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Chiral Majorana fermions in graphene from proximity-induced superconductivity
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We present a detailed theoretical study of chiral topological superconductor phases in proximity-
superconducting graphene systems based on an effective model inspired by density functional theory simulations.
Inducing s-wave superconductivity in quantum anomalous Hall effect systems leads to chiral topological
superconductors. For out-of-plane magnetization we find topological superconducting phases with even numbers
of chiral Majorana fermions per edge, which is correlated with the opening of a nontrivial gap in the bulk system
in the K points and their connection under particle-hole symmetry. We show that in a quantum anomalous
Hall insulator with in-plane magnetization and a nontrivial gap opening at M, the corresponding topological
superconductor can be tuned to host only single chiral Majorana states at its edge, which is promising for
proposals exploiting such states for braiding operations.
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I. INTRODUCTION

Topological superconductors are the natural hosts of Ma-
jorana fermions. In particle physics a Majorana fermion is
a fundamental particle predicted by the real solution of the
Dirac equation, which Majorana considered in 1937 [1].
The existence of such a particle, which is its own antiparticle
and therefore must be charge neutral, is unsettled. A possible
candidate is the neutrino [2].

In condensed-matter physics Majorana fermions can occur
as emergent quasiparticles in solids. These particles can be
thought of as collective excitations of the quantum many-
body state that describes the interacting electron system. To
fulfill the condition of a Majorana fermion of being its own
antiparticle it needs to be an equal superposition of electron
and hole degrees of freedom. Coherent superpositions of
electrons and holes naturally occur in superconductors. If
such an equal superposition of electrons and holes exists
exactly at zero energy, it is a Majorana zero mode (MZM) that
shows unique physical properties that have no analog in high-
energy physics [2,3]. The most prominent is the non-Abelian
statistics with potential applications in topological quantum
computation. Interchanging MZMs is called braiding, which
is described by unitary transformations that form a braid
group. This group is not rich enough to achieve universal
quantum computation, but combining it with unprotected
operations enables fault-tolerant quantum computation, which
is expected to still be much more robust against decoherence
than a nontopological quantum computer [4].

Recently, it was proposed that non-Abelian statistics can
be realized also with chiral Majorana modes which appear as
propagating edge states in two-dimensional (2D) topological
superconductors. A 2D chiral topological superconductor is
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the natural superconducting analog of a quantum anomalous
Hall effect (QAHE) insulator [5–7]. It has a bulk band gap and
chiral one-dimensional Majorana fermions at the edges [8,9].
When superconductivity is introduced to a QAHE system with
Chern number C, it can be turned into a chiral topological
superconductor with Bogoliubov–de Gennes (BdG) Chern
number CBdG = 2C, where C indicates the number of chiral
fermionic edge states in QAHE and CBdG counts the number of
chiral Majorana edge states reflecting the doubling of degrees
of freedom when one describes superconducting systems by
means of the BdG formalism. On the other hand, this makes
the CBdG = ±1 state particularly interesting as it means that at
the edge of this system only a single chiral Majorana fermion
propagates, which has half of the degrees of freedom of a
fermionic edge state. This state can be achieved by tuning
the system parameters, and it forms the minimal possible
topological state in two dimensions [7].

The search for chiral Majorana fermions has been driven
by their potential applications for topological quantum com-
putation. It has been predicted that in a vortex of a chiral
topological superconductor with CBdG = 1 a single MZM
appears which gives rise to non-Abelian statistics [9–11]. A
proposal to use the propagation of single chiral Majorana
fermions with purely electrical manipulations (instead of
bound MZMs) to implement topologically protected quantum
gates on the mesoscopic scale was developed [12]. Recently,
another scheme that exploits the chiral motion along the edge
of a topological superconductor to realize non-Abelian braid
operations was proposed [13]. The experimental realization
of a single chiral Majorana fermion in a magnetically doped
topological insulator in proximity to a superconductor could
not be uniquely demonstrated [14–16].

In this paper, we investigate an alternative host material for
chiral Majorana fermions, namely, graphene, which provides
a 2D platform whose electronic properties can be remark-
ably changed by proximity effects. The formation of chiral
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Majorana fermions in graphene is based on exploiting
proximity effects which allow us to find QAHE phases
in graphene and also induce superconductivity when it is
in a heterostructure with a 2D superconductor such as
NbSe2.

In particular, we study a symmetry-based tight-binding
model for graphene which contains proximity-induced spin-
orbit coupling (SOC) and magnetization [17–19] while
additionally taking into account superconductivity. For out-
of-plane magnetization we find topological superconductor
phases with even BdG Chern numbers and trace the pairwise
appearance of edge states in the valleys back to the particle-
hole symmetry that connects the Dirac points. We raise the
question of whether a BdG Chern number of 1 is possible
in graphene based on proximity-induced superconductivity in
QAHE phases. Starting from a QAHE phase introduced from
in-plane magnetization, we indeed find such a unique topolog-
ical phase. In the corresponding topological superconductor
we show sublattice asymmetry in the exchange coupling or
in the superconducting pairing to lead to the desired single
chiral Majorana fermion state. In quantum Hall graphene with
an external magnetic field, topological superconductivity has
also been proposed [20].

