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We use low-depth quantum circuits, a specific type of tensor networks, to classify two-dimensional symmetry-
protected topological many-body localized phases. For (anti)unitary onsite symmetries we show that the
(generalized) third cohomology class of the symmetry group is a topological invariant; however, our approach
leaves room for the existence of additional topological indices. We argue that our classification applies to
quasiperiodic systems in two dimensions and systems with true random disorder within times which scale
superexponentially with the inverse interaction strength. Our technique might be adapted to supply arguments
suggesting the same classification for two-dimensional symmetry-protected topological ground states with a
rigorous proof.
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I. INTRODUCTION

Many-body localization (MBL) [1–5] occurs in isolated
strongly disordered systems and is characterized by a lack
of thermalization. This phenomenon was first conjectured by
Anderson in 1958 as an interacting analog of Anderson local-
ization [6]. Theoretical support was lacking until less than 15
years ago, when perturbation theory analyses [7,8], various
numerical studies [9–12], and a rigorous proof [13] put the
phenomenon in one-dimensional lattice systems on a rigorous
footing. In recent years, MBL was also observed in experi-
ments of one-dimensional ultracold atomic gases [14,15] and
chains of trapped ions [16], superconducting qubits [17], and
NV centers [18]. Approaches to realizing MBL in solid-state
systems are currently being pursued [19,20].

In higher dimensions, truly randomly disordered systems
have been suggested to thermalize for arbitrarily large disor-
der via an avalanche effect due to rare regions [21], though
assumptions underlying this argument have been contested
[22]. Furthermore, the avalanche effect is expected to take
place on very long timescales [23], at least in the limit of small
interaction strengths [24]. This would reconcile the avalanche
scenario with very recent ultracold gas experiments, where
two-dimensional MBL is observed [25,26]. The notion of
MBL-like behavior on experimental timescales has since been
supported by theoretical studies [27–34], with recent progress
in tensor network methods [35–37] raising hopes for further
insights in the near future. Quasiperiodic potentials in two
dimensions lack rare regions and might thus give rise to a
stable MBL phase [38].

MBL systems are potentially technologically relevant
for the storage and manipulation of quantum information
[39–42]: In one dimension, MBL systems with onsite sym-
metries are able to topologically protect qubits from decoher-
ence caused by local noise at finite energy density [43,44].

Two-dimensional MBL-like systems may display a similar
robustness and furthermore be used to manipulate the stored
quantum information [45].

One-dimensional MBL systems with an (anti)unitary on-
site symmetry can be classified into different symmetry-
protected topological (SPT) MBL phases [46,47]. The dif-
ferent topological classes can be labeled by the elements of
the (generalized) second cohomology group of the symmetry
group. Note that the symmetry group must be Abelian to be
compatible with a stable MBL phase [48]. In two dimensions,
the expectation is thus that SPT MBL phases are classified by
the elements of the third cohomology group, similarly to SPT
ground states in two dimensions [49].

In this work, we use quantum circuits to carry out such
a classification in two dimensions. Quantum circuits are a
specific type of tensor networks [50–53] and approximate
the unitary diagonalizing the MBL Hamiltonian efficiently
in one dimension, as indicated by numerical evidence and
analytical considerations [54,55]. Specifically, the error of
the approximation decreases like an inverse polynomial of
the computational time (and number of parameters of the
approximation). The underlying reason is that all eigenstates
of MBL systems fulfill the area law of entanglement [56]
and can thus be efficiently approximated by tensor network
states (TNS) [54,55,57–60]. Under the above assumption on
the error bound, it is possible to show rigorously that SPT
MBL phases are robust to arbitrary symmetry-preserving
perturbations and that topologically distinct phases cannot be
connected without delocalizing the system [46,47]. Further-
more, it follows that all eigenstates of SPT MBL systems have
the same topological label as defined for ground states. Here,
we use two-dimensional quantum circuits with four layers
of unitaries to describe two-dimensional strongly disordered
systems. If there is true MBL in two dimensions, our results
will apply for all observation times. If instead the avalanche
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scenario is correct, as we argue below, our classification ap-
plies for observation times which are superexponential in the
interaction strength for true random disorder. For quasiperi-
odic disorder, our classification is likely to hold for arbitrarily
long observation times in either case.

Concretely, we show that two-dimensional MBL phases
invariant under a symmetry can be labeled by the elements of
the third cohomology group of the symmetry group. However,
we cannot rule out the existence of additional topological
indices with our approach. Furthermore, we show that the
topological labels we find are robust to symmetry-preserving
perturbations and cannot be connected without destroying
MBL-like behavior. Again, it follows that all eigenstates must
have the same topological label. We anticipate that our two-
dimensional quantum circuit approach might be adapted to
carry out a rigorous classification of two-dimensional SPT
ground states, which is currently an outstanding problem [61].
Note that our classification does not apply to topologically
ordered MBL systems [45], as their Hamiltonians cannot be
diagonalized by short-depth quantum circuits [62].

This paper is structured as follows: In Sec. II we give
a more formal introduction to the theoretical description of
MBL systems in one and two dimensions, their SPT phases,
and tensor networks. Section III contains a nontechnical sum-
mary of our results with the technical part provided in Secs.
IV (unitary onsite symmetries) and V (antiunitary onsite sym-
metries). Section VI discusses the robustness of the obtained
topological phases to symmetry-preserving perturbations and
demonstrates that the only way of connecting topologically
distinct MBL phases is by either breaking the symmetry or
making the perturbation strong enough to destroy MBL-like
behavior. In Sec. VII, we summarize our results and present
directions for future work. In the Appendix, we provide
technical details on the interpretation of the elements of the
second and third cohomology groups in terms of projective
and gerbal representations, respectively.

II. SYMMETRY-PROTECTED TOPOLOGICAL
MANY-BODY LOCALIZED PHASES AND

TENSOR NETWORKS

Here, we briefly review the central ideas about many-body
localization and symmetry-protected topological phases and
introduce tensor network language. Readers already familiar
with these topics may easily skip this section. For a similar but
slightly more complete review of SPT and MBL, see Sec. II
of Ref. [47].

A. Many-body localization in one dimension

Here, we briefly review MBL in one dimension before
commenting on the two-dimensional case. The canonical
model of strongly disordered Hamiltonians that exhibits MBL
in one dimension is the random field Heisenberg model [9,11],

H = J
N−1∑
i=1

Si · Si+1 +
N∑

i=1

hiS
z
i , (1)

where J > 0, and hi is sampled from a uniform distribution
[−W,W ]. Equation (1) displays a transition from the ergodic
phase to the MBL phase as a function of the disorder strength

controlled by W . Numerical studies indicate a phase transition
at around Wc ≈ 3.5J [11,63].

Below but close to the phase transition (1) exhibits a mobil-
ity edge [63]: Eigenstates in an energy window in the middle
of the spectrum are volume law entangled, while eigenstates
outside of this window are area law entangled. For SPT phases
we are interested in the fully many-body localized (FMBL)
phase [W � 3.5J for (1)], where all eigenstates are area law
entangled. The FMBL phase is described by a complete set of
local integrals of motion (LIOMs) [64,65] τ z

i . This remains
true after adding small but nonzero arbitrary local pertur-
bations, even in the thermodynamic limit. Any resonances
of distant spins with similar energies are captured by those
LIOMs (which would in that case be particularly wide). We do
not consider the case of resonances spreading across the whole
system in the thermodynamic limit. In that case, there are
volume law entangled eigenstates, which would correspond to
a disorder strength below the phase transition point as defined
above (where a mobility edge is present and the LIOM picture
does not apply). Here we refer to the actual MBL-to-thermal
phase transition point in the thermodynamic limit, which
might be significantly higher than the value quoted above
due to finite-size effects [66,67]. (However, the effect of rare
regions on the transition point in the thermodynamic limit
has also been questioned in one dimension [68]. Moreover,
MBL systems coupled to thermal baths have been argued to
delocalize only if the latter take a finite fraction of the overall
system size [69].)

LIOMs are local operators which commute with the Hamil-
tonian and with each other, and therefore form an emergent
notion of integrability,[

H, τ z
i

] = [
τ z

i , τ
z
j

] = 0 (2)

for all i, j = 1, 2, . . . , N . Hence, all eigenstates |ψl1l2...lN 〉 of
the Hamiltonian can be uniquely labeled by the expectation
values (say li = ±1, also known as l-bits) of the correspond-
ing τ z

i operators. (Here we consider the case of spin- 1
2 Hamil-

tonians, though the notion of LIOMs can be straightforwardly
generalized to higher spin systems.) According to Eq. (2),
the LIOMs and the Hamiltonian can all be simultaneously
diagonalized by a unitary U , that is,

H = UEU †, (3)

τ z
i = Uσ z

i U †. (4)

Any Hamiltonian could be used to construct a commuting
set of integrals of motion this way. The special feature of
FMBL systems is that the unitary U can be chosen such
that the τ z

i are local, i.e., they have exponentially decaying
support from site i. The corresponding decay length is known
as the localization length ξi. The corresponding unitary U has
been argued to be efficiently approximable by a short-depth
quantum circuit with long gates [46,55]. The exact distribution
of localization lengths ξi for a given system size N depends on
the disorder realization. The probability of finding localization
length within a range [ξ, ξ + �ξ ] decays sharply with ξ [70].
For a system to be considered as FMBL, we have to assume
that the probability that the largest localization length ξmax is
of order O(N ) goes to zero in the limit N → ∞ (otherwise,
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the system would be delocalized). Hence, we assume ξmax �
cNμ for a given disorder realization and model Hamiltonian
[such as Eq. (1)] with constants c > 0 and μ ∈ [0, 1).

