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Based on a new self-energy for atom-phonon interaction, the preceding Comment [Phys. Rev. B 101, 247401
(2020)] argues about the insufficiency of the mathematical techniques within the independent boson model
(IBM) to study physisorption in graphene membranes. In this Reply, I show that the new self-energy reported
in the Comment is a perturbative expansion approximated for a two-phonon process, severely divergent for
membrane sizes larger than 100 nm and within its current mathematical form, ill suited for investigating
the physics of physisorption in graphene micromembranes. Additionally, I provide further evidence of the
adsorption rate within the IBM that reinforces the physical soundness of the mathematical techniques reported
in Phys. Rev. B 100, 075429 (2019).
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The main point of my paper [1] is as follows: adsorp-
tion rate of low-energy atoms impinging normally on sus-
pended micrometer-sized graphene membranes is finite, ap-
proximately equal to the adsorption rate predicted by Fermi’s
golden rule. To arrive at this conclusion, I have used the
independent boson model (IBM) that captures the interaction
between the incoming atom and the phonons of the graphene
membrane. My mathematical technique for the calculation of
the adsorption rate includes a self-energy formalism within
the context of the IBM [1].

In the Comment [2], the author questions the validity of
my finite adsorption result, and in that attempt, provides with
a new self-energy for the atom-phonon interaction which
includes additional terms that go beyond the IBM self-
energy and are, thus, absent in my work [1]. The author
then adapts my method for the calculation of the adsorption
rate and extends it to this new self-energy. Within my for-
malism, he finds that the new self-energy fails to provide
a self-consistent solution. The author, thus, concludes that
the failure of the new self-energy to give a self-consistent

solution must imply the invalidity of my mathematical
formalism.

Additionally, although the Comment [2] dismisses my
method as invalid, it does not provide a mathematical tech-
nique that calculates the adsorption rate within this new self-
energy. Thus, the Comment [2] eludes the main point of my
paper and remains inconclusive about the adsorption rate of
incoming atoms.

In this Reply, I will first discuss some of the fundamentally
important features of the new self-energy reported in the
Comment [2]. I will then show which one is invalid: My
mathematical method to compute the adsorption rate or the
new self-energy reported in the Comment [2]. Finally, I will
conclude my Reply with further evidence of the adsorption
rate within the IBM that reinforces the physical soundness of
the mathematical technique reported in Ref. [1].

Let me begin with my analysis of the new self-energy
reported in the Comment [2]. Throughout my Reply, I will
refer to this self-energy as �c. Equations (5) and (6) of the
Comment (see Ref. [2]) give the new self-energy as [2]
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where gkb is the vertex of the atom-phonon interaction for a
transition of the atom from continuum to the bound state and
gbb is the vertex of atom-phonon coupling for the interaction
in the bound state. λp = gbb/ωp, � = ∑

p λp, and nq is the
equilibrium phonon occupation number with Bose-Einstein
distribution written as nq = 1/(eωq/T − 1), where ωq is the
energy of the phonon with wave-vector q and T is the temper-
ature of the membrane [2]. GIBM is the bound-state Green’s
function written within the IBM (given by Eqs. (28) and (29)
in Ref. [1]), E = Ek + Eb with −Eb as the bound-state energy,
and Ek is the incoming energy of the atom [1].

�c(E ) has additional terms compared to �IBM as a result of
the inclusion of the noncommutativity of the phonon operator
and displacement operator [2]. This noncommutativity was
not addressed in my work [1]. Let me analyze �c with
a special focus on the effects of the terms appearing as a
result of the noncommutativity. Below, I provide my points of
disagreement concerning the form of �c(E ) [given by Eq. (1)]
and compare the same with the �IBM reported in Ref. [1].