This paper is organized as follows. In Sec. II, we introduce
a tight-binding model and the Bogoliubov–de Gennes Hamil-
tonian for superconducting graphene. In Sec. III, we use this to
find nontrivial phases of the topological superconductor sys-
tem for out-of-plane magnetization and corresponding edge
states in zigzag and armchair nanoribbons. We investigate first
a normal conducting system with in-plane magnetization in
Sec. IV, which we use to find a topological superconductor
with single chiral Majorana states per edge. In Sec. V, we
summarize our results.

II. TIGHT-BINDING MODEL AND THE BOGOLIUBOV–DE
GENNES HAMILTONIAN

We aim to investigate Majorana fermions which appear as
self-conjugated, massless chiral edge states in 2D topologi-
cal superconductors, where the topological superconductor is
formed out of a QAHE system with proximity-induced super-
conductivity. We apply an effective tight-binding Hamiltonian
for magnetic graphene [17–19,21] and extend it by taking into
account the formation of Cooper pairs in graphene due to
proximity-induced s-wave superconductivity. The real-space
tight-binding Hamiltonian is given by

HS = − t
∑

〈i, j〉,σ
c†

iσ c jσ + �
∑
i,σ

ξi c†
iσ ciσ + 2iλR

3

∑
〈i, j〉,σ,σ ′

c†
iσ c jσ ′[(ŝ × di j )z]σσ ′

+ i

3

∑
〈〈i, j〉〉,σ,σ ′

c†
iσ c jσ ′

[
λi

I√
3
νi j ŝz + 2λi

PIA(σ̂z )i j (ŝ × Di j )z

]
σσ ′

+
∑
i,σ,σ ′

λi
E c†

iσ ciσ ′ [m̂ · ŝ]σσ ′ +
∑
i,σ

�i
S (c†

i,σ c†
i,−σ + ci,σ ci,−σ ),

(1)

where c†
iσ (ciσ ) is the creation (annihilation) operator for an

electron on lattice site i that belongs to sublattice A or B and
carries spin σ =↑,↓.

The hoppings are indicated in Fig. 1. The orbital terms of
the QAHE part of the model are the nearest-neighbor hopping
t (sum over 〈i, j〉) and the staggered on-site potential � (ξi =
±1 on sublattice A or B). The spin-orbit part consists of the
Rashba SOC λR, where the unit vector di j points from site j
to i and ŝ contains spin Pauli matrices, and the two sublattice-
resolved next-nearest-neighbor SOC terms (sum over 〈〈i, j〉〉),
intrinsic SOC λi

I and pseudospin inversion asymmetry (PIA)
SOC λi

PIA (i = A, B). Intrinsic SOC depends on clockwise
(νi j = −1) or counterclockwise (νi j = 1) hopping paths from
site j to i. The PIA term contains Di j , the next-nearest-
neighbor unit vector pointing from site j to i, and σ̂z, the
pseudospin Pauli matrix. Time-reversal symmetry is broken
by the magnetic part, the sublattice-resolved exchange cou-
pling λi

E (i = A, B). The orientation of magnetization is along
the unit vector m̂ = (cos φ sin θ, sin φ sin θ, cos θ ), where φ

is measured with respect to the x axis and θ is measured
with respect to the z axis in Fig. 1. The last term introduces
superconductivity to the QAHE model. The superconducting
pairing is an on-site term that couples two electrons (or holes)
with opposite spin. Due to the broken pseudospin symmetry
we allow the superconducting pairing to be different on the

A and B sublattices �A
S , �B

S (assumed to be real). Such a
different proximity effect on the sublattices appears because
the atoms in the graphene layer locally feel a different envi-
ronment from the proximitized layers that often can be well
described by an effective model with different values for the
A and B sublattices. Energies are measured from the chemical
potential, which we set to zero throughout the paper. It can be
controlled by gating or doping.

To calculate bulk spectra of the superconducting system
we need to transform the real-space tight-binding Hamiltonian
to the BdG Hamiltonian in k space. For this we define the
particle-hole symmetric Nambu spinor

�k = [A↑(k), A↓(k), B↑(k), B↓(k),

A†
↓(−k),−A†

↑(−k), B†
↓(−k),−B†

↑(−k)]T , (2)

containing creation (annihilation) operators Aσ (k) [A†
σ (k)] for

sublattice A (B), a basis which doubles the number of degrees
of freedom of the system. For a given momentum k they are
particle-hole, pseudospin, and spin. The Hamiltonian can be
written as

HS = 1

2

∑
k

�†
kHBdG(k) �k, (3)
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FIG. 1. Scheme of a graphene lattice with proximity-induced
hoppings. Sublattices A and B are denoted by open and solid dots,
respectively. Color indicates action on spin (red, spin up; blue, spin
down). The minimal model contains spin-neutral nearest-neighbor
hopping t and on-site staggered potential �; spin-mixing nearest-
neighbor Rashba SOC λR; spin- and sublattice-resolved next-nearest-
neighbor intrinsic SOC λA