B. Many-body localization in higher dimensions

It is believed that in higher dimensions for true random
disorder, regions with anomalously small disorder will eventu-
ally thermalize the entire system [21,24], although this picture
has to be taken with care [22]. Regions with anomalously
small disorder contain small thermal inclusions, i.e., local
expectation values of all eigenstates look thermal in those
regions. This phenomenon also arises in one dimension, and,
in the above framework, implies a set of particularly wide
LIOMs (with large localization lengths ξi). While in one di-
mension such a set of wide LIOMs can be stable, it is believed
that in higher dimensions sufficiently large thermal regions
cannot remain isolated, as they would gradually thermalize
surrounding spins and thus grow via an avalanche effect until
the whole system becomes thermal [71]. For concreteness,
let us consider a d-dimensional cubic lattice with Nd spins
described by the general Hamiltonian of Ref. [24]:

H =
∑

i

hiOi + J
∑
i, j

φi jPi j . (5)

hi are random fields chosen from a uniform distribution cen-
tered around zero. φi j are taken from the same distribution
but have to be multiplied by a prefactor which decays at
least exponentially as a function of the distance between sites
i and j. Oi and Pi j are single-site and two-site operators,
respectively. Those acting on the same site do not commute
with each other. J � 0 acts as a tuning parameter inducing
delocalization if it becomes sufficiently large. The probability
of having a thermal inclusion of sufficient size to initiate an
avalanche has been estimated as [24]

p(N, J ) ∼ Nd exp[log3(J )], (6)

where J < 1. For a finite system, there is thus a crossover
at Jc given by p(N, J ) ∼ 1, i.e., log(Jc) ∼ −(d log N )1/3. In
the infinite system size limit, we would thus have Jc = 0.
However, the avalanche effect is very slow, and it takes
time t � exp[−R log(J )] (with J < 1) for an initial thermal
inclusion to expand to size R from a comparatively small size.
Hence, according to Eq. (6), the probability that a typical spin
will have been absorbed by such an avalanche after time t is
(setting N ∼ R)

p(t, J ) ∼ [− log(t )/ log(J )]d exp[log3(J )] (7)

for t > 1/J . p(t, J ) ∼ 1 gives the timescale for thermalization
as

t ∼ exp

[
− log(J ) exp

(
− 1

d
log3(J )

)]

= (1/J )(1/J )log2 (1/J )/d
, (8)

which grows rapidly as J → 0. Note that J has to be suffi-
ciently small to prevent delocalization via resonances. The
avalanche effect is thus likely too slow to be seen experi-
mentally, and the MBL-to-thermal transition observed in two-
dimensional systems with true random disorder [25,26] might

be due to similar effects as in one dimension. In the following,
we refer to Hamiltonians in higher dimensions as FMBL if
their only mechanism of thermalization is the above avalanche
effect, and if this remains true after arbitrary infinitesimal
perturbations. Note that quasiperiodic systems likely do not
display the avalanche effect due to the lack of rare regions.
Systems with strong quasiperiodic disorder might thus never
thermalize (and we also denote them as FMBL).

C. Symmetry-protected topological phases

Quantum phases typically have to do with the ground
states of gapped systems. A topological phase consists of the
set of gapped local Hamiltonians that can be continuously
deformed into each other without closing the energy gap or,
equivalently, whose ground states can be evolved into each
other with short-ranged quantum circuits with depth constant
in the system size. A symmetry-protected topological phase
is defined in the same way with the added constraint that
all Hamiltonians along the connecting path must be invariant
under the symmetry.

For MBL systems, we are interested in all eigenstates
rather than only ground states, since the properties of the
eigenstates constrain the dynamics of the system. We say that
two FMBL Hamiltonians H0 and H1 are in the same MBL
SPT phase if there exists a path H (λ) such that H0 = H (0)
and H1 = H (1) and for all λ ∈ [0, 1], H (λ) preserves the
symmetry and is FMBL [47].

Examples of models displaying SPT MBL can be found
in Refs. [43,72–74]. In the case of onsite symmetries, it
was originally conjectured that the ground-state SPT phases
of d-dimensional spin systems are labeled by the (d + 1)th
cohomology group of the symmetry group [49]; however,
it has been found that for d � 3 this classification has to
be extended [75,76]. These classifications have also been
proposed for the MBL case [41]. In d = 1 it was shown that
the SPT phases are indeed labeled by the elements of the
second cohomology group in the ground-state [77,78] and
MBL [47] cases. In this paper, we demonstrate that two-
dimensional MBL phases with a symmetry can be classified
by the elements of the third cohomology group. However,
we do not show that MBL Hamiltonians corresponding to the
same third cohomology class can be continuously connected
without destroying FMBL, i.e., our classification might be
incomplete.

D. Tensor networks

Tensor networks and the associated diagrammatic formu-
lation are powerful tools for both analytical [77,78] and
numerical [79,80] studies of quantum many-body physics. A
tensor is an n-dimensional array of (complex) numbers, and
is diagrammatically represented by a geometric shape with
indices represented by outgoing legs. For example,

. (9)
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A contraction between different indices of (a single or multi-
ple) tensor(s) is represented by connecting two corresponding
legs, e.g.,

. (10)

Tensors can be blocked or grouped together to form a single
tensor. The legs of a given tensor can be combined or split
through reshaping. These operations are illustrated as follows:

.

(11)
The tensor product of two tensors is represented by placing
two tensors together, e.g.,

. (12)

The trace operation is a contraction of two legs of the same
tensor, e.g.,

. (13)

A commonly cited problem in quantum many-body
physics is the exponential increase of the dimension of the
Hilbert space with the system size. However, many physically
interesting states, such as the ground states of gapped systems,
have area-law entanglement and lie in a small region of the
Hilbert space, which only scales polynomially with the system
size, and hence are expressible in terms of tensor networks.

A classic example is the matrix product state (MPS) in one
dimension. The state of an N-site spin chain,

|ψ〉 =
∑
i1...iN

ψi1...iN |i1i2i3 . . . iN 〉 , (14)

can be written in the form of an MPS,

|ψ〉 =
∑
i1...iN

Tr
(
A(1)

i1
A(2)

i2
A(3)

i3
. . . A(N )

iN

)|i1i2i3 . . . iN 〉 (15)

if we decompose ψi1...iN as

. (16)

Such a decomposition can always be found using, say, a singu-
lar value decomposition (SVD). This procedure is not always
useful since the maximum dimension of the legs of A(n), or
the “bond dimension,” can be exponentially large. However,

for area-law entangled states, there exist accurate MPS rep-
resentations with small bond dimensions. Furthermore, in a
few cases such as the Affleck-Kennedy-Lieb-Tasaki (AKLT)
model [81], exact MPS representations can be found with
fixed bond dimensions. Another example of tensor network
states is projected entangled pair states (PEPS). PEPS are
d-dimensional versions of MPS, with each site represented
by a tensor with one “physical” leg and 2d bond legs on a
square lattice. In this paper we will work mostly with unitary
quantum circuits (or simply “quantum circuits”), which is a
sequence of unitary quantum gates and can be diagrammati-
cally represented in the tensor network notation.

III. NONTECHNICAL SUMMARY OF RESULTS

A. Underlying assumptions

Here, we give an overview of the main ideas and results.
We consider a strongly disordered FMBL Hamiltonian H
defined on an N × N square lattice with periodic boundary
conditions. Furthermore, we assume that the system is in-
variant under an onsite symmetry vg with Abelian symmetry
group G � g, that is

H = v⊗N2

g H (v†
g)⊗N2

. (17)

vg forms a representation of the group, i.e., vgvh = vgh. For
our derivation, we assume that the symmetry group G is
Abelian. However, non-Abelian symmetry groups have been
argued to be inconsistent with FMBL even in one dimension
[48]: the system either spontaneously breaks the symmetry
(possibly still keeping an Abelian subsymmetry) or is delo-
calized. Abelian symmetries do not protect degeneracies. We
can thus assume that all exact degeneracies have been lifted
by a small perturbation. In that case, it can be shown (see
Sec. IV A) that the unitary U diagonalizing the Hamiltonian
(H = UEU †), fulfills

v⊗N2

g U = U	g, (18)

where 	g is a diagonal matrix where each diagonal element is
a complex number of magnitude 1.

We now consider local unitaries Ũ of the type described in
Sec. II A, i.e., the quantities τ̃ z

i := Ũσ z
i Ũ † have exponentially

decaying nontrivial matrix elements, where the corresponding
decay lengths ξi satisfy the bound ξi � cNμ for some c >

0, 0 � μ < 1. Let us focus on the unitary Ũ which minimizes
the quantity

∑
i ‖[H, τ̃ z

i ]‖op. (The τ̃ z
i commute with each other

by construction.) For truly randomly disordered systems if the
avalanche scenario is wrong, and most likely for systems with
strong quasiperiodic disorder in general, the minimum of this
figure of merit will be zero, i.e., Ũ exactly diagonalizes the
Hamiltonian. For true random disorder and if the avalanche
scenario is correct, Ũ encodes approximate eigenstates which
delocalize under time evolution with H on the timescale given
by Eq. (8). In the following, we will analyze the topological
properties of these approximate eigenstates. Their topological
features will be stable to small (symmetry-preserving) per-
turbations, but as those are only approximate eigenstates, we
have to keep in mind that they would lose their topological
properties after times of order Eq. (8) due to delocalization.
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FIG. 1. An illustration of the four-layer quantum circuit approx-
imating the unitary Ũ . The xy plane is parallel to the plane where
the sites of the system are located. The unitaries are stacked from
bottom to top in the order (a), (b), (c), (d) (parallel to the z axis).
(a) Represents the top view of the first layer, (b) of the second
layer, and so on. A dot represents a group of 


2 × 


2 sites. A red
box represents a unitary. The quantum circuit periodically extends
beyond the region defined by the dashed lines.

