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We study the unitary dynamics of randomly or quasiperiodically driven tilted Bose-Hubbard (tBH) model
in one dimension deep inside its Mott phase starting from a Z2 symmetry-broken state. The randomness
is implemented via a telegraph noise protocol in the drive period while the quasiperiodic drive is chosen
to correspond to a Thue-Morse sequence. The periodically driven tBH model (with a square pulse protocol
characterized by a time period T ) is known to exhibit transitions from dynamical regimes with long-time coherent
oscillations to those with rapid thermalization. Here we show that starting from a regime where the periodic drive
leads to rapid thermalization, a random drive, which consists of a random sequence of square pulses with period
T + αdT , where α = ±1 is a random number and dT is the amplitude of the noise, restores long-time coherent
oscillations for special values of dT . A similar phenomenon can be seen for a quasiperiodic drive following
a Thue-Morse sequence where such coherent behavior is shown to occur for a larger number of points in the
(T, dT ) plane due to the additional structure of the drive protocol. We chart out the dynamics of the system in
the presence of such aperiodic drives, provide a qualitative analytical understanding of this phenomenon, point
out the role of quantum scars behind it, and discuss experiments which can test our theory.
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I. INTRODUCTION

It is well known that the bulk energy spectrum of any
nonintegrable many-body quantum system satisfies the eigen-
state thermalization hypothesis (ETH) [1–4]. ETH provides a
natural explanation of eventual thermalization starting from
a generic nonequilibrium many-body quantum state. One of
the consequences of ETH is the decay of coherent quantum
oscillations in the expectation value of a generic local operator
during its evolution as the system reaches a steady state
[5,6]; such a decay is characterized by a system-dependent
timescale, τth, which is identified as the thermalization time.
The divergence of the thermalization time leading to failure
of ETH is seen in many-body localized systems where strong
disorder leads to nonergodicity [7]. Another weaker violation
of ETH occurs in certain disorder-free systems due to the
presence of special energy eigenstates, dubbed as many-body
quantum scars, in the spectrum of the bulk eigenstates of
these systems [8–11]. The consequence of the presence of
such states in the eigenstates of the Hamiltonian describing a
Rydberg chain was experimentally verified via the observation
of long-time coherence oscillation of Rydberg excitations [9].
It was noted that such long-time oscillations, which occur only
if the starting state is |Z2〉 (a state with one Rydberg excitation
on every alternate site), could not be explained within the
framework of ETH [10,11]. Instead, their presence occurs
due to the existence of quantum scars which are states with
finite energy density but subthermal half-chain entanglement:
SL/2 ∼ ln L where L refers to the total number of sites in
the chain. These states have a large and finite overlap with
|Z2〉 and form an almost closed subspace in the system’s

Hilbert space. The evolution of the system, starting from the
|Z2〉 state, therefore occurs within this almost closed subspace
leading to the breakdown of ergodicity and failure of ETH.

More recently, the fate of such scar-induced coherent os-
cillations were studied in the context of a periodically driven
Rydberg chain [12]. It was shown that for high drive frequen-
cies where the properties of the system can be understood
in terms of a Floquet Hamiltonian HF [13] computed using
Magnus expansion [14], the bulk eigenstates of HF host
scars whose presence lead to long-time coherent oscillations
in the density-density correlation function of the Rydberg
atoms. In contrast, at low frequencies, HF do not host scars
and the correlation function shows expected thermalization
consistent with ETH prediction. In between, at intermediate
drive frequencies, the system undergoes several reentrant
transitions between thermal and coherent regimes. The reason
for such a transition could be analytically, albeit qualitatively,
understood by noting that a special class of local terms in HF ,
which are responsible for hosting scars in its eigenspectrum,
have vanishing amplitude at special drive frequencies. Near
these drive frequencies, the system crosses over from coherent
to thermal behavior. The density-density correlator displays
increasingly shorter τth as these special frequencies are ap-
proached. The fastest thermalization occurs in the vicinity
of these special frequencies where coherent oscillations are
almost absent [12].

In this work, we study the driven tilted Bose-Hubbard
model (tBH) in the presence of random and quasiperiodic
drives. The model Hamiltonian we use for such a study
involves a representation of this model in terms of Ising spins
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[12,15] and is given by

H0 =
∑

j

(
−wσ̃ x

j + λ

2
σ z

j

)
, (1)

where σα
j for α = x, y, z denote Pauli spin matrices on site j of

the chain, σ̃ α
j = Pj−1σ

α
j Pj+1, Pj = (1 − σ z

j )/2 is a projection
operator which projects to the |↓〉 state, and w and λ denote
strength of the effective transverse and longitudinal field
terms of the spin model. Furthermore, there is an additional
constraint that the spins on any two neighboring sites cannot
simultaneously be |↑,↑〉.

In what follows, we shall always be in the regime w/|λ| �
1 and drive λ according to some given protocol keeping w

fixed. More specifically, in this work, we shall be studying
two drive protocols. The first involves a random sequence of
square pulses with period T± = T + αdT , where α = ±1 is
a random number and dT is the strength of the noise. We
note that such noisy drives were studied in other contexts in
Refs. [16,17]. The second protocol involves a quasiperiodic
drive which follows the Thue-Morse sequence [16,18] (other
aperiodic drive protocols such as the Fibonacci sequence were
studied earlier in different contexts [19,20]) for which the
sequence of numbers {αi}, rather than being random, satisfies

{α2n} = {αn}, {α2n+1} = −{αn}, (2)

with α0 = −1. The drive period for the nth square pulse
following the Thue-Morse protocol is then given by Tn =
T + αndT .