I , λB
I ; spin-mixing sublattice-resolved next-

nearest-neighbor PIA SOC λA
PIA, λB

PIA; and on-site sublattice-resolved
exchange splitting λA

E , λB
E (spin-dependent energy shift: spin up,

+; spin down, −). The superconducting pairing is indicated by
�A

S and �B
S , assumed to have, in general, different amplitudes on

A and B sublattices. The orientation of the reciprocal lattice is
shown by K and K ′. The magnetization orientation in real space is
specified by m̂.

with the 8 × 8 BdG Hamiltonian in k space HBdG(k) that
describes the quasiparticle spectrum by

HBdG(k)ψn
k = En

kψn
k, (4)

with energy En
k of the nth quasiparticle eigenstate

ψn
k = [

uA,n
k,↑, uA,n

k,↓, uB,n
k,↑, uB,n

k,↓,
(
vA,n

−k,↓
)∗

,

− (
vA,n

−k,↑
)∗

,
(
vB,n

−k,↓
)∗

,−(vB,n
−k,↑)∗

]T
(5)

at momentum k. The electronlike components are denoted by
ui,n

k,σ
, and the holelike components are denoted by vi,n

k,σ
with

spin σ =↑,↓ and sublattice i = A, B. With the basis defined
above we get the BdG Hamiltonian in the form

HBdG(k) =
(

He(k) �S

�S Hh(−k)

)
, (6)

where the electronlike Hamiltonian He(k) is found by a
Fourier transformation of the tight-binding model without
superconductivity in Eq. (1). The holelike Hamiltonian is
obtained from the transformation

Hh(k) = −T̂ −1He(k)T̂ , (7)

with the antiunitary time-reversal symmetry operator T̂ =
iσ̂0ŝyK̂, where σ̂i acts on pseudospin, ŝi acts on spin space, and
K̂ denotes the complex-conjugation operator. The sublattice-
resolved superconducting pairing is given by

�S = (
�A

S σ+ − �B
S σ−

)
s0, (8)

with the pseudospin matrices σ± = (σz ± σ0)/2.

The BdG Hamiltonian obeys, by construction, particle-
hole symmetry, i.e.,

P̂HBdG(k)P̂−1 = −HBdG(−k), (9)

with the antiunitary particle-hole operator P̂ = τ̂yσ̂0ŝyK̂,
where τ̂y is a Pauli matrix in particle-hole space and P̂2 = 1.
If we act with P̂ on a quasiparticle eigenstate, we get

P̂ψn
k = [

vA,n
k,↑, vA,n

k,↓, vB,n
k,↑, vB,n

k,↓,
(
uA,n

−k,↓
)∗

,

− (
uA,n

−k,↑
)∗

,
(
uB,n

−k,↓
)∗

,−(
uB,n

−k,↑
)∗]T

. (10)

The transformation of the BdG Hamiltonian and its eigen-
states under the particle-hole symmetry operator shows that
it connects states with positive energy at k to states with
negative energy at −k. The Bogoliubov quasiparticle operator
has the form

γ̂n =
∑

k

(
ψn

k

)†
�k. (11)

It fulfills P̂ γ̂n = γ̂−n, where the index −n indicates that it is
transformed to negative energy, pointing to the connection to
localized MZMs, for which this is the Majorana condition for
zero energy.

In the following, we discuss two different configurations of
this model.

III. CHIRAL MAJORANA FERMIONS FROM QUANTUM
ANOMALOUS HALL EFFECT WITH
OUT-OF-PLANE MAGNETIZATION

We investigate the effect of proximity-induced supercon-
ductivity on QAHE phases in graphene from uniform and
staggered intrinsic spin-orbit and exchange couplings. There-
fore, we consider the tight-binding Hamiltonian defined in
Eq. (1) with uniform and staggered intrinsic spin-orbit and
exchange coupling, Rashba SOC, and staggered potential.
We neglect, for simplicity, PIA SOC here. Only in the out-
of-plane configuration of the magnetization does the system
exhibit nontrivial QAHE phases [19]. Therefore, we use out-
of-plane orientation of magnetization. We focus on the two
most interesting cases, namely, the combination of staggered
intrinsic SOC and uniform exchange coupling, which we refer
to as (su), and uniform intrinsic SOC and staggered exchange,
denoted (us). The type of the proximity-induced couplings in
graphene—staggered or uniform—is determined by the prox-
imitized materials. Graphene on transition-metal dichalco-
genides (TMDCs) allows for staggered intrinsic SOC [17,22–
30], whereas on a topological insulator the intrinsic SOC
in graphene can be uniform [31]. Similarly, the induced
exchange coupling can be uniform [32–43] or staggered, as
recently proposed [19]. In this part we fix the superconducting
pairing to be equal on A and B, �A

S = �B
S = �S = 0.03t , and

use generic model parameters � = 0.1t , λR = 0.075t , λA
E =

|λB
E | = 0.25t , and λA

I = |λB
I | = 3

√
3 × 0.06t , if not indicated

otherwise, to illustrate our findings.