Furthermore, we assume that Ũ can be efficiently ap-
proximated by a four-layer quantum circuit U ′ of the form
of Fig. 1, where each unitary acts on plaquettes of 
 × 


sites. For that, we have to require that 
 = c′Nν with c′ > 0
and μ < ν < 1 such that the range of all unitaries is much
larger than the longest localization length ξmax in the limit
of large N [55]. With increasing N , the quantum circuit U ′
thus approximates Ũ with arbitrary accuracy [47]. In order
to describe the topological properties of MBL systems within
timescales of order Eq. (8), it thus suffices to characterize
quantum circuits of the type U ′.

Our approach toward the classification of SPT phases
differs from the one more commonly found in the literature,
where quantum circuits are assumed to have fixed gate length
and whose depth is variable, albeit independent of the system
size. In contrast, we (i) keep the number of layers constant
at four and have a flexible gate length, which (ii) is allowed
to grow sublinearly with the system size. The reasons for
this modified approach are as follows: (i) MBL systems with
true random disorder contain regions of anomalously small
disorder. The localization length ξi of a LIOM located in the
center of such an anomalous region has to be of the order
of its size. Since such a “thermal puddle” is featureless, the
quantum circuit should have of the order of 2ξ 2

i parameters
in that region to be able to diagonalize the Hamiltonian with
any reasonable accuracy [55]. To that end, one could increase
the depth of the quantum circuit exponentially with ξ 2

i , or the
length 
 of its gates linearly with ξi. Hence, a quantum circuit
with long gates is the more natural choice for MBL systems.
There is no need to increase the depth of the quantum circuit
as well (cf. Ref. [55]). (ii) The gate length has to increase with

the system size since the maximum ξi does: in the thermo-
dynamic limit, there will be anomalous regions of arbitrarily
large size since there is a finite probability for them to occur.
Thus, ξmax = maxi(ξi) diverges in the thermodynamic limit.
Therefore, 
 also has to grow with the system size in order
to allow for a correct global description of any reasonable
accuracy.

The classification we derive below is based on the question
whether such quantum circuits with a diverging gate length
can be continuously connected. Consequently, our results also
apply to all more restrictive sets of quantum circuits: The
central result of our work is that for given gate length 
 the
whole set S of four-layer quantum circuits with a symmetry
decomposes into disconnected sets Sa given by the third coho-
mology class a of the symmetry group S = ∪aSa. A quantum
circuit contained in Sa cannot be continuously connected with
a quantum circuit contained in Sb for a 
= b. Now consider a
more restrictive notion of quantum circuits R contained in S ,
R ⊂ S . As long as this more restrictive set contains a repre-
sentative of each cohomology class a, the same decomposition
has to apply, i.e., R = ∪aRa, Ra 
= {. . .}, and Ra ⊆ Sa. The
last relation implies likewise that quantum circuits contained
in Ra and Rb cannot be continuously connected for a 
= b. An
example of such a more restrictive set R is the commonly used
quantum circuits with a large but fixed number of layers and
(small) fixed gate length [39]: Those quantum circuits have
strict short-range correlations and can thus be approximated
with arbitrarily small error by our ansatz if 
 is sufficiently
large. (In one dimension, multilayer quantum circuits can even
be written exactly as two-layer long-gate ones.) Furthermore,
those more restrictive quantum circuits have a representa-
tive in each cohomology class: Such a representative is the
finite-depth, finite-gate-length quantum circuit which maps
a product state to a ground state in the corresponding SPT
phase.

The quantum circuit U ′ is the natural generalization of
the two-layer quantum circuit with long gates used in one
dimension to represent MBL systems [46,47,55]: It consists
of parallel one-dimensional two-layer quantum circuits, which
are themselves coupled with each other in a two-layer quan-
tum circuit structure,

′

. (19)

Here, we blocked together sites as in Fig. 1, i.e., each tensor
leg corresponds to 


2 × 

2 sites. The unitaries of Uk are located

in the first two layers of Fig. 1 [i.e., Figs. 1(a) and 1(b)], the
unitaries of Vk in the second two layers [Figs. 1(c) and 1(d)].
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For the derivation below we assume that one-dimensional
unitaries which encode states with strict short-range entan-
glement can be efficiently approximated by one-dimensional
two-layer quantum circuits with long gates, which corre-
sponds to the assumption that one-dimensional MBL systems
can be efficiently approximated by such unitaries [46,47,55].

B. Main results

U ′ (we will drop the prime symbol from now on) approx-
imately fulfills Eq. (18), as it approximately diagonalizes the
Hamiltonian H . It follows from Eqs. (18) and (19) that 	g

can likewise be written as a four-layer quantum circuit (see
Sec. IV A for details), thus making Eq. (18) an equality of two
short-depth quantum circuits.

Next, we perform manipulations with the quantum circuits.
We collapse the quantum circuits of Eq. (18) along the y
direction, so that (18) becomes an equality of two one-
dimensional quantum circuits, which are stretched out along
the x direction. One obtains

, (20)

where g represents v⊗N
/2
g , and the 	

g
j are (diagonal) unitaries

extended along the y direction. They constitute the quantum
circuit representation of 	g. This equation is of the general
form (see red dashed lines)

U ′′
1 U ′′

2
. . . U ′′

n

V ′′
1 V ′′

2
. . . V ′′

nV ′′
n

=

U ′
1 U ′

2
. . . U ′

n

V ′
1 V ′

2
. . . V ′

nV ′
n

. (21)

As shown in Ref. [47], this equation implies that there have to
exist unitaries W1,W2, . . . ,W2n such that

U ′′
k

U ′
k
†

= W2k−1 W2k , (22)

V ′′
k

†

V ′
k

= W2k W2k+1 . (23)

Combining the above two equations, we can derive the
following useful relation:

U ′
k

V ′
k

=

U ′′
k

V ′′
kW †

2k−1

W2k+1

. (24)

As the quantum circuits in Eq. (21) depend on the group
elements g, so do the unitaries Wj . Sequential application of
the symmetry operation v⊗N2

g and v⊗N2

h and comparison to

v⊗N2

gh in Eq. (18) then yields the relation [47]

U ′
k

V ′
k

=

U ′′
k

V ′′
kW †

2k−1

W2k+1

. (25)

with |β(g, h)| = 1. That is, W g
j is a projective representation of

the symmetry group G. In our two-dimensional case, each W g
j

is a tensor that extends along the y direction. Equations (22)
and (23) imply that it has strict short-range correlations along
the y direction. Hence, it can be efficiently approximated by a
quantum circuit,

= , (26)

where the j subscript and indices corresponding to the po-
sition along the y direction have been suppressed on the
right-hand side. In the technical derivation, we will suppress
the indices of constituting unitaries (e.g., of Uk and Vk) when
there are no ambiguities, but we emphasize that the quantum
circuits are typically not translationally invariant. As an exam-
ple, the left-hand side of Eq. (21) would be written with all the
upper layer tensors labeled V and all the lower layer tensors
labeled U .
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In Sec. IV C we prove the following lemma [for quantum
circuits of the type Eq. (26)]: Two-layer quantum circuit
projective representations of a group G have a topological
index given by an element of the third cohomology group
H3(G,U (1)) of G. Together with the existence of the W g

j act-
ing on the boundary, the lemma implies that two-dimensional
SPT MBL phases are labeled by the elements of the third co-
homology group H3(G,U (1)). Since the cohomology group
is discrete, different cohomology classes, and therefore differ-
ent SPT MBL phases, cannot be continuously connected.

To complete the argument, one has to show that the
cohomology class (i.e., the topological index) is the same
independently of the x coordinate (k) of W g

2k−1; we do this in
Sec. IV D by proving that W g

j ⊗ W g
j+1 is topologically trivial,

i.e., that it is a quantum circuit representation that corresponds
to the identity element of H3(G,U (1)).

C. Intuitive overview of the proof of the lemma

Here we give an intuitive overview of the ideas behind the
proof of the above lemma. Following Refs. [82,83], we review
the “pentagon equation,” which applies to the tensor network
symmetry operator that acts on an edge of a two-dimensional
symmetric tensor network state, such as matrix product op-
erators (MPOs) acting on a PEPS. The pentagon equation
shows that those symmetry operators can be classified by the
elements of the third cohomology group, implying that the
overall symmetric states have those elements as topological
indices. In the technical part, we demonstrate that Wj (g) satis-
fies the pentagon equation and consequently two-dimensional
MBL SPT phases can be labeled by the elements of the third
cohomology group.

