈�r| �̂p|χα〉. (D5)

From Eqs. (D3) and (D5), we obtain

〈χ̃α|Ĥ |χ̃β〉 = e−i�α,β (t )〈χα|e i
h̄ qFα,β (�̂r,t )Ĥ |χβ〉, (D6)

where

�α,β (t ) := q

h̄

∫ �Rβ

�Rα

d �r′ �A(�r′, t ) (D7)

is the Peierls phase. Furthermore, we define the small quantity
Fα,β (�r, t ), which appears in the above Eq. (D6), as

Fα,β (�r, t ) :=
∫ �Rβ

�Rα

d �r′ �A(�r′, t ) +
∫ �r

�Rβ

d �r′ �A(�r′, t )

+
∫ �Rα

�r
d �r′ �A(�r′, t ), (D8)

Fα,β (�r, t ) is a magnetic flux through triangle with corners at
�Rα, �Rβ , and �r.

The time-dependent Schrödinger equation for a wave func-
tion |ψn(t )〉 = ∑

β |χ̃β (t )〉cβ,n(t ) obtains the form∑
β

e−i�α,β (t )[Õα,β (t )ih̄∂t − H̃α,β (t )]cβ,n(t ) = 0 (D9)

with

H̃α,β (t ) := 〈χα|e i
h̄ Fα,β (�̂r,t )

(
Ĥ [�0] + q

∫ �r

�Rβ

d �r′ �̇A(�r′, t )

)
|χβ〉,

Õα,β (t ) := 〈χα|e i
h̄ Fα,β (�̂r,t )|χβ〉. (D10)

In this form, the Peierls substitution method [23] is formally
exact. In practice, Fα,β (�r, t ) is neglected. For this to be a good
approximation, the basis set needs to be sufficiently localized.

Furthermore, the vector potential is approximated by a
constant. This is equivalent to the long-wavelength limit. It
also excludes dipole-forbidden, but quadrupole-allowed, tran-
sitions. The latter are not considered relevant in comparison
with the strong charge-transfer transitions in this work.

With these approximations, by exploiting the orthonormal-
ity of our basis set, and after ignoring off-site terms of the
dipole matrix elements, we obtain

ih̄∂t cα,n =
∑

β

e
−iq

h̄
�A(t )( �Rβ− �Rα )〈χα|Ĥ [�0]|χβ〉cβ,n

+
∑

β

δRα,Rβ
(−qȦ(�t )〈χα|�r − �Rβ |χβ〉)cβ,n.

(D11)

The first term on the right-hand side describes charge-transfer
transitions, while the second term describes dipole-allowed
onsite transitions. The latter vanish in our model and are
included here only for the sake of completeness.

The Peierls phase only affects off-site matrix elements. In
our case, these are the hopping matrix elements. Thus, the
only change required to incorporate the excitation is to mul-
tiply the hopping matrix elements with the time-dependent
Peierls phase.

1. Temperatures

a. Phonon temperature

The temperature Tph of the phonon degrees of freedom has
been evaluated from the kinetic energy of Jahn-Teller active
and breathing phonon modes of the oxygen ions. We use the
relation

NO∑
i=1

1

2
MO �̇R2

i = NO

2
kBTph, (D12)

where index i runs over all NO oxygen ions in the unit cell and
MO is the mass of the oxygen ion.

There is only one degree of freedom per oxygen atom in
our simulation because only three phonon modes per formula
unit are considered. These are the modes with strong electron-
phonon coupling, which receive the energy directly from the
excited electrons and holes. Only later, these “hot” modes
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dissipate their energy into the other phonon modes and the
spin system.

b. Electron temperature

The temperature of the electronic degrees of freedom
are obtained from the occupations of the Born-Oppenheimer
wave functions. For that purpose, we extract the one-particle
wave functions |ψ j (t )〉 and the instantaneous one-particle
Hamiltonian ĥBO(t ) acting on the electrons. The Hamiltonian
is the Born-Oppenheimer Hamiltonian for the instantaneous
spin distribution and atomic positions.

Let |φBO
j (t )〉 be the eigenstates and εBO

j (t ) the eigenvalues

of the one-particle Hamiltonian ĥBO(t ). The occupations f̄ j of
the Born-Oppenheimer states |φBO

j (t )〉 are obtained from their
projections onto the occupied wave functions |ψ j (t )〉 as

f̄ j (t ) :=
Ne∑

n=1

∣∣〈ψn(t )|φBO
j (t )〉∣∣2

. (D13)

Electron temperature Tψ and electron chemical potential μ

are determined such that energy and particle numbers coincide
with those of a thermal distribution, i.e.,∑

j

f̄ j =
∑

j

(
e(εBO

j −μ)/(kBTψ ) + 1
)−1

,

∑
j

f̄ jε
BO
j =

∑
j

(
e(εBO

j −μ)/(kBTψ ) + 1
)−1

εBO
j . (D14)