A. Bulk band structure and phase diagrams

We first compute bulk band structures from the BdG
Hamiltonian in Eq. (6). As a consequence of the additional
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FIG. 2. Calculated bulk band structure along ky = 0 for (su),
λA

I = −λB
I , λA

E = λB
E , �S = 0; (suS), λA

I = −λB
I , λA

E = λB
E , �S =

0.03t ; (us), λA
I = λB

I , λA
E = −λB

E , �S = 0; and (usS), λA
I = λB

I , λA
E =

−λB
E , �S = 0.03t . In the left column color indicates the spin expec-

tation value 〈ŝz〉 (red, spin up; blue, spin down), and in the right
column it shows particle (red) or hole (blue) character 〈τ̂ 〉n

k as defined
in Eq. (12). We use λA

I = |λB
I | = 3

√
3 × 0.06t , λA

E = |λB
E | = 0.25t ,

� = 0.1t , and λR = 0.075t .

hole degree of freedom, we expect the number of bands
in the superconducting spectra to double compared to the
normal ones, which we calculate from the electron part of
the Hamiltonian He(k) and indicate by �S = 0. In Fig. 2 we
compare the normal and superconducting spectra for the two
cases (su) and (us).

To identify the particle or hole character of the supercon-
ducting bands we define a particle-hole expectation value as

〈τ̂ 〉n
k =

∑
iσ

(∣∣ui,n
k,σ

∣∣2 − ∣∣vi,n
−k,σ

∣∣2
)
, (12)

which sums up the probabilities of the components of the nth
eigenstate over sublattices i = A, B and spin σ and weights
particle (hole) contributions positive (negative). In Fig. 2
we can trace back the appearance of additional hole bands
compared to the normal system by mirroring the normal bands
around the E = 0 axis and an axis through the M point (which
is like transforming k → −k). The superconducting coupling
then induces gap openings. The superconducting spectra (suS)
and (usS) exhibit (as constructed) particle-hole symmetry.

To study whether the systems in the panels in Fig. 2 for
(suS) and (usS) belong to topological superconducting phases
we explore the bulk band gap and BdG Chern number in the
λI -λE parameter space. The topological character is deter-
mined by a Chern number since the 2D model breaks time-
reversal and chiral symmetries but is particle-hole symmetric
and thus belongs to the symmetry class D of the periodic
table of topological invariants [44]. The BdG Chern number
is defined as

CBdG = 1

2π

occ∑
m

∫
BZ

d2k �m
BdG,z(k), (13)

FIG. 3. Topological phase diagrams for �S = 0 in (su) and (us)
and �S = 0.03t in (suS) and (usS). Global bulk band gap and (BdG)
Chern number (white numbers) for � = 0.1t and λR = 0.075t with
varying intrinsic SOC λA

I , λB
I and exchange splitting λA

E , λB
E for out-

of-plane magnetization m̂ = (0, 0, 1). Negative band gap indicates a
transition to a metallic system due to indirect band gap closing from
bands at different k values.

where �m
BdG,z(k) is the z component of the Berry curvature for

the mth band in momentum space,

�m
BdG,z(k)

=
∑
n 
=m

−2Im
〈
ψm

k

∣∣∂kx HBdG(k)
∣∣ψn

k

〉〈
ψn

k

∣∣∂ky HBdG(k)
∣∣ψm

k

〉
(
Em

k − En
k

)2 .

(14)

The BdG Chern number is calculated by means of the BdG
Hamiltonian HBdG(k) [Eq. (6)] with the quasiparticle wave
functions ψm

k and eigenenergies Em
k . Summation runs over all

occupied bands (m = 1, 2, 3, 4), and the integration is over the
whole Brillouin zone.

The topological phase diagrams are presented in Fig. 3,
where we compare the QAHE systems to their superconduct-
ing analogs. We expect to find regions (away from phase
transitions) in phase space with Chern numbers CBdG = 2C
since in the BdG formalism we describe the quasiparticle
degrees of freedom (electron and hole). Therefore, there is
one copy of QAHE for each quasiparticle type. Indeed, we
find this relation between the QAHE systems and topological
chiral superconductors. For the (su) case we go from C = ±2
to CBdG = ±4, and for the (us) case we go from C = ±1 to
CBdG = ±2. We determine analytical conditions to be in a
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topological superconductor phase from the gap-closing con-
dition for particle-hole-symmetric systems det[HBdG(k)] = 0
at K and K ′. The topological regions are confined by

(suS) |λE | >

√
�2

S + (λI − �)2, (15)