Specifically, these operators appear in translationally in-
variant PEPS invariant under the symmetry if only a patch
of PEPS tensors is contracted (rather than the full PEPS). In
Fig. 2 we show a PEPS which has been fully contracted along
one direction, but only partially along the orthogonal direc-
tion, i.e., there are dangling bonds of the PEPS (see Fig. 2). If
the symmetry operation v⊗(NN⊥ )

g is applied on that patch (N⊥
corresponds to the incomplete orthogonal contraction), this is
equivalent to applying certain MPOs V (g) and V ′(g) along the
open boundaries of the PEPS. V (g) and V ′(g) correspond to
W g

j
† and W g

j′ in the MBL case, respectively.
The V (g) operator is in general not a group representation

in the usual sense since given two symmetry operations V (g)
and V (h), their composition would correspond to an MPO
with a larger bond dimension, whose tensors thus are different
from those of V (gh). Rather, we need a “combining” operator
[82] XL,R(g, h) satisfying

, (27)

where v(g) are the constituting tensors of the MPO V (g) (see
Fig. 2).

This equation is invariant under the transforma-
tion XL(g, h) → XL(g, h)/χ (g, h) and XR(g, h) →
XR(g, h)χ (g, h). A priori χ (g, h) could be any complex

FIG. 2. Top equation: onsite symmetry operators vg (red balls
on the left-hand side of the equation) can be “pushed through” to
become V (g) and V †(g) [MPOs indicated as rows of blocks on the
right-hand side; note that v(g) and v′(g) refer to individual MPO
tensors] acting on the open legs along the edge of the partially
contracted PEPS whose tensors are indicated by blue boxes. The
bent lines indicate periodic boundary conditions along one direction.
Bottom equation: a schematic side view of the top equation, where
and V (g) and V †(g) are MPOs. Note that if this is interpreted as a
one-dimensional equation, with the blue square being an MPS tensor,
this is simply the one-dimensional result that symmetries can be
”pushed through” to the virtual indices [84].

number. However, we have to exclude χ (g, h) = 0 [and
χ (g, h) = ∞] such that XL(g, h) and XR(g, h) remain well
defined. This is topologically equivalent to constraining to
|χ (g, h)| = 1, i.e., no rescaling of XL(g, h) and XR(g, h) is
allowed. For the quantum circuit case we focus on in this
paper, χ (g, h) will appear as a result of a gauge degree of
freedom in the quantum circuit unitaries.

For three group elements we then have

.

(28)

If one considers operating on the left edge and right edge
separately, one may deduce [82] [if V (g) is injective [50]]
that

, (29)
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as well as a similar equation for the XL(g, h) with a factor
1/α(g, h, k). Since no rescaling of XL(g, h) and XR(g, h) is
allowed, |α(g, h, k)| = 1.

In the quantum circuit case, a similar equation as Eq. (29)
holds because the quantum circuits are only short-range cor-
related and hence the left and right boundary operators can be
separated.

We note that the XR(g, h) [or equivalently the XL(g, h)] in
Eq. (29) in some sense form a “representation” of the group
G � g, h, but with not one but two group elements associated
to each operator. This kind of representation is sometimes
called a gerbal representation and has been studied in the
mathematics literature [85].

We can use the gauge degree of freedom of XR(g, h) to
show that α(g, h, k) is only defined up to a 3-coboundary

α(g, h, k) → α′(g, h, k) = α(g, h, k)
χ (g, hk)χ (h, k)

χ (g, h)χ (gh, k)
.

(30)

Using Eq. (29), we can perform the following sequence
of manipulations on the combination of V (g), V (h), V (k),
and V (l ) leading to the same result in two different ways
(cf. pentagon equation in topological quantum> field theories
[86])

. (31)

This implies that the incurred phases α(g, h, k) must fulfill the
following consistency relation:

α(g, h, k)α(g, hk, l )α(h, k, l )

α(gh, k, l )α(g, h, kl )
= 1, (32)

which is known as a 3-cocycle. Recall that the cohomology
group Hn(G,U (1)) consists of the equivalence classes of
n-cocycles that differ by only an n-coboundary [Eq. (30) in
our case]. So, we have essentially shown that a projective
representation in the form of an MPO acting on the edge of
a two-dimensional tensor network corresponds to an element
of the third cohomology group of the symmetry group.

For the case where V (g) is an injective [50] MPO, the
above calculation is the complete argument [82,83]. In the
context of two-dimensional SPT MBL, V (g) has to be re-
placed by the quantum circuit W g

j , and it is not obvious
how to define a combining operation in terms of XL,R(g, h)
tensors such as those in Eq. (27). In Sec. IV C, we construct
a suitable combining operation and show that it satisfies the
corresponding pentagon equation and hence the 3-cocycle
condition. Thus, SPT MBL phases in two dimensions are
also labeled by an element of the third cohomology group.
Moreover, we explicitly demonstrate below that all eigenstates
of the MBL system must correspond to the same element of
the third cohomology group, just as in one dimension [47].
Finally, we show that the obtained topological labels are stable
to small perturbations and can only change if perturbations
are made strong enough that the system becomes delocalized
along the way.

IV. CLASSIFICATION OF TWO-DIMENSIONAL SPT MBL
PHASES WITH QUANTUM CIRCUITS

We will show that two-dimensional MBL SPT phases are
labeled by the elements of the third cohomology group of the
symmetry group G. Due to a mathematical result (proven in
Sec. IV C), this reduces to the problem of finding a projective
representation of G in terms of quantum circuits. This fol-
lows from projecting the two-dimensional problem into one
dimension and then applying the results of the calculations
for the classification of SPT phases in one-dimensional MBL
systems, as done in Ref. [47]. Note that we do not show that
MBL Hamiltonians corresponding to the same third cohomol-
ogy class can be continuously connected (without violating
FMBL), i.e., we do not demonstrate completeness of our
classification.

Consider a two-dimensional spin system on an N × N
lattice. We shall work with an FMBL Hamiltonian invariant
under an onsite Abelian symmetry. As elaborated on above,
we represent the unitary which diagonalizes the Hamiltonian
by a four-layer quantum circuit with gates acting on plaquettes
of 
 × 
 sites (cf. Fig. 1), and we choose 
 ∝ Nν with ν < 1
to carry out our classification.

A. 2D MBL systems with an onsite symmetry

We assume the strongly disordered FMBL Hamiltonian H
to be invariant under a local unitary symmetry operator vg, for
g ∈ G. That is, H commutes with the symmetry operator

H = v⊗N2

g H (v†
g)⊗N2

. (33)

Let U be the unitary matrix that diagonalizes the Hamiltonian,
and E the diagonal matrix of energies, i.e., H = UEU †. By
the same line of reasoning as in Ref. [46], one can derive the
action of the symmetry on U . Equation (33) implies that

E = U †v⊗N2

g UEU †(v†
g)⊗N2

U . (34)

As the symmetry group is Abelian, E cannot have
any symmetry-enforced degeneracies. Assuming E to be
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nondegenerate, Eq. (34) implies

	g = U †v⊗N2

g U, (35)

with 	g being a diagonal matrix whose diagonal elements
have magnitude 1. Accidental degeneracies can be removed
and are treated explicitly in Sec. VI.

Note that the eigenstates |ψl1...lN2 〉 can be obtained by fixing
the lower indices of the unitary U to the corresponding l-bit
labels l1, l2, . . . , lN2 = ±1,

. (36)

Quantum circuit representation of the �g matrix

Next, we will show that the tensor 	g can be written as
a four-layer quantum circuit as in Fig. 1 (recall that a priori
only U is assumed to have that property). The derivation is
the two-dimensional version of the one-dimensional case in
Ref. [46].

Let us set up a coordinate system where k ∈ Z2 labels a
block of 
 × 
 sites or, equivalently, a u tensor in the lowest
layer of U [red squares in Fig. 1(a)]. Let lk denote the l-bit
indices associated with the legs at k. Making the definition
Zg,k = V †

k (v⊗
2

g )Vk , we write the diagonal elements of 	g as
(note that we use the convention that multiplication order left
to right in algebraic notation corresponds to top to bottom in
diagrammatic notation)

.

(37)

Note that (37) is the projected view onto the xz plane of a two-
dimensional seven-layer quantum circuit where the locations
of the unitaries in the individual layers are as illustrated in
Figs. 1(a), 1(b), 1(c), 1(d), 1(c), 1(b), 1(a), respectively. [The
uppermost layer Fig. 1(d) can be combined with v⊗N2

g and its
adjoint.]

Consider, for some k, the product of numbers
θ∗

g (lk, {lr| ∀ r 
= k})θg(l′k, {lr| ∀ r 
= k}), which can be written
diagrammatically [with the same convention as in Eq. (37)

and with implicit subscripts] as

θ∗
g (lk, {lr| ∀ r 
= k})θg(l′k, {lr| ∀ r 
= k}) =

, (38)

where we have used the fact that Eq. (37) is diagonal, and
where the operator |lk〉〈l′k| acts nontrivially only on the block
of sites labeled by k. All the unitaries outside the causal cone
(blue dashed line) cancel. The causal cone also has a finite
extension along the y direction and its lower half is shown in
detail in Fig. 3. Consequently, the product becomes a phase
that depends only on the degrees of freedom that lie within
the causal cone in Eq. (38),

θ∗
g

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
lk−x̂+2ŷ lk+2ŷ lk+x̂+2ŷ
lk−x̂+ŷ lk+ŷ lk+x̂+ŷ

· · · lk−x̂ lk lk+x̂ · · ·
lk−x̂−ŷ lk−ŷ lk+x̂−ŷ
lk−x̂−2ŷ lk−2ŷ lk+x̂−2ŷ

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× θg

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
lk−x̂+2ŷ lk+2ŷ lk+x̂+2ŷ
lk−x̂+ŷ lk+ŷ lk+x̂+ŷ