(1) Although the Comment [2] reports �c(E ) as an exact
closed-form expression for the atom self-energy to quadratic
order in the atom-phonon coupling O(g2

kb), I see that it is,
in fact, a perturbative expansion in �c(E ), truncated to a
two-phonon process. The definition of exact self-energy cor-
responds to a summation of an infinite number of Feynman
diagrams which essentially implies the inclusion of the con-
tribution from infinitely many phonons [3]. By energy con-
servation, one can readily see that the propagators in Eq. (1):
GIBM(E − ωq) correspond to one-phonon emission with en-
ergy ωq and GIBM(E − ωq − ωq), GIBM(E − ωq − ωp), and
GIBM(E − ωq + ωq) correspond to two-phonon emission pro-
cesses with energies ωq and ωp. Thus, �c is an approximation
where the noncommutativity of the phonon and displacement
operators has been incorporated up to two-phonon processes.
However, the Comment [2] does not report �c as an approxi-
mation and, furthermore, does not provide the justification of
such an approximation. �IBM, on the other hand, is also an
approximation. It represents a one-phonon self-energy which
uses an exact propagator for the bound-state GIBM such that it
includes all orders in the vertex gbb but is truncated until the
first-order phonon process in gkb. This one-phonon approxi-
mation in gkb has been justified for my model in Refs. [1,4]
within the context of relative magnitudes of the vertices gkb

and gbb as gkb � gbb.
(2) In the first line of Eq. (1), I see that the bound-state

propagator is written as GIBM(E ). By energy conservation,
this implies that the energy of the phonon is set to ωq = 0.
However, the vertex of interaction is written as g2

kb. I remind
myself that the definition of the vertex gkb for the model
Hamiltonian in Refs. [1,5,6] refers to the transition-matrix
element [6,7],

gkb = −〈b, 1q|Hi|k, 0〉, (2)

where Hi is the Hamiltonian for atom-phonon interaction [1].
|k, 0〉 represents the initial state of the atom |k〉 with energy
Ek , and |0〉 is the graphene membrane in its ground state with
no excitation. |b〉 is the final bound state with energy −Eb,
and |1q〉 represents the excitation of one phonon with energy
ω and wave-vector q. Physically, Eq. (2) corresponds to the
transition of the atom from |k〉 to |b〉 via the emission of

FIG. 1. Variation of the real part of the dimensionless self-energy
reported in the Comment [2] (�̄c

r ) vs infrared cutoff ε (blue dashed
line) for the low-energy atom E/ωD = 0.004. For ε < 0.5 K (mem-
brane size >100 nm), the self-energy reported in the Comment [2]
starts to diverge severely with decreasing ε (increasing membrane
sizes). Contrary to this, the real part of the self-energy within the
IBM [1] (red line) is well behaved for the same ranges of the IR
cutoff (membrane sizes) and is around �̄IBM

r ∼ 0.7.

one phonon of energy ω and wave-vector q [6,7]. A similar
definition exists for the vertex gbb which is the transition of
the atom within bound-states |b〉 via the emission of a phonon
of energy ωq [6,7]. In other words, if the vertex gkb is used, it
would imply an emission of the phonon of energy ωq, which
then appears via energy conservation in the expression for the
bound-state propagator GIBM. Therefore, the first line which
is written with a propagator GIBM(E ), represents a process
that involves no emission of phonon ωq, thus, the use of
the vertex gkb in such a situation is unjustified. Thus, within
the definition of the vertices of atom-phonon coupling, the
terms appearing from the noncommutativity of the phonon
and displacement operators in the first line of Eq. (1) are
inaccurate.

Armed with arguments (1) and (2), let me now proceed to
understand the variation of the real part of the self-energy with
the infrared (IR) cutoff ε. The IR cutoff is related to the size
of the graphene membranes by the relation ε = h̄vs/L, where
vs is the velocity of sound in graphene and L is the size of
the membrane. Thus, a decreasing ε physically corresponds
to increasing membrane sizes. In what follows next, I will
stick to the notations, labels, and units consistent with the
Comment [2], unless otherwise mentioned.