(usS) |λE | >

√
�2

S + (λI − �)2

∧ |λE | <

√
�2

S + (λI + �)2

∧ |λE | >

√
�2

S + λ2
I + 4λ2

R + �2 − 2
√

λ2
I

(
4λ2

R + �2
)
,

(16)

with |λI | = |λA
I | = |λB

I | and |λE | = |λA
E | = |λB

E |. The results
agree exactly with the numerically found nontrivial regions
in the panels in Fig. 3 for (suS) and (usS). For the (suS)
case the superconducting gap introduces an anticrossing to the
topological phase boundaries and leads to symmetric band gap
closing at K and K ′. For the (usS) case we find four expres-
sions (for each λE ≷ 0) for zero-energy solutions, but we need
only three to define the border of the topological regions in
Eq. (16). The gap is closed by an indirect closing that happens
simultaneously between one band in K and one in K ′ such that
EK/K′ = 0. Before a trivial gap opens, the system first enters
a metallic phase. Around λE ≈ 0, superconductivity induces
anticrossings between the gap-closing lines.

B. Chiral Majorana fermions in nanoribbons

For a chiral topological superconductor the BdG Chern
number indicates the number of edge states in a finite system,
counting chiral Majorana fermions, analogous to the Chern
number for QAHE, specifying the number of chiral fermions.
A chiral Majorana fermion has half of the degrees of freedom
of a chiral fermionic edge state in the QAHE. Therefore,
the BdG Chern number cannot be directly connected to a
quantized Hall conductance that is proportional to the number
of edge states. In fact, the transport properties of samples with
chiral Majorana fermions and their unique signatures are the
subject of ongoing research [14–16].

To show the bulk-edge correspondence for chiral supercon-
ductors we compute band structures of zigzag and armchair
nanoribbons presented in Fig. 4. For the (suS) case we find
four chiral Majorana states per edge in zigzag and armchair
ribbons, as expected from the BdG Chern number. In the
zigzag ribbon they form pairs of valley-centered and inter-
valley states. In the armchair ribbon the states are degenerate
and less localized. The (usS) case exhibits two well-localized
chiral states per edge in the zigzag- as well as the armchair-
terminated ribbon.

To quantify the localization of the edge states in a nanorib-
bon, we sum the probability amplitude in the ith unit cell
of the mth quasiparticle eigenstate χm

i (k) weighted by the
position of the unit cell in the ribbon,

N∑
i=0

(
i − N

2

)∣∣χm
i (k)

∣∣2
/

N

2
, (17)

FIG. 4. Calculated band structure of zigzag (left) and armchair
(right) nanoribbons with a width L (W ) of 100 unit cells for
zigzag (armchair). Color indicates localization of states as defined
in Eq. (17). The position and propagation direction of the edge states
are shown in the scheme. (suS) shows λA

I = −λB
I , λA

E = λB
E , and (usS)

shows λA
I = λB

I , λA
E = −λB

E , both with �S = 0.03t , λA
E = |λB

E | =
0.25t , λA

I = |λB
I | = 3

√
3 × 0.06t , � = 0.1t , and λR = 0.075t .

where N is the number of unit cells, k is the momentum (k =
kx for a zigzag ribbon, k = ky for an armchair ribbon), and we
sum the electron and hole contributions. From the resulting
number, which varies between −1 and 1, we learn on which
side of the ribbon a state propagates and how strongly it is
confined to the edge.

We have found only even numbers of chiral Majorana
fermions for the systems investigated above. Can we tune our
graphene systems to achieve the minimal topological state
in two dimensions that shows one chiral Majorana fermion
per edge? Due to the particle-hole symmetry, which connects
states at +En

+k to states at −En
−k, gap closings always appear

simultaneously at K and K ′ in our system. Therefore, the BdG
Chern number always changes by CBdG = ±2, and one pair
of chiral Majorana fermions localized on opposite edges is
created symmetrically around each K point; that is, we always
have an even number of states per edge in this configuration.

IV. SINGLE CHIRAL MAJORANA FERMION FROM THE
QUANTUM ANOMALOUS HALL EFFECT WITH

IN-PLANE MAGNETIZATION

We aim to find a chiral topological superconductor phase
with CBdG = ±1. As we have discussed, this is not possible in
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FIG. 5. Global bulk band gap and Chern number (white num-
bers) for λPIA = 0.045t with varying intrinsic SOC λA

I , λB
I and

exchange splitting λA
E , λB

E for in-plane magnetization along m̂ =
(
√

3/2, 1/2, 0).

graphene when the topologically nontrivial gaps are formed
in the valleys. Instead, such a gap should be introduced
around the � or M points. There are proposals for chiral
topological superconductor systems in graphene where the
Majorana fermions are created from a nontrivial gap at the
� point, but a very high chemical potential is necessary, and
the band gaps are very small since the bulk gap comes from
only the proximity-induced superconductivity [45,46].