The central results that we obtain from such a study
are as follows. First, starting from the initial state |ψ0〉 =
(|Z2〉 + |Z̄2〉)/

√
2 (where |Z̄2〉 is the time-reversed counter-

part of |Z2〉 and |Z2〉 = |↑↓↑ · · · 〉), for the case of random
protocol, we show that the presence of the telegraphic noise
with specific noise strength dT may restore coherent oscilla-
tions of the spin correlation functions even when such corre-
lators shows ETH predicted thermalization in the absence of
noise. We demonstrate this by exact numerics on finite-sized
Rydberg chains with length L � 26. Second, using the fact
that w/|λ(t )| � 1 at all times, we provide an analytic expla-
nation of this phenomenon. Our results allow us to provide
a phase diagram as a function of dT and T which indicates
the specific values of dT and T at which we expect such
coherent behavior; these results agree qualitatively with the
prediction of exact numerics. Moreover, our analysis elucidate
the role of quantum scars behind this phenomenon. Third, we
demonstrate the presence of coherence restoration for dynam-
ics using the Thue-Morse sequence at specific values of dT
and provide a semi-analytic explanation for their occurrence.
Finally, we discuss experiments involving ultracold Rydberg
chain which can test our theory.

The plan of the paper is as follows. In Sec. II, we discuss
the model Hamiltonian and its relation to the Hamiltonian
governing the dynamics of one-dimensional (1D) Rydberg
atoms. This is followed by Secs. III and IV where we present
our results on random and quasiperiodic drive protocols.
Finally, we chart out our main results, discuss experiments
which can be used to verify them, and conclude in Sec. V. A
few details regarding dynamics of the correlation function are
presented in the Appendix.

II. MODELS

In this section, we chart out the model used in the present
study and its relation to the Hamiltonian describing atoms in
an ultracold Rydberg chain. We start with the tilted Bose-
Hubbard model given by

H = −w0

∑
〈i j〉

(b†
i b j + H.c.) −

∑
i

(μ0 + E1i)nb
i

+
∑

i

U

2
nb

i

(
nb

i − 1
)
, (3)

where bi (b†
i ) denotes the boson annihilation (creation) opera-

tor on site i of a 1D chain, nb
i = b†

i bi is the number operator for
bosons, E1 denotes the effective electric field for the bosons
which controls the magnitude of the tilt, μ0 is the boson
chemical potential, w0 is the amplitude for nearest-neighbor
hopping, and U is the on-site interaction strength.

It is well known that the effective low-energy description
of these models can be achieved in terms of dipoles living
on a link � between two consecutive lattice sites j and j′.
The creation operator for these dipoles can be written as d†

� =
b†

jb j−1/
√

n0(n0 + 1), where n0 is the ground-state occupation
of the parent Mott state without the tilt. In terms of these
dipoles the effective low-energy Hamiltonian can be written
as [15]

Hd =
∑

�

[−w(d� + d†
� ) + λnd

�

]
, (4)

where w = w0
√

n0(n0 + 1) is the amplitude for spontaneous
creation and annihilation of dipoles, λ = (U − E1) is the
dipole chemical potential, and nd

� = d†
� d� is the dipole number

operator. The Hamiltonian Hd is to be supplemented by two
constraint conditions that make it nonintegrable: nd

� � 1 and
nd

� nd
�+1 = 0. The first ensures that the maximum number of

dipoles on any link is unity and the second guarantees that
there are no states with two dipoles on neighboring links. For
large positive λ/w, the ground state of the model consists
of a dipole vacuum while for large negative λ/w, it is a Z2

symmetry-broken state with the maximal number of dipoles
which we denote as |Z2〉. These two states are separated by a
quantum phase transition at λ/w = −1.31

√
n0(n0 + 1) which

belongs to the Ising universality class. The nonequilibrium
dynamics of the model, starting from the dipole vacuum or
|Z2〉 has been studied for quench, ramp, and periodic proto-
cols [21]. The model has also been experimentally realized
using ultracold boson chains [22].

In what follows, we shall use a spin representation of this
dipole model which allows us to implement the constraint
in an easier manner. To this end, we use the transformation
σ

x[y]
� = [i](d� + [−]d†

� ) and σ z
� = 2nd

� − 1. In terms of the
spin variables, one obtains

Hs =
∑

�

(−wσ x
� + λσ z

� /2
)
, (5)

with the constraint (1 + σ z
� )(1 + σ z

�+1) = 0. It was noted in
Ref. [11] that this constraint condition could be implemented
by a local projection operator P� = (1 − σ z

� )/2 which enables
one to equate Hs to H0. For λ = 0, H0 only contains a single
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term and has been referred to as the PXP model [10,11,23]. It
is well known that for λ = 0, the eigenspectrum of H0 hosts
quantum scars and leads to the long-time coherent oscillation
of O�1�2 = 〈σ z

�1
σ z

�1+�2
〉 [9].

