
PHYSICAL REVIEW B 101, 247401 (2020)

Comment on “Theory of phonon-assisted adsorption in graphene: Many-body infrared dynamics”
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Two approximations used by Sengupta [Phys. Rev. B 100, 075429 (2019)] in numerically computing the
adsorption rate of cold hydrogen atoms on suspended graphene are critically examined. The independent boson
model approximation (IBMA) was used to compute the atom self-energy, and the single-pole approximation
(SPA) was used to obtain the adsorption rate from the self-energy. It is shown explicitly that there are additional
contributions to the self-energy appearing at the same order of the atom-phonon coupling as the IBMA terms
that alter the value of the real part of the self-energy at low energies by several orders of magnitude in the regime
of interest. This shift in the self-energy, consequently, renders the use of SPA invalid.
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The work of Ref. [1] revisits a physisorption model pro-
posed by Clougherty [2] to describe the effects from the in-
frared (IR) phonon dynamics on sticking to two-dimensional
materials. Ref. [1] relies on the assumption that the self-
energy of the slow incident atom can be approximated by
the one-loop diagram where the atom propagator is replaced
by the propagator of the independent boson model (IBM),
an approximation, henceforth, referred to as the independent
boson model approximation (IBMA). This approximation was
not derived; consequently, the regime of validity for the IBMA
was not obtained.

Using the IBMA self-energy, the sticking rate is calcu-
lated numerically by evaluating the imaginary part of the
IBMA self-energy at the atom energy Ek . This single-pole
approximation (SPA) to the real-time atom Green’s func-
tion rests on a number of assumptions about the behav-
ior of the self-energy [3]. Additionally, Ref. [1] finds the
quasiparticle weight as Z ≈ 0.99 for all atom energies Ek

considered.
From numerical results based on these approximations,

Ref. [1] concludes that, for suspended micromembranes of
graphene at T = 10 K, the adsorption rate will be finite,
independent of the membrane size, and in agreement with the
lowest-order perturbative result obtained by Fermi’s golden
rule. This conclusion is in disagreement with two previous
theoretical studies that concluded at low atom energies the
sticking rate is severely suppressed by a phonon orthogonality
catastrophe [2,4–6].

In this Comment, the two approximations of Ref. [1] are
critically examined. To assess the validity of the IBMA,
the exact closed-form expression for the atom self-energy
to quadratic order in the atom-phonon coupling [O(g2

kb)]
is obtained. This order O(g2

kb) self-energy includes many
contributions neglected in the IBMA. This result is then
compared to the IBMA self-energy for parameter val-
ues used in Ref. [1]. Finally, the O(g2

kb) self-energy is
used to examine the validity of SPA in approximating the
adsorption rate.

Using the model of Eqs. (1)–(3) in Ref. [1], the exact atom
self-energy to order O(g2

kb) is

�(t ) = −ig2
kb

∑

m,n

〈T [X (t )b(t )Am(t )X †(0)b†(0)An(0)]〉β,

(1)

where An = an + a†
n + 2λnb†b, X = exp [

∑
p λp(a†

p − ap)],
and λp = gbb/ωp. Here, 〈· · · 〉β = Z−1Tr(e−βHph · · · ) with
Hph = ∑

n ωna†
nan. Z is the phonon partition function.

The IBMA self-energy �(IBM)(t ) can be obtained from
Eq. (1) by factorizing the matrix element as

〈T [X (t )b(t )Am(t )X †(0)b†(0)An(0)]〉β
→ 〈T [X (t )X †(0)]〉β〈T [b(t )b†(0)]〉β〈T [Am(t )An(0)]〉β.

(2)

The product of the first two factors is recognized as the IBM
Green’s function. Thus, this factorization gives a result equiv-
alent to the replacement of the bound atom Green’s function

FIG. 1. Real (solid) and imaginary (dotted) parts of the atom
self-energy in the IBMA �̄ (IBM) versus E/ωD for ε = 2.0 K. The
(dimensionless) self-energy is defined �̄ ≡ �/g2

kbρ0 where ρ0 is the
partial (axisymmetric) vibrational density of states for the membrane.