· · · lk−x̂ l′k lk+x̂ · · ·
lk−x̂−ŷ lk−ŷ lk+x̂−ŷ
lk−x̂−2ŷ lk−2ŷ lk+x̂−2ŷ

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= exp

⎡
⎢⎢⎢⎣−ipg

k

⎛
⎜⎜⎜⎝

lk−x̂+2ŷ lk+2ŷ lk+x̂+2ŷ
lk−x̂+ŷ lk+ŷ lk+x̂+ŷ
lk−x̂ lk lk+x̂ , l′k

lk−x̂−ŷ lk−ŷ lk+x̂−ŷ
lk−x̂−2ŷ lk−2ŷ lk+x̂−2ŷ

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ ,

(39)

for some functions pg
k ∈ R. Note that the arguments of θg and

pg
k were written out in a two-dimensional array, such that

the dependence on the l-bit indices within the causal cone of
|lk〉〈l′k| in (39) is apparent. Let us introduce fg({lk}) defined
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FIG. 3. Layers of the lower half of the causal cone ordered from
top to bottom as denoted by arrows. The unitaries of the respective
upper layer are indicated by red dashed lines. Each dot corresponds
to 


2 × 


2 sites.

by θg({lk}) = exp[i fg({lk})], so that we have

fg

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
lk−x̂+2ŷ lk+2ŷ lk+x̂+2ŷ
lk−x̂+ŷ lk+ŷ lk+x̂+ŷ

· · · lk−x̂ lk lk+x̂ · · ·
lk−x̂−ŷ lk−ŷ lk+x̂−ŷ
lk−x̂−2ŷ lk−2ŷ lk+x̂−2ŷ

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− fg

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
lk−x̂+2ŷ lk+2ŷ lk+x̂+2ŷ
lk−x̂+ŷ lk+ŷ lk+x̂+ŷ

· · · lk−x̂ l′k lk+x̂ · · ·
lk−x̂−ŷ lk−ŷ lk+x̂−ŷ
lk−x̂−2ŷ lk−2ŷ lk+x̂−2ŷ

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= pg
k

⎛
⎜⎜⎜⎝

lk−x̂+2ŷ lk+2ŷ lk+x̂+2ŷ
lk−x̂+ŷ lk+ŷ lk+x̂+ŷ
lk−x̂ lk lk+x̂ , l′k

lk−x̂−ŷ lk−ŷ lk+x̂−ŷ
lk−x̂−2ŷ lk−2ŷ lk+x̂−2ŷ

⎞
⎟⎟⎟⎠ mod 2π,

(40)

and

fg

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
lk−x̂+ŷ lk+ŷ lk+x̂+ŷ
lk−x̂ l′k lk+x̂

· · · lk−x̂−ŷ lk−ŷ lk+x̂−ŷ · · ·
lk−x̂−2ŷ lk−2ŷ lk+x̂−2ŷ
lk−x̂−3ŷ lk−3ŷ lk+x̂−3ŷ

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− fg

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
lk−x̂+ŷ lk+ŷ lk+x̂+ŷ
lk−x̂ l′k lk+x̂

· · · lk−x̂−ŷ l′k−ŷ lk+x̂−ŷ · · ·
lk−x̂−2ŷ lk−2ŷ lk+x̂−2ŷ
lk−x̂−3ŷ lk−3ŷ lk+x̂−3ŷ

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= pg
k−ŷ

⎛
⎜⎜⎜⎝

lk−x̂+ŷ lk+ŷ lk+x̂+ŷ
lk−x̂ l′k lk+x̂

lk−x̂−ŷ lk−ŷ lk+x̂−ŷ , l′k−ŷ
lk−x̂−2ŷ lk−2ŷ lk+x̂−2ŷ
lk−x̂−3ŷ lk−3ŷ lk+x̂−3ŷ

⎞
⎟⎟⎟⎠ mod 2π,

(41)

where in the second equation we act with |lk−ŷ〉〈l′k−ŷ| on
the block of sites at k − ŷ instead of k. We sweep column
by column through the lattice and write analogous equations
corresponding to cases where that operator acts on other
blocks. As an example, at an intermediate step, we have, at
some point r,

fg

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
l′r−x̂+2ŷ l′r+2ŷ lr+x̂+2ŷ

l′r−x̂+ŷ l′r+ŷ lr+x̂+ŷ

· · · l′r−x̂ lr lr+x̂ · · ·
l′r−x̂−ŷ lr−ŷ lr+x̂−ŷ

l′r−x̂−2ŷ lr−2ŷ lr+x̂−2ŷ

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− fg

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
l′r−x̂+2ŷ l′r+2ŷ lr+x̂+2ŷ

l′r−x̂+ŷ l′r+ŷ lr+x̂+ŷ

· · · l′r−x̂ l′r lr+x̂ · · ·
l′r−x̂−ŷ lr−ŷ lr+x̂−ŷ

l′r−x̂−2ŷ lr−2ŷ lr+x̂−2ŷ

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= pg
r

⎛
⎜⎜⎜⎜⎝

l′r−x̂+2ŷ l′r+2ŷ lr+x̂+2ŷ

l′r−x̂+ŷ l′r+ŷ lr+x̂+ŷ

l′r−x̂ lr lr+x̂ , l′r
l′r−x̂−ŷ lr−ŷ lr+x̂−ŷ

l′r−x̂−2ŷ lr−2ŷ lr+x̂−2ŷ

⎞
⎟⎟⎟⎟⎠ mod 2π.

(42)

Adding up all of these equations leads to

fg({lk}) − fg({l′k})

=
∑

r

pg
r

⎛
⎜⎜⎜⎜⎝

l′r−x̂+2ŷ l′r+2ŷ lr+x̂+2ŷ

l′r−x̂+ŷ l′r+ŷ lr+x̂+ŷ

l′r−x̂ lr lr+x̂ , l′r
l′r−x̂−ŷ lr−ŷ lr+x̂−ŷ

l′r−x̂−2ŷ lr−2ŷ lr+x̂−2ŷ

⎞
⎟⎟⎟⎟⎠

+ boundary terms mod 2π . (43)

Now, we set all the primed indices to zero, i.e., let l′k =
(0, 0, 0, 0) for all k. This implies that there exist functions
of five lk indices qg

r such that we can write

fg({lk}) =
∑

r

qg
r

⎛
⎜⎜⎜⎝

lr+x̂+2ŷ
lr+x̂+ŷ

lr lr+x̂
lr−ŷ lr+x̂−ŷ
lr−2ŷ lr+x̂−2ŷ

⎞
⎟⎟⎟⎠. (44)

But, we could have just as well applied the above argument
sweeping row by row, which leads to

fg({lk}) =
∑

r

qg
r

⎛
⎝ lr lr+x̂

lr−x̂−ŷ lr−ŷ lr+x̂−ŷ
lr−x̂−2ŷ lr−2ŷ lr+x̂−2ŷ

⎞
⎠. (45)

Comparing the last two equations shows that there must exist
functions sg

r of six lk indices such that we can write

fg({lk}) =
∑

r

sg
r

⎛
⎝ lr lr+x̂

lr−ŷ lr+x̂−ŷ
lr−2ŷ lr+x̂−2ŷ

⎞
⎠. (46)

Therefore, 	g can be expressed as a four-layer quantum
circuit whose unitary matrices θg,k are all diagonal and can be
arranged as shown in Fig. 4. Those unitaries act on plaquettes
of 2
 × 3
 sites.

B. Reduction to one-dimensional problem

We have v⊗N2

g U = U	g, where the left-hand side (LHS)
is a four-layer quantum circuit like Fig. 1, and the right-hand
side (RHS) is an eight-layer quantum circuit. We then reduce
the two-dimensional quantum circuit to a one-dimensional
one by blocking unitaries along the y direction. We then

FIG. 4. Layers of the 	g quantum circuit within the region
indicated by dashed lines. The unitaries are stacked from bottom to
top in the order (a), (b), (c), (d). The quantum circuit periodically
extends beyond the regions indicated by dashed lines.

obtain, along the x direction,

,

(47)
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where the encircled g denotes the tensor product v⊗N
/2
g , i.e.,

a stripe along the y direction. Each Uk , Vk corresponds to a
quantum circuit along the y direction as in Eq. (19). Each 	

g
k

in Eq. (47) is a quantum circuit of diagonal matrices θg acting
on plaquettes of 2
 × 3
 sites each

Θg
k = . (48)

Note that in Eq. (47) we have used indices on the U , V , and
	 tensors to emphasize the nontranslation invariance, while
we have employed the index-free notation on the RHS of
Eq. (48).

Equation (47) also appears in the exact same form in
the one-dimensional classification of SPT MBL phases [47].
Using the blocking indicated by dashed lines in Eq. (47)
reveals that it is an equation relating two one-dimensional
two-layer quantum circuits. Hence, we can use the results
below Eq. (21) and deduce the existence of gauge tensors Wk ,
which transform unitaries of both sides of the equation into
each other. These unitaries depend on the group element g, and
we refer to them as W g

k . The result (see Ref. [47] for details)
is that the W g

k have to fulfill

=

, (49)

where the differing numbers of legs of W g
k for k even and odd

are due to the blocking scheme used in that calculation, and

also

=

. (50)

Since all unitaries on the right-hand side of Eqs. (49) and (50)
are quantum circuits along the y direction, the W g

k must also
be strictly short-range correlated along that direction. Thus,
they can at least be efficiently approximated by two-layer
one-dimensional quantum circuits along the y direction (cf.
assumptions made in the beginning of Sec. III).