Such a long-time coherent oscillatory behavior of the spin
correlator was experimentally verified in a Rydberg chain. The
effective low-energy Hamiltonian for these Rydberg atoms
can be written as [9]

HRyd =
∑

i

(
�σ x

i + 	ni
) +

∑
i j

Vi jnin j, (6)

where ni � 1 is the number of Rydberg atoms on site i, 	

denotes the detuning parameter used to facilitate a Rydberg
excitation, Vi j ∼ 1/|i − j|3 is the interaction between them,
σ i

x = |Ri〉〈Gi| + H.c. describes the coupling between atoms
in the Rydberg excited (|Ri〉) and ground (|Gi〉) states. We
note that experiments on these system can tune Vi j such that
Vii+1 
 	,� 
 Vii+2 [9]; in this case, the interaction acts
as a constraint of not having two Rydberg excitations on
neighboring sites. In this regime HRYD can be directly mapped
to H0 with � → −w, ni → (1 + σ z

� )/2, and 	 → λ.
Before ending this section, we note that the periodic dy-

namics of H0 was also studied recently using a square pulse
protocol which drives λ(t ) between λ and −λ in the regime
w/λ � 1 [12]. In particular, the stroboscopic evolution of
O22 as a function of the drive cycle n for several frequencies
starting from the |Z2〉 state has been shown to display long-
term coherent oscillations in the high drive frequency regime.
This behavior has been tied to the presence of scars in the
Floquet Hamiltonian of the driven system. At low frequencies,
scars were absent and the system displayed thermalization
consistent with ETH. In between, at moderate drive frequen-
cies, O22 shows several reentrant transitions between thermal
and coherent behavior. In what follows, we are going to
perform a similar study for H0 in the presence of random and
quasiperiodic drive protocols.

III. RANDOM DRIVE PROTOCOL

In this section, we shall address the dynamics of the
system described by Hs [Eq. (5)] in the presence of a random
sequence of square pulses which makes the parameter λ time
dependent. In this work, we shall be interested in the regime
where w � |λ(t )| throughout the drive cycle. The randomness
corresponds to a telegraphic noise in the drive protocol leading
to a time period of T± = T + αdT , where α = ±1 is a random
number and dT denotes the strength of the noise. Under such
a drive λ(t ) = +(−)λ for t > (�)T±/2.

To understand the effect of such a random drive, we
first note that, in the absence of randomness (dT = 0), the
dynamics of Hs, for w � λ, was studied in Ref. [12]. It was
found that to O(w/λ), the Floquet Hamiltonian of the system
is given by

HF = −w
sin(γ )

γ

∑
j

[
cos(γ )σ̃ x

j + sin(γ )σ̃ y
j

] + · · ·, (7)

where γ = λT/4, the ellipsis corresponds to O(w3) and
higher-order terms whose analytical form is unknown, h̄ is set
to unity here, and in the rest of this work, and T = 2π/ωD is

the drive period. The corresponding unitary evolution operator
is given by U = exp[−iHF T ]. It was found that the O(w)
term constitutes a renormalized PXP Hamiltonian [12] which
vanishes for γ = nπ . At these points, the Floquet Hamiltonian
consists of O(w3) (and higher powers of w) terms which have
a different structure compared to the PXP Hamiltonian. For
γ �= nπ , the O(w) term has the most dominant contribution
in HF . Moreover, the form of these O(w) terms ensures that
when they are dominant, the Floquet spectrum hosts scars
which lead to long-time coherent dynamics. In contrast, for
γ = nπ , eigenstates of the Floquet Hamiltonian do not host
scars and the system exhibits thermalization consistent with
ETH.

For random drives it is easy to see that for T = T±,
the unitary evolution operators controlling the evolution are
given by

U± = e−iH±
F T± , H±

F = HF (γ → γ±), (8)

where γ± = λT±/4 = γ ± dγ , and dγ = λdT/4. Thus for a
random protocol, the wave function after n cycles of the drive
would be

|ψn〉 = U−U−U+ · · ·U+|ψ0〉 = U |ψ0〉, (9)

where |ψn〉 denotes the wave function after n drive cycles
starting from the initial state |ψ0〉, and U+ and U− occur
randomly with equal probability in the string of evolution
operators represented by U in Eq. (9).

In the presence of such a drive, the effect of random-
ness manifests itself through the action of the commutator
[U+,U−] on the state. This can be easily seen by noting that
the Floquet eigenvectors corresponding to U± changes only
when it is operated on by a subsequent U∓ in the random
string in Eq. (9). This change occurs since eigenvectors of
U+ and U− are different; it vanishes if U+ and U− commute.
Such a commutation of U+ and U− clearly occurs for dT = 0
since it amounts to the absence of randomness. However, in
the w � |λ(t )| limit, the leading terms of these commutators
also vanish at special values of dT/T . To see this we compute
C = [U+,U−]. Using Eqs. (7) and (8) we find

C = C0 + · · · =
(

4w

λ

)2

sin(2dγ ) sin(γ + dγ ) sin(γ − dγ )

×
∑
j, j′

[
σ̃

y
j , σ̃

x
j′
] + · · ·, (10)

where the expression is valid for w/λ � 1, and the ellipsis
beyond C0 indicate higher-order terms in w/λ. We note that
if the norm of the commutator vanishes, it is possible to
rearrange U− and U+ in Eq. (9) in pairs. Since, in the random
string of evolution operators in Eq. (9), the occurrence of U+
and U− are equally likely, for large-enough n, the dynamics
could have been described by an average Floquet Hamilto-
nian: |ψ (t )〉 � exp[−iH av

F nT ]|ψ0〉, where

H av
F = (H+T+ + H−T−)/(2T ) + · · ·

= w

γ

∑
j

[
c1(T )σ̃ x

j + c2(T )σ̃ y
j

] + · · ·,

c1(T ) = sin(2[γ + dγ ]) + sin(2[γ − dγ ]),

c2(T ) = 2 − cos(2[γ + dγ ]) − cos(2[γ − dγ ]), (11)
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FIG. 1. Left panel: Plot of ||C0||(λ/4w)2 as a function of γ and
dT/T showing dips at dT/T = kπ/2 and kπ + γ . Right: Plot of
||H av

F ||/w as a function of γ and dT/T .

where ellipsis indicate terms O(wm) for m � 3 which do not
support scars [12].