In order to compare the instantaneous distributions ( f̄ j, ε j )
to the Fermi distribution fT,μ(ε) = 1/{1 + exp[ 1

kBT (ε − μ)]},
we will plot

z( f̄ ) = arctanh(1 − 2 f̄ ) (D15)

because this transforms a Fermi distribution into a linear
function of the energy:

z( fT,μ(ε)) = 1

kBT
(ε − μ). (D16)

As a result, we can read the quasitemperature from the slope
and the quasi-Fermi level from the zero of the interpolated line
through the data points (z( f̄ j ), εBO

j ).

c. Temperature of the spin subsystem

We extract the temperature of the spin subsystem, i.e.,
the spins of the t2g electrons, analogously to that of the eg

electrons. For each time step, we extract a Born-Oppenheimer
Hamiltonian

hBO,S
R := mS

(
Bz,R Bx,R − iBy,R

Bx,R + iBy,R −Bz,R

)
(D17)

with �BR defined in Eq. (B4) and the absolute value mS of the
t2g magnetic moment.

The projections of the instantaneous Pauli spinors �aR(t )
onto the eigenvectors �aBO

j,R(t ) of hBO,S
R (t ) yield occupations

f̃ j,R(t ) =
∣∣∣∣∣∣

∑
σ∈{↑,↓}

a∗
σ,R(t )aBO

σ, j,R(t )

∣∣∣∣∣∣
2

(D18)

for ground state with j = 0 and excited state with j = 1.

The comparison with the internal energy for noninteracting
spins in an external magnetic field provides a relation

∑
R

( f̃0,R − f̃1,R) =
∑

R

tanh

(
mS| �BR|
kBTS

)
(D19)

which is resolved for the instantaneous temperature TS (t ) of
the spin system.

A more detailed derivation of the expressions summarized
here is provided in Appendix E.

APPENDIX E: TEMPERATURE OF THE SPIN SUBSYSTEM

The temperature of the spin system is extracted analo-
gously to that of the electrons. We consider a system of
uncoupled spins in a magnetic-field distribution �BR defined by
the local Born-Oppenheimer Hamiltonian for the spin system
according to Eq. (D17). The free energy of this system is

FT = −kBT ln
∑

�σ
e− 1

kBT E�σ , (E1)

where the energy of a spin distribution �σ is

E�σ = −
∑

R

mS| �BR|(−1)σR . (E2)

σR ∈ {0, 1} characterizes the ground and excited states of the
local spin �SR of the t2g electrons at site R. The absolute value
of the magnetic moment related to the spin �SR of the three t2g

electrons at a given site is mS = |γ 3h̄
2 |.

This yields for the free energy

FT = −kBT
∑

R

ln

[
2 cosh

(
mS| �BR|

kBT

)]
. (E3)

The instantaneous temperature of the spin system is extracted
by comparing the energy obtained from the instantaneous spin
distribution

E (t ) =
∑

R

�a∗
R(t )hBO,S

R (t )�aR(t ) (E4)

with the energy 〈E〉T = β∂βFT of the thermal ensemble,
where β = 1/(kBT ).

With the eigenstates �aBO
j,R and the eigenvalues ε̃ j,R of the

Born-Oppenheimer Hamiltonian hBO,S
R , the instantaneous en-

ergy equation (E4) is

E (t ) =
∑

R

f̃ j,R(t )ε̃ j,R(t ) (E5)

with occupations

f̃ j,R(t ) = ∣∣�a∗
R(t )�aBO

j,R(t )
∣∣2

(E6)

for the local ground state with j = 0 and the excited state with
j = 1.
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The requirement

∑
R

1∑
j=0

f̃ j,Rε̃ j,R
!= β∂βFβ = 〈E〉T (E7)

provides an expression for the instantaneous temperature
T (t ):

∑
R

( f̃0,R − f̃1,R) =
∑

R

tanh

(
mS| �BR|

kBT

)
. (E8)

APPENDIX F: FREQUENCIES OF THE COHERENT
PHONON MODES

The frequencies of the coherent modes, present in regimes
I and II, have been extracted by nonlinear curve fitting of
a superposition of a constant and two cosine functions with
amplitude, frequency, and phase shift as variable parameters.
The quality of the fit is shown in Fig. 32. The fit gives a
frequency of 9.7 and 15.7 THz.

The vibration of 15.7 THz is dominant in the 	d4+
y and

can be attributed to the planar breathing mode on the corner
sites of the CE-type magnetic structure, which couples to the
charge transfer from the central to the corner sites. The lower

FIG. 32. Fit of the phonon modes and diffraction intensities. The
top figure shows 	d3+

‖ (red) and the fit (dashed). The middle graph
shows 	d4+

y and its fit. The bottom graph shows the correlation
functions CQ for charge and CO for orbital order and their fits. The
derived frequencies are 9.7 and 15.7 THz. The trajectory has been
performed for a light amplitude of A0 = 0.20 h̄/(ea0 ).

frequency with ν = 9.7 THz is a Jahn-Teller mode on the
central site of a trimer.

In order to confirm that the oscillations of the charge- and
orbital-order correlation functions are a direct consequence of
the coherent phonons, the correlation functions have been fit-
ted with same two frequencies. The perfect agreement shown
in Fig. 32 supports our conjecture.
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