It can also be shown (again see Ref. [47] for details) that
the W g

k form a projective representation of G, i.e., for all k, it is
the case that W g

k W h
k = βk (g, h)W gh

k for some βk (g, h) ∈ U (1).
For the two-dimensional classification of SPT MBL phases,
we will use this result combined with the lemma below.

C. Quantum circuit representations and the third
cohomology group

We now prove our main statement: The quantum circuit
projective representations of a given group G are labeled by
the elements of the third cohomology group H3(G,U (1)).
That is, quantum circuits corresponding to different third
cohomology classes cannot be continuously connected with
each other while preserving the fact that they projectively
represent the symmetry group. We note that this statement
is related to the result from Ref. [82] that injective matrix
product operator (MPO) representations of G likewise corre-
spond to the elements of H3(G,U (1)). Let us also mention
that (for a group G and G module F ), the third cohomology
group H3(G, F ) has a representation theoretic interpretation:
similar to how elements of H2(G, F ) correspond to projective
representations of G, elements of H3(G, F ) correspond to
gerbal representations [85] of G; see Appendix for details.
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Each g ∈ G is associated a quantum circuit, which we
denote as

. (51)

To reduce clutter, let us adopt a shorthand notation where we
label all the ug

k and v
g
k tensors as simply g. That is, we would

write Eq. (51) as

. (52)

Let the quantum circuits associated with g, h ∈ G be a projec-
tive representation of G, i.e.,

, (53)

for some β(g, h) ∈ U (1). In the following steps of the cal-
culation, the factors of β(g, h) will only lead to factors like

β(g,h)β(gh,k)
β(g,hk)β(h,k) , which are equal to 1, due to the 2-cocycle condi-
tion for projective representations. So we omit all the factors
of β(g, h) hereafter.

Consider blocking unitaries in (52) as follows:

. (54)

. (55)

In the language of Eq. (21), let the blocked tensors on the
left-hand side be U ′, V ′ and the ones on the right-hand side
U ′′, V ′′. We deduce the existence of the Wk tensors (which are
functions of two group elements here) and plug in Eq. (24) to
obtain

. (56)
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where we have temporarily reverted from the abbreviated
notation for clarity. Let us now return to the abbreviated
notation, and denote W4k−3(g, h) as WL(g, h) and W4k+1(g, h)
as WR(g, h). Equation (56) can be rearranged into

, (57)

whence it becomes clear that we can define new tensors
W (g, h) and W ′(g, h) such that we have

. (58)

W (g, h) and W ′(g, h) act as gerbal representation operators:
Informally, W (g, h) and W ′(g, h) “convert” a combination
of a section of the g quantum circuit and the h quantum
circuit into a section of the gh quantum circuit, playing a
role analogous to that of XL(g, h) and XR(g, h) in Eq. (27),
respectively.

To show that the quantum circuit projective representations
of G satisfy the pentagon equation (31), we must find an
associated function of three group elements α(g, h, k) ∈ U (1)
which is a 3-cocycle invariant up to multiplication by a 3-
coboundary. Consider three group elements g, h, k ∈ G:

=

=

. (59)
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Canceling out the middle sections as indicated by the red lines,
the second equality implies

⊗

=
⊗

, (60)

which means there must be some phase factor α(g, h, k) such
that

= α(g, h, k) (61)

= α(g, h, k)−1
. (62)

α(g, h, k) is the function of three group variables that we are
looking for. Before proceeding further, let first simplify the
notation. Define

X(g) = , (63)

and, with a slight abuse of notation, we write, for example,
Eq. (61) algebraically as

W (gh, k)W (g, h)X (g) = α(g, h, k)W (g, hk)X (g)W (h, k).

(64)

W (g, h) inherits the gauge degree of freedom of the old
WL(g, h), so it is invariant up to a transformation W (g, h) →
χ (g, h)W (g, h) for χ (g, h) ∈ U (1). After the transformation,
we have Eq. (64) but with α(g, h, k) replaced by

α′(g, h, k) = α(g, h, k)
χ (g, hk)χ (h, k)

χ (g, h)χ (gh, k)
. (65)

Thus, α(g, h, k) is defined up to a 3-coboundary.
Now, we show that α(g, h, k) satisfies an analog of

Eq. (31), and therefore is a 3-cocycle. Consider the following
expression involving four group elements:

W (ghk, l )W (gh, k)W (g, h)X (g)X (h)

= α(g, h, k)W (ghk, l )W (g, hk)X (g)W (h, k)X (h)

= α(g, h, k)α(g, hk, l )W (g, hkl )X (g)W (hk, l )W (h, k)X (h)

= α(g, h, k)α(g, hk, l )α(h, k, l )

× W (g, hkl )X (g)W (h, kl )X (h)W (k, l ), (66)

where we have used Eq. (64) repeatedly. Let us introduce a
new shorthand notation where, for example, Eq. (58) is written
as

= . (67)

Using this notation, we have the following expression involv-
ing four group elements:

= . (68)

To show that α(g, h, k) is a 3-cocycle, we only need to
consider an expression consisting of the top parts of the RHS
of the above equation. We then repeatedly apply Eq. (64)
to the left edge of that expression. There are two ways to
do this. First, we can apply Eq. (66) (converted back into
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diagrammatic form) and immediately obtain

=
α(g, h, k)×
α(g, hk, l)×
α(h, k, l)×

. (69)

Alternatively, we can calculate via a different route

=

= α(gh, k, l) = α(gh, k, l)×

= α(gh, k, l)×
α(g, h, kl)×

. (70)

Comparing the above two final expressions we find that indeed

α(g, h, k)α(g, hk, l )α(h, k, l )

α(gh, k, l )α(g, h, kl )
= 1. (71)

Note that we have only considered W (g, h) but the same
argument applies to the right edge and W ′(g, h), which from
the α−1 in Eq. (62) is associated with the inverse element of
H3(G,U (1)).

To complete the argument, we need to show that the
cohomology class does not depend on the position of the
block; recalling the nontranslational invariance of the origi-
nal quantum circuit, we need to show that the W (g, h) and
W ′(g, h) of the adjacent block are associated with the same

FIG. 5. Three ways of blocking: original 4-blocking (red), 4-
blocking shifted by one block (green), and 5-blocking (blue).

element of H3(G,U (1)). We also need to show that there is
no dependence on the blocking scheme. For instance, we can
use block sizes of larger than four (though it is easy to see that
the above arguments would not work for block sizes of three
or smaller). Figure 5 depicts different ways of blocking.

The argument is as follows. Suppose we are looking at a
4-blocking starting from a certain index, such as 4k − 3 as in
Eq. (56). Then, let us consider a larger blocking also starting
from the same index. (For example, we could consider the
red 4-blocking and the blue 5-blocking in Fig. 5.) Applying
Eq. (22), we have

= . (72)

From the larger blocking, we have, separately (using the ellip-
sis notation to we emphasize that this works for an arbitrarily
large blocking)

= . (73)

The two above equations taken together imply that WL(g, h)
and W ′

L(g, h) are the same up to a phase. So, the WL(g, h) and
hence W (g, h) are the same up to a phase in either blocking.
Hence, two blocks of different sizes that start at the same
point along the quantum circuit have the same cohomology
class. The same argument applies to WR(g, h) and W ′(g, h)
of different blocks that share the same right edge. This then
implies that the entire quantum circuit is associated with a
single cohomology class a ∈ H3(G,U (1)) because we can
then use the above results to argue that any two blocks
in the quantum circuit correspond to the same cohomology
class: We may deduce from the schematic picture Fig. 6 that
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a = ā = ã, i.e., they are the same element of H3(G,U (1))
while the corresponding functions α(g, h, k), ᾱ(g, h, k), and
α̃(g, h, k) would be equal up to a 3-coboundary. It is easy to
see that this generalizes to show that any block (from any
blocking scheme) produces W (g, h) and W ′(g, h) labeled by
the same a and a−1 ∈ H3(G,U (1)), respectively. The entire
quantum circuit representation of G is associated with one
particular element of H3(G,U (1)), completing the proof of
the lemma.

D. Invariance of the topological index across the 2D system

The above lemma applies separately to each W g
j that

appears on the LHS of Eqs. (49) and (50) and also to the
overall quantum circuits of those equations. To complete the
argument for our two-dimensional MBL phase classification,
we must show that the different W g

j along the x direction
have the same third cohomology class. This can be done
by showing that W g

j ⊗ W g
j+1 is topologically trivial, that is,

corresponds to the identity element of H3(G,U (1)).
Because W g

j takes a different form for odd and even j, we
have two points to show, that W g

2k−1 ⊗ W g
2k is topologically

trivial, and that W g
2k ⊗ W g

2k+1 is topologically trivial as well.