Using Eqs. (10) and (11), we can now chart out analytical
conditions for having long-time coherent oscillations in the
presence of the random drive. The first condition for such
an oscillation is the sufficiently weak randomization of Flo-
quet eigenstates which occurs when the leading term in the
norm of the commutator ||C0|| = (4w/λ)2 sin(2dγ ) sin(γ +
dγ ) sin(γ − dγ ) vanishes. This leads to the condition

dγ = k
π

2
or dγ = kπ ± γ , (12)

where k ∈ Z. We note that Eq. (12) constitutes a necessary
but not sufficient condition for coherent oscillations. For
such oscillations, in addition to weak-enough randomization
of Floquet eigenvectors, one also needs to ensure that H av

F
which controls the dynamics when ||C0|| = 0 hosts scars. This
requires an additional constraint that the leading term in the
norm of H av

F , ||H av
F || = w

√
c1(T )2 + c2(T )2, does not vanish

[i.e., c1(T ) and c2(T ) do not vanish simultaneously]. This
leads to the condition

dγ �= k′π if γ = kπ, (13)

where k, k′ ∈ Z. We note that the conditions given by
Eqs. (12) and (13) ensure that the effect of the telegraphic
noise is minimal and that the dynamics is controlled by scars
in the eigenspectrum of H av

F . Thus these points in the parame-
ter space of the system are likely to host coherent oscillations.
These conditions are represented in Fig. 1. The left panel
shows the regions in the dT/T − γ plane where ||C0|| = 0,
while the right panel indicates regions where ||H av

F || remains
finite. The common points between these two regions that
satisfy both these criteria are the ones where one expects
restoration of coherence in the presence of noise.

To verify the restoration of coherence, we numerically
compute O�2. To this end, we note that both U+ and U− can be
expressed in terms of the eigenvalues ε (1)[(2)]

p and eigenvectors
|p(1),[(2)]〉 of H1[2]

s = HF (+[−]λ) as

U± =
∑
p,q

e−i(ε (1)
q +ε (2)

p )T±/2μ12
pq|p(2)〉〈q(1)|, (14)

where μ12
pq = 〈p(2)|q(1)〉. These eigenvalues and eigenvectors

are computed numerically using exact diagonalization for a
finite-size system with L � 26. Using this, one can numeri-

0

0.2

0.4

O
22

0

0.2

0.4

O
22

0 200 400 600 800 1000
n

0

0.2

0.4

O
22

0 200 400 600 800 1000
n

(a) (b)
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FIG. 2. Plot of O22 as a function of the number of drive cycle
n for L = 26, ωD = 7.75, and λ = 15 for (a) dT/T = 0, (b) 0.1,
(c) 0.3, (d) 0.5, (e) 0.9, and (f) 1. The plot indicates clear return
of coherent oscillation for dT/T = 0.5. All energies (frequencies)
are scaled in units of w/

√
2 [w/(h̄

√
2)] and h̄ is set to unity. The

blue dashed line in all panels corresponds to the infinite temperature
ensemble value of O22.

cally compute O�2 as

O�2 = 〈ψ0|U†σ z
� σ

z
�+2U |ψ0〉. (15)

We note that translational symmetry ensures that O�2 is inde-
pendent of �; in what follows we shall therefore concentrate
on O22.

The numerical plot of O22, shown in Figs. 2 and 3, supports
the expectation obtained from the analytical consideration
charted out earlier in the section. In Fig. 2, we plot O22 as
a function of the number of drive cycles n, for ωD = 7.75
(which corresponds to γ � 2) and for several representa-
tive values of dT/T . We note that for these systems, for
dT = 0, the system shows rapid thermalization consistent
with ETH as pointed out in Ref. [12]. Here we find that
coherent oscillations pick up as we tune towards dT/T = 0.5,
where ||C0|| = 0 and ||H av

F || �= 0. At dT/T = 0.5, the system

0
0.1
0.2
0.3
0.4
0.5

O
22

0 200 400 600 800 1000
n

0
0.1
0.2
0.3
0.4
0.5

O
22

0 200 400 600 800 1000
n

(a) (b)

(c) (d)

FIG. 3. Plot of O22 as a function of n for L = 26, ωD = 3.9, and
λ = 15 (a) dT/T = 0, (b) 0.25, (c) 0.5, and (d) 0.75. The coherent
oscillatory behavior exhibits a much slower decay time for dT/T =
0.25 than for dT/T = 0.75. All units and the definition of the blue
dashed line are same as in Fig. 2.