2469-9950/2020/101(24)/247401(4) 247401-1 ©2020 American Physical Society

https://orcid.org/0000-0002-7299-4898
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.247401&domain=pdf&date_stamp=2020-06-11
https://doi.org/10.1103/PhysRevB.100.075429
https://doi.org/10.1103/PhysRevB.100.075429
https://doi.org/10.1103/PhysRevB.100.075429
https://doi.org/10.1103/PhysRevB.100.075429
https://doi.org/10.1103/PhysRevB.101.247401


COMMENTS PHYSICAL REVIEW B 101, 247401 (2020)

FIG. 2. Real part of the (scaled) atom self-energy �̄r versus E/ωD. IBMA (right) compares favorably to the O(g2
kb) (left) for ε = 2 K (long

dashed line). The real part of the O(g2
kb) self-energy shifts downward as ε is reduced: ε = 1.5 (dot-dashed line), 1 (dashed line), and 0.8 K

(short dashed line). Order O(g2
kb) self-energy (left) changes substantially over the range of ε. IBMA self-energy (right) changes little with ε

over the same range.

by the IBM Green’s function in the one-loop self-energy. The
IBMA self-energy is given by (Eq. (6) in Ref. [1]),

�(IBM)(E ) = g2
kb

∑

q

[nqGIBM(E + ωq)

+ (nq + 1)GIBM(E − ωq)], (3)

where nq is the average number of phonons with ωq for
the membrane at temperature T and GIBM is the bound
atom Green’s function from the independent boson model
(Eqs. (28) and (29) in Ref. [1]). A plot of the real and imag-
inary parts of �(IBM) as a function of the energy E is shown
in Fig. 1.

There are, however, additional terms in the self-energy,
beyond the IBMA terms. The most IR singular of these
terms result from the noncommutativity of the displacement
operator X and the phonon operator An as [An, X ] = 2λnX .
Furthermore, Wick’s theorem and diagrammatic expansions
based on this theorem cannot be used as the commutator is
not a simple c number [7].

Disentangling the matrix element using the commutation
relations yields the exact time-ordered finite temperature self-
energy to order O(g2

kb) (and to all orders in gbb). Its Fourier

transform �(E ) is found to be

�(E ) = �(a)(E ) + �(b)(E ), (4)

where

�(a)(E ) = g2
kb

∑

q

[(
2�λq − 2n2

qλ
2
q

)
GIBM(E )

+ (
nq(2�λq + 1) + 2n2

qλ
2
q

)
GIBM(E + ωq)

+ (
(nq + 1)(1 − 2�λq) + 2n2

qλ
2
q

)
GIBM(E − ωq)

+ nqλ
2
q(1 − nq)GIBM(E + 2ωq)

− (nq + 1)λ2
qnqGIBM(E − 2ωq)

]
(5)

�(b)(E ) = g2
kb

∑

p,q

[−λpλq(1 + 2nqnp + nq + np)GIBM(E )

+ nqnpλqλpGIBM(E + ωq + ωp)

+ (nq + 1)(np + 1)λqλpGIBM(E − ωq − ωp)

− (nq + 1)npλqλpGIBM(E − ωq + ωp)

− (np + 1)nqλqλpGIBM(E + ωq − ωp)
]

(6)

and � = ∑
p λp.

FIG. 3. Imaginary part of the atom self-energy �̄i versus E/ωD. Order O(g2
kb) self-energy �̄i (left) becomes positive near E = 0 with

decreasing ε, whereas IBMA self-energy �̄IBM
i changes little for ε = 0.25 (solid line), 0.3 (dashed line), 0.5 (dotted line), and 0.6 K (dot-dashed

line).
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FIG. 4. Real part of the (scaled) atom self-energy �̄r to order
O(g2

kb) versus E/ωD for ε = 0.25 (solid line), 0.3 (dashed line), 0.5
(dotted line), and 0.6 K (dot-dashed line).

It is noted that the IBMA contributions of Ref. [1] are
contained in Eq. (5); however, the additional terms beyond
the IBMA dominate the self-energy at low energies for suffi-
ciently small IR cutoff ε. Although the IBMA results are in
agreement with the naive golden rule results (gbb = 0) over
the range of IR cutoffs considered in the numerical work of
Ref. [1], the inclusion of the additional contributions con-
tained in the O(g2

kb) self-energy can shift the real part of the
self-energy by orders of magnitude near E = 0 (see Fig. 4).