1. W g
2k−1 ⊗ W g

2k is topologically trivial

From Eq. (49), we have

=

︸ ︷︷ ︸
indices can be fixed, see next section

=

= ŨΘ̃(g)Ũ† ≡ W̃ (g)

. (74)

FIG. 6. A schematic diagram depicting two adjacent blocks and
a large block encompassing both of them, and their associated phase
factors. Note that the adjacent blocks do not have to be of the same
length.

	
g
j can be chosen in such a way that [47] 	

g
j	

h
j = 	

gh
j , i.e.,

it is a linear representation of the group G. Since W̃ (g) is
unitarily equivalent to a product of 	g-quantum circuits, W̃ (g)
must be a linear representation, too,

W̃ (g)W̃ (h) = W̃ (gh). (75)

The third cohomology class is a topological label of quantum
circuits which are a projective representation of the group
G. Hence, two quantum circuits corresponding to different
third cohomology classes cannot be continuously connected
while preserving the fact that they projectively represent the
group G. Keeping that in mind, we note that W̃ (g) can be
continuously connected to 	̃(g) by defining W̃λ(g), λ ∈ [0, 1]
via

u j,λ = eiL j (1−λ), (76)

v j,λ = eiMj (1−λ) (77)

with Lj = L†
j , Mj = M†

j , and the original unitaries u j = eiMj .
Hence, W̃0(g) = W̃ (g) and W̃1(g) = 	̃(g) and since for all λ

W̃λ(g)W̃λ(h) = W̃λ(gh), W̃ (g) and 	̃(g) must correspond to
the same element of the third cohomology group. Finally,
we show that 	̃(g) corresponds to the identity of the third
cohomology group. This can be most easily seen by combin-
ing θg’s and θg’s by commuting them through each other and
combining four and two adjacent legs to respectively one. We
call the newly obtained unitaries θu

g and θv
g . The θu

g and θv
h

commute with each other, that is,

= . (78)

and

= . (79)

Furthermore, 	
g
j	

h
j = 	

gh
j can be used to show in the same

way as in Ref. [47] that also the θg’s (and θg’s) can be
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gauged such that θgθh = θgh, which implies θu
g θu

h = θu
gh and

θv
g θv

h = θv
gh. Using this and Eqs. (78) and (79), reveals via

Eq. (58) that W (g, h) = W ′(g, h) = 1, i.e., after the deforma-
tion α(g, h, k) = 1. Thus, W g

2k−1 ⊗ W g
2k is topologically trivial,

as claimed.

2. W g
2k ⊗ W g

2k+1 is topologically trivial

From Eq. (50), we have

tensors are diagonal 
in these indices

=

=

=

. (80)

where the boxes labeled by ug, vg indicate blocks of unitaries
u j , v j , and vg, and we have combined legs. In the last part

of the equation, we used that due to the diagonality of the
corresponding indices, the θg’s commute with the quantum
circuit comprised of the unitaries ug and vg. Due to its local
structure, this implies also

. (81)

We now show that this implies that ug and vg can also be
gauged in such a way that they individually commute with
θh. From the previous equation it follows that

, (82)

where we have replaced θh by a diagonal matrix θ , which has
the diagonal structure common to all θh’s, but whose nontrivial
phase factors can be chosen arbitrarily. These correspond to
the indices of the fourth to seventh leg from the left in the
second part of Eq. (85). We now choose 	 = ϑ ⊗ 1, such that
Eq. (82) simplifies to

. (83)

This implies that [X g
ϑ ⊗ 1, X g

ϑ ′ ⊗ 1] = 0, i.e., [X g
ϑ , X g

ϑ ′ ] = 0.
Since X g

ϑ and X g
ϑ ′ are unitaries, they can be diagonalized by the

same matrix wg. The result of the diagonalization would be ϑ ,
i.e., X g

ϑ = wgϑw†
g . Hence, if we use a gauge transformation as

in Eqs. (22) and (23) to replace ug by (wg ⊗ 1)ug, the RHS of
Eq. (83) is 1 ⊗ ϑ ⊗ 1 ⊗ 1. Moreover, in Eq. (82), we could
instead have set θ = 1 ⊗ ϑ leading to

. (84)

014205-18



CLASSIFICATION OF SYMMETRY-PROTECTED … PHYSICAL REVIEW B 102, 014205 (2020)

Similarly, it follows that Y g
ϑ can be diagonalized by a unitary

matrix w̃g which does not depend on ϑ . Hence, the gauge
transformation ug → (wg ⊗ w̃g)ug (and the corresponding one
for vg) ensures that the new ug commutes with ϑ ⊗ ϑ ′ for all
ϑ, ϑ ′. Hence, it must also commute with θ (which could be
written as

∑
i ϑi ⊗ ϑ ′

i if we relax the condition that ϑ and ϑ ′
have diagonal elements of magnitude 1, which is not needed
for the above derivation). In the new gauge, [ug, θh] = 0 and
the second part of Eq. (81) implies that in that gauge [vg, θh] =
0 as well. In other words, we can choose ug and vg such
that they all commute with θh, i.e., the θh’s can be moved
through them in all the diagrams. We now take advantage of
the fact that the last expression of Eq. (85) can be written as
a two-layer quantum circuit after blocking unitaries, such that
Eq. (58) implies

=

. (85)

We can gauge θg such that θgθh = θgh (see above), i.e., in
the new gauge of ug and vg, all θ ’s can be canceled out,

leading to

=

. (86)

Hence, the W (g, h) and W ′(g, h) are the same (up to a phase)
as the ones corresponding to the quantum circuit (85) without
the θg’s. That is, the third cohomology group of W g

2k ⊗ W g
2k+1

is the same as the one of

. (87)

For this quantum circuit, we can use the same approach as
in the previous subsection and continuously deforming the
u’s and v’s to 1 while preserving the property that it forms a
linear representation of the group G due to vgvh = vgh. Even-
tually, one is left with v⊗N2

g , which is topologically trivial.
Thus, α(g, h, k) = 1 after the deformation, and W g

2k ⊗ W g
2k+1

is topologically trivial, too.

E. Equivalence of the topological label across eigenstates

One important point is that the three-leg wide W g
2k−1 as in

Eq. (49) or the first expression in Eq. (74) is actually diagonal
in its first (left) two indices, and the five-leg wide W g

2k is
likewise diagonal in its last (right) two indices. This follows
immediately from Eq. (50).

Say in the second expression of Eq. (74), we fix the first
two and last two indices to L1, L2, L3, and L4. These indices
correspond to the l-bit configuration of the eigenstates which
are being approximated since those indices are lower indices
in Eq. (47), which according to Eq. (36) are eigenstate labels.
Hence, a priori W g,L1L2

2k−1 has cohomology class aL1L2 depending
on the indices L1, L2 (and thus on the eigenstates). Similarly,
W g,L3L4

2k has cohomology class aL3L4 again depending on the
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l-bits. However, since together they are topologically trivial,
we must have aL1L2 aL3L4 = 1. By fixing L1, L2 we conclude
that the cohomology class cannot depend on L3, L4, and by
fixing L3, L4 we conclude that the cohomology class cannot
depend on L1, L2. Hence, the topological label must be the
same for all eigenstates.

V. ANTIUNITARY SYMMETRIES

The above treatment can be generalized by allowing as well
for antiunitary symmetries. That is, for some group elements
g ∈ G we have

H = v⊗N2

g H∗(v†
g)⊗N2

, (88)

which analogously leads to

	g = U †v⊗N2

g U ∗. (89)

Other group elements g′ may still satisfy Eqs. (17) and (18).
A special case is the one of simple time-reversal symmetry,
where G = Z2 = {e, z} and the group element z comes with a
complex conjugation. The classification will be given by the
elements of the generalized third cohomology group defined
below, which is trivial for the case of simple time-reversal
symmetry [49].

We define [87] γ (g) such that γ (g) = 1 [γ (g) = 0] if the
symmetry operation does (not) involve complex conjugation.
Hence,

�X�γ (g) =
{

X if γ (g) = 0,

X ∗ if γ (g) = 1.
(90)

The onsite operators vg must thus fulfill vg�vh�γ (g) = vgh.
Equations (47), (49), and (50) read now

, (91)

=

, (92)

and

=

. (93)

Due to vg�vh�γ (g) = vgh, we thus have Wj (g)�Wj (h)�γ (g) =
βk (g, h)Wj (gh). Therefore, when approximating them by
quantum circuits, we have [cf. Eq. (54)]

· · · · · · = β(g, h)
(
· · · · · ·

)
, (94)

β(g, h) ∈ U (1). Using the same line of reasoning as
in Sec. IV C, we obtain for a patch of the quantum
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circuit

=

. (95)

The concatenation of three group elements g, h, k thus takes
the form

=

=

. (96)

This finally results in

W (gh, k)W (g, h)X (g)

= α(g, h, k)W (g, hk)X (g)�W (h, k)�γ (g). (97)

Thus, the gauge transformation W (g, h) → χ (g, h)W (g, h),
χ (g, h) ∈ U (1) corresponds to

α′(g, h, k) = α(g, h, k)
χ (g, hk)�χ (h, k)�γ (g)

χ (g, h)χ (gh, k)
, (98)

which is a redefinition of α(g, h, k) by a generalized 3-
coboundary. Equation (97) implies

W (ghk, l )W (gh, k)W (g, h)X (g)�X (h)�γ (g)

= α(g, h, k)W (ghk, l )W (g, hk)X (g)�W (h, k)�γ (g)

× �X (h)�γ (g)

= α(g, h, k)α(g, hk, l )W (g, hkl )X (g)�W (hk, l )�γ (g)

× �W (h, k)�γ (g)�X (h)�γ (g)

= α(g, h, k)α(g, hk, l )�α(h, k, l )�γ (g)W (g, hkl )X (g)

× �W (h, kl )�γ (g)�X (h)�γ (g)�W (k, l )�γ (g), (99)

which in the shorthand notation of Eq. (67) leads to

=
α(g, h, k)×
α(g, hk, l)×

�α(h, k, l)�γ(g)×
. (100)

014205-21



JOEY LI, AMOS CHAN, AND THORSTEN B. WAHL PHYSICAL REVIEW B 102, 014205 (2020)

Again, we can reach a similar relation using a different
sequence of manipulations,

=

= α(gh, k, l) = α(gh, k, l)×

= α(gh, k, l)×
α(g, h, kl)×

. (101)

Comparing the above two final expressions leads to

α(g, h, k)α(g, hk, l )�α(h, k, l )�γ (g)

α(gh, k, l )α(g, h, kl )
= 1. (102)

Together with Eq. (98), this defines elements α(g, h, k) of the
generalized third cohomology group.