014301-4



RESTORING COHERENCE VIA APERIODIC DRIVES IN A … PHYSICAL REVIEW B 102, 014301 (2020)

FIG. 4. Plot of ||C||(black solid line) and ||C ′|| (red solid line)
(both normalized by the square of the Hilbert space dimension)for
L = 26 and ωD = 7.75 as a function of dT/T showing clear dip of
||C|| at dT/T = 1/2. All units are same as in Fig. 2.

exhibits long-time coherent oscillations and constitutes an
example of coherence restoration by temporal disorder. To
check that this is indeed the case, we plot ||C|| = ||[U+,U−]||
and ||C ′|| = ||U+U−|| (normalized by the square of the Hilbert
space dimension) for ωD = 7.75 as a function of dT/T .
The plot, shown in Fig. 4, indicates a clear dip of ||C|| at
dT/T = 0.5 where ||C ′|| remain finite. This corroborates our
expectation from the earlier discussion based on analysis of
||C0|| and ||H av

F ||.
A similar noise-induced restoration of coherence is seen

in Fig. 3 for ωD = 3.9 (γ � 4) where long-time coherent
oscillations of O22 returns at dT/T = 1/4, 3/4. This is in
accordance with prediction of Eqs. (12) and (13). Note that
in this case ||C0|| = 0 at dT/T = 0.5; however, ||H av

F || also
vanishes at this point and O22 does not exhibit long-time
oscillations. The analytical prediction is further verified by
numerical plot of ||C|| and ||C ′|| at ωD = 3.9 as a function
of dT/T as shown in Fig. 5. We find a clear dip in ||C||
at dT/T = 1/4, 1/2, 3/4. However, at dT/T = 1/2, ||C ′||
also vanishes leading to the absence of long-term coherent
oscillations as discussed. Finally, we note that the restoration
of coherence is more robust at dT/T = 1/4 compared to
dT/T = 3/4. This feature can be qualitatively understood as
follows. We first note that the thermalization in these systems
leading to destruction of coherence occurs due to action of C;
thus ||C|| is an indicator of the strength of this term. Next, we
note that such terms lead to finite matrix elements between
states within the scar subspace and states within the ETH
band. This can be checked by noting that C0 [the first term in
Eq. (10)] indeed leads to such matrix elements. Thus it is ex-
pected that the thermalization time of O22, τth, would depend
on ||C||. The expression of τth can be estimated using Fermi’s
golden rule and assuming a constant density of state ρ0 for
states in the thermal band to be τ−1

th � 2πρ0||C||2 ∼ ||C||2.
Thus a larger ||C|| is expected to lead to shorter thermalization
time and faster loss of coherence. This feature is manifested
in the relatively shorter thermalization time of oscillations for
dT/T = 0.75 in Fig. 3 compared to those for dT/T = 0.25.
Although ||C0|| vanishes in both cases, the remaining terms

0 0.2 0.4 0.6 0.8 1
dT/T

0

0.001

0.002

0.003

FIG. 5. Plot of ||C||(black solid line) and ||C ′|| (red solid line)
(both normalized by the square of the Hilbert space dimension)
for L = 26 and ωD = 3.9 as a function of dT/T showing clear
dip of ||C|| at dT/T = 1/4, 1/2, and 3/4. Note that ||C ′|| also
vanishes around dT/T = 1/2 whereas it remains finite for dT/T =
1/4 and 3/4. All units are the same as in Fig. 2.

lead to a larger ||C|| and hence shorter thermalization time for
dT/T = 0.75.

IV. QUASIPERIODIC DRIVE PROTOCOL

In this section, we will study the dynamics of the system
when it is driven by a Thue-Morse sequence (TMS) generated
by the two evolution operators U+ and U− given in Eq. (8).
The motivation for this is that a TMS generated by two
noncommuting operators is known to generate unusual long-
time behaviors which are quite different from those generated
by a random sequence [16]. The TMS is generated as follows
[16]. Defining A0 = U+ and B0 = U−, we recursively define

Am+1 = BmAm, Bm+1 = AmBm, (16)

for all m � 0. The wave function after 2n drives is then
given by

|ψ2n〉 = An|ψ0〉. (17)

For instance, the wave function after 23 = 8 drives is

|ψ8〉 = A3|ψ0〉 = U−U+U+U−U+U−U−U+|ψ0〉. (18)

It is clear that one can use the recursion relations in Eq. (16) to
generate a sequence of 2n drives by performing only 2n matrix
multiplications. This enables us to study relatively easily what
happens after an exponentially large number of drives.

We will now study the conditions under which the dynam-
ics generated by Eqs. (16) and (17) gives long-time coherent
oscillations. As discussed in Sec. III, this will happen if the
evolution operators A0 and B0 commute, but A1 = B0A0 is
not equal to the identity operator and it has scar states as its
eigenstates. However, the recursive form of Eq. (16) implies
that even if A0 and B0 do not commute, we can still obtain
long-time coherent oscillations if A1 and B1 commute (since
the unitary dynamics after an even number of drives can be
written solely in terms of A1 and B1), but A2 = B1A1 is not
equal to the identity and it hosts scar states. Clearly, this
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FIG. 6. Plots of ||C (0)
0 || (black line), ||C (1)

0 || (red line) and ||C (2)
0 ||

(green line) versus dT/T , for ωD = 7.5, and λ = 15. All units are
the same as in Fig. 2.

idea can work at higher and higher levels. We thus obtain
a hierarchy of possibilities for getting coherent oscillations,
given by the condition that although An−1 and Bn−1 do not
commute, An and Bn commute, and An+1 = BnAn is not equal
to the identity and it hosts scars. We define the norm of the
level n commutator as ||C (n)|| ≡ ||[An, Bn]||. To demonstrate
this point, we consider the O(w) approximation to HF and
write U± = exp[−iH±