We propose to use a QAHE phase with C = 1 induced by a
nontrivial gap at an M point [47,48] and add proximity s-wave
superconductivity to it. We consider the real-space Hamil-
tonian from Eq. (1), taking into account intrinsic SOC and
exchange coupling like before and, additionally, PIA SOC. We
set Rashba SOC to zero, as too large λR is detrimental for the
QAHE phase (see Fig. 11 in Appendix A for the discussion
of the effects of the Rashba parameter), and we wish to
limit the parameter space to the bare minimum to remove the
unnecessary complexity and still see the desired effect. To this
end we also neglect the staggered potential �. We consider
sublattice-resolved terms for intrinsic spin-orbit and exchange
coupling and now also for the superconducting pairing �A

S
and �B

S . We fix the numerical values for PIA SOC λA
PIA =

λB
PIA = λPIA = 0.045t and the orientation of magnetization

to θ = π/2 and φ = π/6 to have nondegenerate bands for
in-plane magnetization at the M points.

A. Quantum anomalous Hall effect from in-plane magnetization

We first investigate the normal system without supercon-
ductivity to find QAHE phases. We compute the bulk band
gap and Chern numbers from the Bloch Hamiltonian He(k)
without superconductivity and explore the λI -λE parameter
space. The results are shown in Fig. 5. The (su) case remains
trivial, but for (uu) we find a QAHE phase with C = −1 which
is independent of the amplitude of intrinsic SOC and PIA
(see Fig. 11 in Appendix A) as long as both are present. The
topological phase transition is controlled by the exchange cou-
pling. We present only results for uniform exchange coupling
since for staggered exchange not all degeneracies are removed
and we cannot easily calculate Chern numbers.

FIG. 6. Calculated bulk band structure along ky = 0 for �A
S =

�B
S = 0 (a) with λA

E = λB
E = 0.5t , (b) with λA

E = λB
E = 1t , and

(c) with λA
E = λB

E = 1.5t . (d)–(f) The same as in (a)–(c) for �A
S =

0.07t and �B
S = 0.14t . We use λA

I = λB
I = 3

√
3 × 0.03t and λPIA =

0.045t with in-plane magnetization along m̂ = (
√

3/2, 1/2, 0).

The QAHE phase has been proposed to exist in low
buckled honeycomb lattices [47,48]. Based on our results for
graphene on TMDCs, where sizable PIA SOC has been found,
we propose that it could also be realized by means of van der
Waals heterostructures with flat graphene.

B. Bulk band structure and chiral Majorana
fermions in zigzag nanoribbons

To demonstrate that the nontrivial gap opens at the M point
we show the bulk band structures of the normal system for dif-
ferent values λE across the phase transition in Figs. 6(a)–6(c).
In Figs. 6(d)–6(f) we introduce superconducting proximity
pairing. The splittings of the bands are very small due to the
small values of the superconducting gap we use, compared
to the exchange coupling. The values for the superconducting
pairing on the A and B sublattices need to be different to have
nondegenerate bands. We use �A

S = 0.07t and �B
S = 0.014t .

The BdG Chern number in Fig. 6(d) is CBdG = 0, and in
Fig. 6(f) we get CBdG = −2. Alternatively, the degeneracy
of the bands could also be lifted by different values of the
exchange coupling on A and B.

Further, we calculate the band structures for zigzag
nanoribbons for the QAHE and chiral topological super-
conductor phases. The results are presented in Fig. 7. As
expected, we find one chiral fermionic state per edge in the
QAHE system and two chiral Majorana fermions per edge in
the topological superconductor.

C. Phase diagrams and zigzag nanoribbons
with a single chiral Majorana fermion

Can we now reach a CBdG = ±1 phase by tuning the
parameters in the topological superconductor? This can be
achieved by introducing an asymmetry to the system such
that the phase transitions of the two copies of QAHE for
quasiparticles happen at different points in the phase space,
transitioning one copy already to a topologically trivial phase

245441-6



CHIRAL MAJORANA FERMIONS IN GRAPHENE FROM … PHYSICAL REVIEW B 101, 245441 (2020)

FIG. 7. Calculated band structure of zigzag nanoribbons with a
width of 100 unit cells for �A

S = �B
S = 0 (left) and �A

S = 0.07t ,
�B

S = 0.14t (right). Color indicates localization of states as shown
in the sketches. Arrows specify the direction of propagation for
fermionic states (solid line) and Majorana fermions (dashed line). We
use λA

I = λB
I = 3

√
3 × 0.03t , λPIA = 0.045t , and λA

E = λB
E = 1.5t

with in-plane magnetization along m̂ = (
√

3/2, 1/2, 0).

while the other one remains nontrivial. The asymmetry can
be introduced by breaking sublattice symmetry, i.e., using
parameters with different values on the A and B sublattices.
We show this by scanning the λA

E -λB
E parameter space (see

Fig. 8). Without superconductivity, we find a topologically
trivial phase (C = 0) and a QAHE phase (C = −1). The
two regions are separated by a curve along which the bulk
band gap closes [Figs. 8(a) and 8(b)]. In the presence of
superconductivity, the curve splits into two lines when going
away from the point λA

E = λB
E = 1t , inducing two new regions

in the phase diagram with CBdG = −1 between these lines. In
this case, the direct transition from CBdG = −2 to CBdG = 0 at
the point λA

E = λB
E = 1t goes through a phase with CBdG = −1

when λA
E 
= λB

E , where only one of the two QAHE copies has
entered a trivial phase.