Figure 2 illustrates that, for ε = 2 K, the IBMA and the
exact order O(g2

kb) self-energy are in good agreement over a
substantial range of energies E . However, as ε is decreased,
the real part of the self-energy �r is shifted downward relative
to �(IBM)

r near E = 0.
There are also substantial changes to the imaginary part

of the self-energy from the additional terms. Figure 3 shows
that �i shifts upward near E = 0 with decreasing ε, whereas
�

(IBM)
i is insensitive to changes in ε.
The real part of the self-energy �r at E = 0 is found to be

negative for the values of ε � 1.5 K, whereas �IBM
r (0) is pos-

itive over the range of ε considered in Ref. [1]. Analytically
constructing the asymptotic expansion of Eq. (3) for ε → 0,
it is seen that �IBM

r (0) diverges slowly (logarithmically) in
the limit of ε → 0, a result that is not readily apparent for
ε � 0.1 K but becomes clear with further decreases in ε.
This result has been confirmed by numerical calculations.
In contrast, the real part of the order O(g2

kb) self-energy at
E = 0, �r (0), diverges more rapidly (algebraically) as ε →
0. This rapid descent of �r (0) with decreasing ε is clearly
visible for ε � 0.5 K as seen in Fig. 4.

It is also noted that the curvatures of the real self-energies
differ in sign with the real part of exact order O(g2

kb) self-
energy found to be concave down, whereas the corresponding
IBMA self energy is concave up. It will be seen graphically
that this change in the curvature at low energies becomes
relevant in using SPA to determine the adsorption rate.

SPA assumes that the atom Green’s function has a simple
pole in the lower half of the complex energy plane that is
located close to the real axis. By linearizing the self-energy
about an assumed quasiparticle energy Ep, one obtains that Ep

is determined by

Ep − Ek = �r (Ep). (7)

FIG. 5. Graphical solution for the quasiparticle energy Ep. Real
part (solid line) of the atom self-energy in IBMA Re �̄ (IBM) for ε =
2.0 K versus E/ωD crosses the line (dot-dashed line) where Ēp −
Ēk = Re �̄(Ēp). In the single-pole approximation, the adsorption rate
depends on Im � (IBM)(Ep) and is determined by Eq. (8).

The adsorption rate 	 would then be given by

	 ≈ −2Z�i(Ep), (8)

where the quasiparticle weight Z = (1 − ∂�r (E )
∂E |E=Ep )

−1
.

One can solve Eq. (7) graphically (see Fig. 5). For suf-
ficiently large ε, I find there is a self-consistent solution to
Eq. (7); however, with the large shift in the real part of
the order O(g2

kb) self-energy �r at low ε, I find that a self-
consistent solution to Eq. (7) does not exist for ε � 0.4 K
(see Fig. 6). Thus, the SPA cannot be used to obtain an
approximate adsorption rate in this case.

To summarize, the IBMA self-energy is a poor approxima-
tion to the exact self-energy to order O(g2

kb) for micrometer-
sized samples of suspended graphene. For ε ∼ 1.7 K, the
magnitude of terms neglected in the IBMA self-energy

FIG. 6. Graphical solution for the quasiparticle energy Ep fails
with large negative shifts of the real part of the self energy. Real part
(solid line) of the atom self-energy Re �̄ for ε � 0.4 K versus E/ωD

does not intersect with the line (dot-dashed line) where Ēp − Ēk =
Re �̄(Ēp). The single-pole approximation fails for low atom energy
[Ek < |�r (0)|] when using the order O(g2

kb) self-energy but does not
using the IBMA self-energy (horizontal dashed) line.
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exceeds the magnitude of IBMA self-energy at zero energy.
(This value of ε corresponds to a membrane radius a ∼
0.07 μm).

Using the order O(g2
kb) self-energy, there are no solutions

to Eq. (7) for the self-consistent quasiparticle energy Ep

for sufficiently small ε. Thus, the use of the SPA in this
regime is invalid when using the order O(g2

kb) self-energy. The
disagreement of the results of Ref. [1] with previous work is a

consequence of the use of the IBMA self-energy which does
not contain the additional contributions essential to capturing
the behavior at low ε.
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