F T ], where H±
F is given by Eq. (7) with

γ → γ±. Using these we construct the matrices A1 = U+U−
and B1 = U−U+ and compute ||C (1)

0 ||. A similar procedure
leads to ||C (2)

0 ||. Here, the subscript 0 in C (n)
0 refers to the

fact that only the O(w) approximation to HF was used for the
computations. Figure 6 shows plots of ||C (n)

0 || versus dT/T for
n = 0, 1 and 2, when ω = 7.5, w = √

2, and λ = 15. These
norms are seen to approach zero for a range dT/T � 0.2
and dT/T � 0.8 implying that coherent oscillations can be
expected to occur around such values. We note, however,
that these expectations from a O(w) theory is qualitative;
clearly higher-order terms are expected to reduce this range
to (possibly) discrete points. A more precise investigation of
this behavior requires exact numerics which we now carry out.

The plot of the correlation function O22 as a function of
n for ωD = 7.5, w = √

2, λ = 15 and several representative
values of dT/T is shown in Fig. 7. The left panel shows results
for the random protocol while the right panel shows that for
TMS. We note that similar to the random sequence discussed
in Sec. III, the TMS also leads to quick thermalization when
||C (0)

0 || �= 0, and to coherent oscillation when ||C (0)
0 || = 0 but

the leading term in ||H av
F ||/w is nonzero. This can be from

Figs. 7(e) and 7(f) where both the random [Fig. 7(e)] and TMS
[Fig. 7(f)] at dT/T = 0.5 display coherent oscillations. How-
ever, as shown in the top panel (dT/T = 0.1) of Fig. 7, TMS
may lead to oscillatory behavior at special values of dT/T
[Fig. 7(b)] even when random protocol leads to thermalization
[Fig. 7(c)]. In the middle panel of Fig. 7, a comparison
between the behavior of O22 driven by random [Fig. 7(c)] and
TMS [Fig. 7(d)] also indicates a much longer thermalization
time for the latter. This can be understood to be a precursor
to the oscillatory behavior of O22 for TMS at dT/T = 0.3,
analogous to that found for dT/T = 0.1.
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O
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(c) (d)

(e) (f)

FIG. 7. Comparison of O22 as a function of n for random (left
column) and TMS (right column) at some special points, with L =
26, ωD = 7.5, and λ = 15. (a), (b) dT/T = 0.1, (c), (d) dT/T =
0.25, and (e), (f) dT/T = 0.5. The periodically driven system at
these parameters (dT = 0) shows ETH predicted thermalization. All
units and the definition of the blue dashed line are the same as in
Fig. 2.

It turns out there are several such special points in the
(T , dT ) parameter space where the random and TMS show
drastically different behaviors, namely, rapid thermalization
for the random sequence but coherent oscillations for the
TMS. We demonstrate four other such point in Fig. 8. For all
such points, the random drive leads to rapid thermalization.
The coherent behavior of O22 thus reflects the quasiperiodic
nature of the TMS which is distinct from a totally random
sequence. At these parameter values, the special form of the
noise correlation in the TMS (i.e., the particular form of
the sequence of U+’s and U−’s), although not comparable
to a perfectly periodic sequence, is sufficient to preserve the
memory of the initial |Z2〉 state for a long time.
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FIG. 8. Plot of O22 as a function of n for the TMS showing
oscillatory behavior for (a) dT/T = 0.1, ωD = 6.75 (b) dT/T =
0.1, ωD = 8.25, (c) dT/T = 0.3, ωD = 2.5, and (d) dT/T = 0.3,
ωD = 5. For all these parameter values, the random protocol shows
rapid thermalization. The periodically driven system (dT/T = 0)
shows coherent oscillations for parameters in (a), (b), and (d) and
ETH predicted thermalization for (c). All units and the definition of
the blue dashed line are the same as in Fig. 2.
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FIG. 9. Motion of ψn on Bloch sphere for λ = 15, and (ωD, dT/T ) = (a) (7.5, 0.3), (b) (7.5, 0.5), (c) (7.5, 0.1), (d) (5.0, 0.3), (e) (2.5, 0.3).
In (c)-(e) the yellow (blue) circles are for odd (even) values of n. See text for details. All units are same as in Fig. 2.

Due to the aperiodic nature of the TMS, it seems difficult
to describe the special points based on an effective many-body
Floquet Hamiltonian. However, we find that it is possible to
find the positions of these special points without studying the
exact many-body dynamics (which is numerically difficult).
We demonstrate this by studying the dynamics of a two-level
system governed by the following Hamiltonian:

H2×2 = −w
sin γ

γ
(cos γ σ x + sin γ σ y). (19)

This is basically the O(w) Hamiltonian in Eq. (7) but with
only one site. We now calculate U± using this Hamiltonian
and the driven wave function by acting with U+ and U− on
the initial state [ψ0 = (1, 0)T ] for a total of ntot times follow-
ing the TMS (we choose ntot = 1000). The two-component
driven wave function ψn can be mapped to the Bloch sphere
[θ (n), φ(n)] using the parametrization

ψ (n) = [cos(θ/2)eiφ/2, sin(θ/2)e−iφ/2]T . (20)