Close to the region where the phase transition happens
in the nonsuperconducting system, topological phases with
CBdG = −1 can be introduced in the analogous superconduct-
ing system. We demonstrate this in Fig. 9. Going along the x
axis shows the transition from a trivial insulator to a QAHE
phase when tuning the exchange coupling on sublattice B
while keeping it fixed on A. The transition appears at a point
where the bulk band gap closes. When the system is turned
into a superconductor (going along the y axis), the gap-closing
point splits into two subsequent gap closings that get farther
apart from each other with increasing superconducting cou-
pling. In the superconducting phase diagram, this leads to a
new phase with CBdG = −1 which appears between the trivial
phase (CBdG = 0) and the topological superconducting phase
with even BdG Chern number CBdG = −2. Corresponding
bulk band structures at distinct points in this phase diagram
showing the evolution of the bulk bands across the phase
transitions are presented in Appendix B.

The phase space for sublattice asymmetric superconduct-
ing pairing and uniform exchange coupling is presented in
Appendix C, where we show that different superconducting
couplings on the sublattices can also lead to a topological
superconductor with CBdG = −1.

FIG. 8. Global bulk band gap (left) and (BdG) Chern number
(right). (a) and (b) show a scan of the λA

E -λB
E parameter space

of the QAHE phase diagram (�A
S = �B

S = 0). (c) and (d) show a
scan of the same parameter space of the topological superconductor
phase diagram with �A

S = �B
S = 0.07t . We use λA

I = λB
I = 3

√
3 ×

0.03t and λPIA = 0.045t with in-plane magnetization along m̂ =
(
√

3/2, 1/2, 0).

Finally, we explore zigzag nanoribbon spectra at distinct
points of the phase diagrams [from Figs. 8(d) and 13(b)]
with CBdG = −2 and CBdG = −1 in Fig. 10. When the sys-
tem is in a single Majorana phase, one pair of chiral edge
states vanishes. Inside the gap of this trivial insulator, the
chiral Majorana fermions of the still nontrivial part of the
quasiparticle-QAHE copy reside. For the asymmetric ex-
change coupling the states of the trivial system are spectrally
quite close to the chiral Majorana edge states, whereas for
the asymmetric superconducting pairing the gap is large.
Nevertheless, the localization strength is comparable for both
cases.

Before we conclude, we briefly discuss the supercon-
ducting proximity effect in graphene. This effect was first
demonstrated using Nb contacts [49]. By now, the family
of 2D crystals also comprises superconducting materials that
can be used to proximity induce superconductivity in van der
Waals heterostructures. Gated monolayer TMDCs, such as
MoS2, NbSe2, WS2, and WTe2, show Ising superconductivity
that can resist even large magnetic fields [50–54]. Strained
TMDCs are proposed to exhibit superconducting states [55],
and layered superconducting materials could serve as possi-
ble thin-film proximity substrates [56]. The search for new
2D superconducting materials and their characterization and
description are a very active field of research. While our
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FIG. 9. (a) Global bulk band gap and (b) BdG Chern number.
Along the x axis �A

S = �B
S = 0, showing the QAHE phase transition

for fixed λA
E = 1.5t and varying λB

E . Going along the y axis shows
the phase space of the superconducting system. We use λA

I = λB
I =

3
√

3 × 0.03t and λPIA = 0.045t with in-plane magnetization along
m̂ = (

√
3/2, 1/2, 0).

calculations above are for a model system with assumed
different superconducting band gaps (see also Appendix C),
the variety of superconducting van der Waals heterostructures
gives us confidence in an experimental realization of the
predicted effects. At the current stage of research it is still
too early (even for density functional theory) to pinpoint the
specific combination of materials to realize the model and

FIG. 10. Calculated band structure of zigzag nanoribbons with
a width of 100 unit cells. The top panels show spectra for �A

S =
�B

S = 0.07t with λA
E = 1.5t , λB

E = 1.2t (left, CBdG = −2) and λA
E =

1.5t , λB
E = 0.65t (right, CBdG = −1). The inset shows a zoom of

the edge states around kx = 0. Color indicates the localization of
states as indicated in the sketches. The bottom panels show spectra
for λA

E = λB
E = 1.5t with �A

S = 0.07t , �B
S = 0.014t (left, CBdG =

−2) and �A
S = 0.07t , �B

S = 0.89t (right, CBdG = −1). The dashed
arrows specify the direction of propagation of Majorana fermions.
We use λA

I = λB
I = 3

√
3 × 0.03t and λPIA = 0.045t with in-plane

magnetization along m̂ = (
√

3/2, 1/2, 0).

observe nontrivial topological phases with single Majorana
fermions in graphene devices.