Keeping in mind that W g
j �W h

j �γ (g) = β(g, h)W gh
j , one can

use a similar line of reasoning as in Sec. IV D to show that
W g

2k−1 ⊗ W g
2k and W g

2k ⊗ W g
2k+1 are also topologically trivial in

the current setup. This shows that for antiunitary symmetries,
all eigenstates of SPT MBL-like phases in two dimensions
share the same topological label, which corresponds to an
element of the generalized third cohomology group.

VI. ROBUSTNESS TO PERTURBATIONS

In the following, we show that the cohomology class is
invariant under a local symmetry-preserving perturbation. The
discussion here is very similar to the argument for the one-
dimensional case [46,47]. Let us consider two FMBL Hamil-
tonians H (0) and H (1) connected via an FMBL-preserving
path H (λ) for a finite but large system. H (λ) is required to
continuously depend on the parameter λ ∈ [0, 1] and to be
invariant under the symmetry. We represent the unitary which
diagonalizes H (λ) by a quantum circuit U (λ), neglecting
losses of topological properties over timescales of the order

(8). The constituting unitaries of the best representation U (λ)
as defined in Sec. III A might not be continuous as a function
of λ. We now compare the topological properties of U (λ − ε)
and U (λ + ε). In the limit ε → 0, the two unitaries might
differ, but by assumption they equally well diagonalize the
Hamiltonian H (λ). As the system is FMBL for all λ ∈ [0, 1],
we are allowed to alter the path by a small but nonzero
local perturbation keeping the end points H (0) and H (1)
fixed (cf. Sec. II A). We choose the perturbation such that
H (λ) is analytic (which can be done since the Hamiltonian is
bounded) and that degeneracies only appear at isolated points
λk ∈ [0, 1]. (Note that there are no protected degeneracies
for Abelian symmetries.) Hence, according to perturbation
theory (up to corrections vanishing for N → ∞) U (λ − ε)
and U (λ + ε) can only differ by a permutation matrix in the
limit ε → 0, i.e.,

U (λ − ε)P(λ) = U (λ + ε). (103)

P(λ) is a permutation matrix whose nonvanishing entries
have magnitude 1 and arbitrary phases. Since all approximate
eigenstates encoded in U (λ − ε) have the same topological
label, it must thus be the same as the one of the approximate
eigenstates contained in U (λ + ε). We have thus shown that
the cohomology class cannot change discontinuously along
the path λ ∈ [0, 1]. As it is discrete, it cannot change conti-
nuously either, demonstrating that it is unchanged along the
evolution H (λ) between two Hamiltonians H (0) and H (1)
in the same SPT MBL phase. Choosing H (1) as a small
local perturbation of H (0) (which always preserves FMBL)
then shows that this topological index is robust to local
symmetry-preserving perturbations. For truly randomly dis-
ordered systems and if the avalanche scenario is correct, the
obtained topological properties persist on timescales of the
order Eq. (8).

VII. CONCLUSION

We have shown that given a two-dimensional FMBL spin
system invariant under an onsite symmetry, the SPT phases
are classified by the elements of the third cohomology group
of the symmetry group. Although we have only considered the
bosonic case, the ideas and results from the one-dimensional
version of this problem [47] imply that the classification is
likely to be the same as for ground states also for fermionic
systems.

One potential direction for further research is to investigate
whether the method presented here can be adapted to rigor-
ously show the correctness of the classification of ground-
state SPT phases in two-dimensional gapped systems, which
is currently an open problem [61].

Another potential direction for further investigation is the
extension of our classification to three and higher dimensions,
though an obvious difficulty would be the challenge of work-
ing with higher-dimensional tensor network diagrams. This
case would also be particularly interesting as the cohomology
classification is not complete in d � 3 dimensions [75,76].

Finally, we note that the calculations presented here do not
preclude the existence of additional topological indices in the
2D MBL case that do not exist for ground states. Specifically,
although we have shown that quantum circuits belonging to
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different elements of the third cohomology group cannot be
continuously connected, we have not shown the converse of
this statement. In other words, we have not demonstrated
the completeness of our classification, i.e., there may exist
additional SPT MBL phases.
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APPENDIX: PROJECTIVE AND GERBAL
REPRESENTATIONS

An important idea in the study of one-dimensional SPT
phases is the relation between second cohomology groups
and projective representations. Here, we briefly introduce
gerbal representations, the third cohomology analog, which
are relevant in the context of two-dimensional SPT phases. For
an introduction to group cohomology as applied to the physics
of SPT phases and definitions of cocycles and coboundaries,
see Ref. [49].

A projective representation satisfies

u(g)u(h) = ω(g, h)u(gh), (A1)

where ω(g, h) ∈ U (1) is the factor system. Two projective rep-
resentations are equivalent if their factor systems are related
by

ω′(g, h) = χ (g)χ (h)

χ (gh)
ω(g, h), (A2)

χ ∈ U (1), i.e. if they differ by a 2-coboundary. We also
observe that an expression like u(g)u(h)u(k) can written in
two different ways, namely,

u(g)u(h)u(k) = ω(g, h)ω(gh, k)u(ghk)

= ω(g, hk)ω(h, k)u(ghk). (A3)

So, we obtain the result that the factor system of a projective
representation must satisfy the following rule:

ω(g, h)ω(gh, k)

ω(g, hk)ω(h, k)
= 1, (A4)

i.e., it must be a 2-cocycle. While elements of the second
cohomology group H2(G,U (1)) correspond to projective rep-
resentations of G, elements of the third cohomology group
H3(G,U (1)) correspond to gerbal representations [85] of G.
A gerbal representation associates an operator w(g, h) to each
pair of group elements g, h rather than to a single group
element. w(g, h) does not act on a vector space, but on a space

of functors of an Abelian category. (A category consists of
objects linked by arrows, also known as morphisms. There
exists an identity arrow for each object, and a binary operation
◦ to compose arrows associatively. An Abelian category is one
in which the objects and morphisms can be added. A functor
is a homorphism between categories.)

First, we need to consider another, “auxiliary” representa-
tion of G that is a representation over an Abelian category.
In that representation, g ∈ G is associated with a functor
fg. The functor fg essentially behaves as function fg(. . . )
with the peculiar feature that the composition fg ◦ fh(. . . ) =
fg( fh(. . . )) does not live in the same space as fg. fe is the
identity map (e being the identity element of G). Since we
cannot demand fg ◦ fh be equal to fgh, we instead demand that
they be related by an isomorphism. The gerbal representation
operator w(g, h) is then defined to be the isomorphism map,
i.e., w(g, h) : fg ◦ fh �→ fgh. When acting on compositions of
many functors the action is defined to be w(g, h) : fg ◦ fh ◦
fk �→ fgh ◦ fk , and w(h, k) : fg ◦ fh ◦ fk �→ fg ◦ fhk , and so
on. From this we see that w(a, b) commutes with w(c, d ) if
a, b, c, d are different group elements since

w(a, b)w(c, d )( fa ◦ fb ◦ fc ◦ fd )

= w(c, d )w(a, b)( fa ◦ fb ◦ fc ◦ fd ) = fab ◦ fcd . (A5)

Now, let us see how w(g, h) represents the group G. For that,
consider fg ◦ fh ◦ fk which is isomorphic to fghk . We can get
fghk by acting on fg ◦ fh ◦ fk with either w(gh, k)w(g, h) or
w(g, hk)w(h, k). We can demand they be equal, or we can
relax that slightly and instead demand

w(gh, k)w(g, h) = α(g, h, k)w(g, hk)w(h, k), (A6)

for some α(g, h, k) ∈ U (1) acting as the factor system.
We can derive a relation similar to Eq. (A4) that the α must

satisfy, by considering that fabcd can be obtained by acting
on fa ◦ fb ◦ fc ◦ fd with either w(a, b)w(ab, c)w(abc, d )
or w(c, d )w(b, cd )w(a, bcd ). We can go
w(a, b)w(ab, c)w(abc, d ) −→ w(c, d )w(b, cd )w(a, bcd )
by repeatedly applying Eq. (A6) via two different routes (i.e.,
start from the left, or start from the right). In each case, we
obtain a prefactor, and we require both of them to be equal,
leading to

α(a, b, c)α(a, bc, d )α(b, c, d )

α(ab, c, d )α(a, b, cd )
= 1, (A7)

i.e., α is a 3-cocycle. As with projective representations, two
gerbal representations are equivalent if they differ by only a
phase, i.e., w and v are equivalent if v(g, h) = χ (g, h)w(g, h)
for some χ ∈ U (1). The analog of Eq. (A2), then, is that two
gerbal representations are equivalent if their factor systems are
related by a 3-coboundary,

α′(g, h, k) = χ (g, h)χ (gh, k)

χ (g, hk)χ (h, k)
α(g, h, k). (A8)

014205-23



JOEY LI, AMOS CHAN, AND THORSTEN B. WAHL PHYSICAL REVIEW B 102, 014205 (2020)

[1] E. Altman and R. Vosk, Annu. Rev. Condens. Mater. Phys. 6,
383 (2015).

[2] D. J. Luitz and Y. B. Lev, Ann. Phys. 529, 1600350 (2017).
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