We find a completely chaotic motion of ψn on the Bloch
sphere for parameters which show quick thermalization to
the infinite temperature ensemble in the exact many-body
dynamics [see Fig. 9(a)]. On the other hand, ψn follows a
regular trajectory on the Bloch sphere when we have coherent
oscillations in the exact many-body dynamics. We find that
this coherent behavior can be further categorized into at least
three classes. For parameter values where ||C (0)

0 || = 0 but the
leading term in ||H av

F ||/w is nonzero, the trajectory is just a
single circle [see Fig. 9(b)], whereas at the special points, we
see either three circles [see Figs. 9(c) to 9(e) or Fig. 10(c)] or
a closed curve made of intertwined ellipses [see Figs. 10(b)
and 10(d)]. In fact, both the later cases are encountered when
(for example) dT/T is kept fixed at 0.1 and ωD is varied [see
Fig. 10(a)]. In the three circle case, we further see that ψn

for even values of n are concentrated on one circle, while ψn

for odd values of n are concentrated on the other two circles.
The one circle and the three circle cases can be understood
using the recursive structure for the TMS. When ||C (0)

0 || = 0,
U+ and U− commute with each other; this implies that these
can be written as

U+ = eiα+n̂+·�σ , U− = eiα−n̂−·�σ , (21)

where the unit vectors n̂+ and n̂− are identical, and α± are
nonzero. Hence every term in the TMS sequence has the form
given by exp(i fnn̂+ · �σ ), where fn is a number which depends
on the number of U+’s and U−’s which appear in the nth
term of the TMS. The trajectory of |ψn〉 therefore lies on
a single circle on the Bloch sphere. At other special points

like in Figs. 9(c) to 9(e) and Fig. 10(c), U+ and U− do not
commute with each other, but U+U− and U−U+ approximately
commute with each other, namely, ||C (0)

0 || �= 0 but ||C (1)
0 || � 0.

This implies that U+U− and U−U+ can be written in forms
similar to Eq. (21), with identical unit vectors. Hence after
any even number of drives (which are given by products of a
certain number of U+U− and U−U+), we will get points which
lie on a single circle on the Bloch sphere. But after an odd
number of drives, we will get a point which corresponds to the
single circle mentioned above multiplied by either U+ or U−
depending on which of the two appears at the last drive; these
will give two different circles as U+ and U− do not commute.
Then, there are other special points where the trajectory on the
Bloch sphere is not composed of a single or a three circle but
a more complicated closed curve [Figs. 10(b) and 10(d)].

A single quantity as a function of ωD would be useful to see
the rarity of the special points where coherent oscillations oc-
cur. We note that a regular trajectory means that the fluctuation
	cos(φ) in cos φ(n) [where φ(n) denotes the value of azimuthal

FIG. 10. (a) Plots of ||C (0)
0 || (black line), ||C (1)

0 || (red line), and
||C (2)

0 || (green line) versus ωD for a fixed dT/T = 0.1, and λ = 15.
Motion of ψn on Bloch sphere for λ = 15, dT/T = 0.1 and ωD equal
to (b) 6.75, (c) 7.5, and (d) 8.25. All units are the same as in Fig. 2.
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FIG. 11. Plot of 	cos(φ) vs ωD for λ = 15, dT/T = (a) 0.1 and
(b) 0.3. Black dashed (red solid) lines denotes the graph for random
(TM) sequences. Violet circles denote the special points. All units
are the same as in Fig. 2.

angle φ after n drive cycles] will be small. We define

	cos(φ) =
√∑ntot

n=1[cos φ(n) − cos φav]2

ntot
, (22)

where cos φav = [
∑ntot

n=1 cos φ(n)]/ntot. We plot 	cos(φ) versus
ωD (for both random and TMS) and mark the special points
(characterized by prominent dips for only the TMS) by the
violet circles in Fig. 11.

The above observations suggest that the coherent oscil-
lations at the special points can be qualitatively understood
based on a single site problem; hence they are only due to
the interplay between the drive parameters (T , dT ) and the
drive sequence (TMS in this case). Many-body effects hardly
change the positions of these special points.

V. DISCUSSION

In this work, we studied the driven tilted Bose-Hubbard
model for aperiodic drive protocols. Our results indicate that
for both random and quasiperiodic drives, the presence of
aperiodicity can lead to coherent behavior even when the
system thermalizes in their absence. We presented an analyt-
ical, albeit qualitative, explanation for this phenomenon and
pointed out the role of quantum scars behind it.

For random drive protocols, we find that there are specific
points in the (T, dT ) plane, where the commutator of the
evolution operators U+ ≡ U (T + dT ) and U− ≡ U (T − dT )
vanish to O(w2/λ2). This means the norm of such com-
mutators become extremely small at these points leading
to minimal decoherence due to noise. If at such points U±
supports scars in their Floquet Hamiltonian H±

F (note that
while one cannot define the Floquet Hamiltonian for the
entire random string of U+ and U−, each individual U+ and
U− have a well-defined HF ), one sees coherent oscillations
of correlation functions. We charted out the phase diagram
in the (T, dT ) plane showing the existence and location of
such points showing that random drives can be instrumental
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FIG. 12. (a) Plot of O22(nT ) as a function of the number of drive
cycles n for dT/T = 0.5 and (b) plot of O22(ω) as a function of ω.
All units are the same as in Fig. 2 of the main text.

in restoring coherence in an otherwise thermalizing system
which hosts quantum scars in its Floquet spectrum.