In Fig. 1, I plot the variation of �̄c
r [dimensionless real

part of Eq. (1)] with ε. For comparative purposes, I also
show the variation of the dimensionless real part of the self-
energy within the IBM (real part of Eq. (6) in Ref. [1]). Let
me summarize my understanding and give further points of
disagreement with the Comment [2] as the following:

(3) I note, for ε � 0.5 K, �̄c
r (blue dashed line) starts

to diverge with decreasing ε (increasing size of graphene
membranes). In comparison, �̄IBM

r within the IBM (red line)
is well behaved for the same range of IR cutoff (size of mem-
brane). The Comment [2] has reported these severe effects
of IR divergence as mere downward shifts in the real part
of the self-energy (not to mention, the absolute absence of
physical justification for the presence of these IR divergences
in a model of weak atom-phonon coupling). Mathematically,
such a severe IR divergence signals the breakdown of the
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perturbation series, which implies that the perturbative expan-
sion given by Eq. (1) is ill behaved for ε � 0.5 K (membrane
size >100 nm). Furthermore, the Kinoshita [8], Lee and
Nauenberg [9], and Bloch and Nordsieck [10] theorem tells
us that these IR divergences are physically unreal, hence,
proper resummations (nonperturbative techniques) need to be
implemented to tackle these IR divergences with an effort
to gain meaningful physical results. My formalism of self-
energy within the IBM in Ref. [1] is, in fact , a resummation
technique that was implemented to tackle the severe IR diver-
gences which appear with the inclusion of the effects from the
atom-phonon coupling in the bound state [1,4].

(4) Previously, in point (2), I mentioned the inaccuracy of
the terms appearing as a result of noncommutativity of the
phonon and displacement operators in the first line in Eq. (1).
It is to be noted that there is a contribution to the leading-order
divergence in �̄c

r in the limit of ε → 0 that originates from the
term,

−
∑

q

2n2
qλ

2
qGIBM(E ) = − 1

ε3

[
2g2

bbT 2

3
GIBM(E )

]
→ −∞.

(3)
With the knowledge of points (3) and (4), let me now state

my final points of disagreement with the arguments provided
in the Comment [2] for the invalidity of my method for the
calculation of the adsorption rate.

(5) Utilizing the real (�r) and imaginary parts of the self-
energy (�i), the adsorption rate � within my method is given
as

� ≈ −2Z�i(Ep), (4)

where the quasiparticle weight Z is

Z =
(

1 − ∂�r (E )

∂E

∣∣∣∣
E=Ep

)−1

, (5)

and Ep is the quasiparticle energy that can be solved via

Ep − Ek = �r (Ep). (6)

Using the real part of the self-energy �c
r [given by the real

part of Eq. (1)], the Comment [2] attempts to find a graphical
solution to Eq. (6). For low-energy atoms, the author finds
no self-consistent solution in the range of ε � 0.4 K (see
Fig. 6 in the Comment [2]). This failure is not because of
the change in sign of the curvature of the real part of the
self-energy (as reported by the Comment [2]) but rather from
an infinite (divergent) self-energy plugged into the right-hand
side of Eq. (6) (see the IR-divergent behavior of �c

r in Fig. 1).
In contrast, the IBM self-energy is well behaved for similar
ranges of the IR cutoff, and succeeds to give a self-consistent
solution to Eq. (6), also evident from Figs. 5 and 6 of the
Comment [2].

Before I conclude, let me provide an additional calculation
of the adsorption rate of low-energy atoms using the self-
energy within the IBM. This calculation clarifies some of
the inaccurate representations of my results provided in the
Comment [2]. In Fig. 2, I have shown the variation of the
normalized adsorption rate �/�0 as a function of the IR
cutoff (ε). Here, �0 is Fermi’s golden rule result. One can
see that, for a large range of IR cutoffs that correspond to

FIG. 2. Within the self-energy in the IBM [1], I plot a variation
of the normalized adsorption rate �/�0 vs IR cutoff ε, �0 is Fermi’s
golden rule result. Little to no variation is seen with ε (i.e., with
membrane sizes of the range of 100 nm–10 μm). The inset shows
the variation for very low ε. A small enhancement (0.27% of �0) in
the adsorption rate is seen with decreasing ε (increasing membrane
sizes), which is related to the enhancement of the probability of
the emission of low-energy thermal phonons (obeying Bose-Einsten
distribution) at finite temperatures.

membrane sizes of 100 nm–10 μm, the adsorption rate is
� ≈ �0. In the very low IR cutoff regime (ε � 0.1 K), I find
small increments to the adsorption rate (� is still within 0.27%
of �0, see the inset of Fig. 2). The Comment [2] mentions
there is a divergence in my results which becomes apparent
for ε � 0.1 K. I point out that this increment in the adsorption
rate physically represents the temperature effect of the Bose-
Einstein distribution obeyed by the thermal phonons in the
graphene membrane. As temperature (or size of the mem-
brane) is increased (decreasing ε), there is an enhancement of
the probability of emission of low-energy thermal phonons,
leading to an increase in the adsorption rate [4].