For the quasiperiodic drive protocol, we chose the Thue-
Morse sequence. We showed that the inherent structure of
such a drive protocol leads to several additional coherence
restoring points in the (T, dT ) plane where the random proto-
col leads to thermalizing behavior. We plotted an approximate
phase-space trajectory for such drives on the local Bloch
sphere using a simplified 2 × 2 local Hamiltonian. This anal-
ysis leads to four distinct class of trajectories. Three of them,
namely, chaotic, single circle, and three circles have a simple
explanation as discussed here. However, the intertwined ellip-
tic trajectories does not seem to yield to a simple qualitative
explanation. We note here that similar complicated dynamical
behavior was studied for a single spin-1/2 subjected to a
Fibonacci drive sequence in Ref. [24]. The generalization
of this work to the Thue-Morse sequence is left for future
work.

The fluctuations of the azimuthal angle of these trajectories
are shown to provide a signature for coherent behavior of
the many-body system. It will be useful to understand why
the points at which coherence is restored in the full many-
body driven problem shifts so little from the results of this
simplified analysis. Furthermore, the mechanism and phase
diagram of possible coherence revivals using other forms of
quasiperiodic drive sequences, like the Fibonacci sequence
[19], should also be explored. We leave these issues as prob-
lems to be explored in future works.

The model we studied is known to provide a low-energy
effective description for ultracold Rydberg atoms on
which quench experiments were already performed [9].
Moreover, it also serves as the low-energy model on the titled
Bose-Hubbard model which was experimentally realized in
Refs. [22]. Our theory can, in principle, be verified using
any of these experimental platforms. Here we suggest a drive
protocol where the detuning parameter (for the platform
using Rydberg atoms) or the electric field (for the platofrm
using tilted Bose-Hubbard model) is varied randomly with
periodicity T + dT or T − dT . Our prediction, for example,
is that for starting from the regime 	 = 15 (in units of

√
2�)

and ωD = 7.75 (in units
√

2�/h̄) where all values dT < 0.5

014301-8



RESTORING COHERENCE VIA APERIODIC DRIVES IN A … PHYSICAL REVIEW B 102, 014301 (2020)

0
0.1
0.2
0.3
0.4
0.5

O
22

0 50 100 150 200
n

0
0.1
0.2
0.3
0.4
0.5

O
22

0 50 100 150 200
n

(a) (b)

(c) (d)

FIG. 13. (a) Plot of O22 as a function of the number of drive
cycles n for random drive protocol with dT/T = 0.25 and ωD = 3.9
providing a closer look at Fig. 3(b). (b) Same for Fig. 3(d) where
dT/T = 0.75 with random drive protocol and ωD = 3.9. (c) Same
for Fig. 7(e) where ωD = 7.75 and dT/T = 0.5 with random drive
protocol. (d) Same as in (c) but for TMS protocol corresponding to
Fig. 7(f). All units are the same as in corresponding figures of the
main text.

leads to rapid thermalization, the Rydberg excitation (or
dipole excitation) density and density-density correlation
function will display long-time coherent oscillatory behavior
for dT/T = 0.5. Richer, albeit similar, effects for coherence
restoration shall also be present for a quasiperiodic
(Thue-Morse) drive sequence as has been discussed here.
In this context, we note that in realistic experiments the
constraint is implemented by increasing certain parameters
of the model. For the Rydberg platform Vi,i+1 is set to a large
value while for bosons in a tilted lattice U and E is kept large
while maintaining |U − E | � U, E . This indicates that the
behavior of the experimental system would deviate from that
obtained using model Hamiltonian (spin or dipole models)
at sufficiently long timescales; in particular, the scar-induced
oscillations are expected to decay over such timescales.
However, it was noted in Ref. [9] that these oscillations
persist beyond the thermalization time of the experimental
system making it possible to distinguish between persistent
oscillations and ETH predicted thermalization.

In conclusion, we studied the driven titled Bose-Hubbard
model with aperiodic drive. We showed that the presence
of randomness or quasiperiodicity in the drive protocol may
restore coherence in such a driven system. We provided an
analytic explanation of our results, pointed out the role of
quantum scars behind such coherent behavior, and discussed
the possibility of its experimental signature in a driven ultra-
cold Rydberg chain or a tilted optical lattice of 1D ultracold
bosons.
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APPENDIX: OSCILLATIONS OF SPIN
CORRELATION FUNCTIONS

In the Appendix, we present a closer look at the oscillations
of the spin correlation functions O22 for cases where the
corresponding plots in the main text, presented over a large
number of drive cycles n, do not provide the details of such
oscillations.

To this end, we first show the plot of O22 for the random
drive protocol with dT/T = 0.5 and ωD/(w/

√
2) = 2π/T =

7.75 as shown in Fig. 12(a). The plot shows clear oscil-
latory behavior; the plot of its Fourier transform O22(ω),
which depicts a clear peak at ω0/(w/

√
2) � 1.2, is shown

in Fig. 12(b). We note that this frequency is controlled by
energy spacing of scar states in Floquet spectrum of H av

F [12]
and is clearly different from either of the drive frequencies
ω±

D = 2π/(T ± dT ).
Finally, we show similar oscillations for other figures in

the main text in Fig. 13 for both random and TMS protocols.
These correspond to Figs. 3(b), 3(d), 7(e), and 7(f) of the main
text as mentioned in the caption of Fig. 13. In all cases, for
both random and TMS protocols, we find clear signature of
oscillations analogous to Fig. 12.
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