In conclusion, the Comment [2] has reported a new
self-energy which is a perturbative expansion that includes
the noncommutativity of the phonon operator and displace-
ment operator, approximated to a two-phonon process. This
approximation (although reported as an exact method in
the Comment [2]) is ill behaved for low IR cutoffs (large
membrane sizes) and suffers from severe IR divergences;
tracing back to the original IR problem of the model where
perturbative treatment of the self-energy generally leads to IR
divergent self-energy, signaling the need for a resummation
to be performed on the perturbative series expansion. My
method within the IBM [1] is a resummation technique that
was, indeed, formulated as a measure to tackle these IR
divergences that arise in the perturbative treatment of the
problem. Quite naturally, the IR structure of the �IBM and
�(c) are starkly different with the merit of �IBM being well
behaved for micromembranes of graphene samples. An IR
safe self-energy is a general as well as a crucial requirement
for the calculation of the adsorption rate. As the self-energy
reported in the Comment [2] is severely IR divergent for an
IR cutoff less than 0.5 K (corresponding to membrane sizes
larger than 100 nm), naturally, it fails to predict adsorp-
tion rates for graphene membrane sizes larger than 100 nm.
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Additionally, the Comment [2] has also misplaced the atom-
phonon vertex on one of the noncommutativity terms in
�c which has resulted in a leading-order IR divergence;
these terms are, however, not allowed in our model [1,6,7]
within the definition of the atom-phonon vertices. In the
absence of such terms, the perturbative series expansion in
the Comment [2] is still weakly IR divergent, urging the
need of a resummation to be performed on the perturbative
series. Unless proper resummations are performed with ap-
propriate placement of atom-phonon coupling, this divergent
self-energy reported in the Comment [2] remains unsuitable
for physisorption studies in graphene micromembranes. In
contrast, the self-energy within the IBM, reported in Ref. [1]
is a resummed self-energy [1,4], well behaved for the same
range of IR cutoff (see Fig. 1) and is conclusive about
the adsorption rate for a large range of membrane sizes of
100 nm–10 μm, suitably capturing the physics of temperature
and finite-size effects. Finally, let me address the concluding
remark of the Comment [2] which states that the difference
between the finite adsorption rate predicted in Ref. [1] with
the zero adsorption rates predicted in Refs. [5,6] is due to
the self-energy used within the IBM. I strongly disagree with
this remark. Within the simple model of the IBM, my original
work had shown that the zero adsorption rate is only possible
if one considers: (i) a contribution to the adsorption rate from

the long-time regime where the effects of the Franck-Condon
factor sets in and (ii) neglects the effects of thermal phonon
emission. Point (ii) and (i) are, indeed, the regime of study
in Refs. [5,6], respectively. However, if I consider the con-
tribution to adsorption rate from the full-time regime and do
not neglect the effects of thermal phonon emission (which is
imminent for finite-temperature physics), the adsorption rate
will be finite, equal to Fermi’s golden rule [1,11,12], validat-
ing the IR-divergence cancellation predicted by the theorem of
Bloch-Nordsieck [10]. It would be interesting to know if �c

reported in the Comment [2], would also give the same finite
adsorption rate as �IBM when the following improvements
are made within �c, namely, (i) the atom-phonon vertices
in the noncommutativity terms are not misplaced, (ii) a full
resummation (nonperturbative) formalism is performed on
the weakly IR-divergent perturbative series by including the
contribution of infinitely many low-energy phonons and not
just two-phonons, and (iii) a contribution to the adsorption rate
is inclusive for a full-time regime without neglecting thermal
phonon emissions.

I am grateful to Professor I. Garate for an insightful dis-
cussion and his valuable advice. This work was funded by the
Canada First Research Excellence Fund.
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