V. SUMMARY

In summary, we studied superconducting proximity to
QAHE phases in graphene. By analyzing the phase space,
we found that chiral topological superconductor phases form
with even BdG Chern numbers for out-of-plane magnetization
at the K points. In the zigzag and armchair nanoribbons we
showed corresponding spectra with chiral states localized at
the edges. Inducing sublattice asymmetry in the supercon-
ducting pairing does not allow for odd BdG Chern num-
bers due to the symmetric appearance of gap closings and
phase transitions at K or K ′. Around the M point, a QAHE
state with C = −1 in the normal system and CBdG = −2
with superconducting proximity can be induced with in-plane
orientation of magnetization. We showed that in this case
a transition to CBdG = −1 is possible either by sublattice
asymmetric exchange coupling or superconducting pairing,
leading to two subsequent phase transitions, one for each copy
of QAHE from the quasiparticles. In between only one copy is
topological, resulting in CBdG = −1, which is the topological
phase of interest to achieve non-Abelian statistics.
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APPENDIX A: QUANTUM ANOMALOUS HALL EFFECT
PHASE SPACE ANALYSIS FOR FURTHER SYSTEM

PARAMETERS

In the main text we set Rashba SOC to zero since a too
large value destroys the topological phase. In Fig. 11(a) we

FIG. 11. Global bulk band gap and Chern number (white num-
bers) for (a) λA

PIA = λB
PIA = 0.045t and λA

E = λB
E = 1.5t with varying

intrinsic SOC λA
I , λB

I and Rashba SOC λR for in-plane magnetization
along m̂ = (

√
3/2, 1/2, 0). (b) The same as in (a) for λA

I = λB
I =

3
√

3 × 0.03t and λR = 0 with varying exchange coupling λA
E , λB

E and
PIA SOC λA

PIA, λB
PIA.
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FIG. 12. Evolution of bulk bands along the phase transition:
trivial to a single chiral Majorana fermion to a pair of chiral Ma-
jorana fermions. (a) Trivial superconductor CBdG = 0 for λB

E = 0.5t .
(b) First gap closing at λB

E = 0.57t . (c) Topological superconductor
CBdG = −1 for λB

E = 0.65t . (d) Topological superconductor CBdG =
−1 for λB

E = 0.75t . (e) Second gap closing at λB
E = 0.79t . (f) Topo-

logical superconductor CBdG = −2 for λB
E = 1.0t . We use parameters

λA
E = 1.5t , �A

S = �B
S = 0.2t , λA

I = λB
I = 3

√
3 × 0.03t , and λPIA =

0.045t with in-plane magnetization along m̂ = (
√

3/2, 1/2, 0).

show that the topologically nontrivial phase survives up to
λR ≈ 0.05t .

The presence of both intrinsic SOC and PIA SOC is
necessary because they guarantee the presence of a bulk band
gap even along high-symmetry lines in the Brillouin zone.
Their strength has no direct influence on the phase transitions
[see Fig. 11(a) for intrinsic SOC and Fig. 11(b) for PIA SOC],
but they need to have a finite value.

The phase transition is directly controlled by the exchange
coupling, as shown in Fig. 11(b). Its orientation is chosen
along m̂ = (

√
3/2, 1/2, 0) in the plane in order to have non-

degenerate bands and a bulk band gap [47].

APPENDIX B: EVOLUTION OF BULK BAND STRUCTURE
ALONG THE PHASE TRANSITION:

TRIVIAL, CBdG = −1, CBdG = −2

We show the corresponding bulk band structures of distinct
points in the phase space shown in Fig. 9 for a superconduct-
ing system with �A

S = �B
S = 0.2t . Going along a line parallel

to the x axis in the phase diagram in Fig. 9, i.e., increasing λB
E

FIG. 13. (a) Global bulk band gap and (b) BdG Chern number.
(a) and (b) show a scan of the �A

S -�B
S parameter space for λA

E =
λB

E = 1.5t . We use λA
I = λB

I = 3
√

3 × 0.03t and λPIA = 0.045t with
in-plane magnetization along m̂ = (

√
3/2, 1/2, 0).

while keeping the superconducting coupling fixed, the system
is first in a trivial superconducting phase with gapped bulk
bands as presented in Fig. 12(a). By enhancing the value of
the exchange coupling on sublattice B, the bulk band gap
is then closed [see Fig. 12(b)]. One pair of the four low-
energy bands, which is connected via particle-hole symmetry,
touches. Increasing the exchange coupling further reopens the
gap [see Fig. 12(c)], and the system enters a topologically
nontrivial phase with BdG Chern number CBdG = −1. The
splitting between this pair of particle-hole bands keeps in-
creasing with growing λB

E , while the gap between the other
particle-hole symmetric pair of low-energy bands decreases
[see Fig. 12(d)] and closes [see Fig. 12(e)]. This leads to a
second phase transition to a chiral topological superconductor
with CBdG = −2 after the bulk gap reopens [see Fig. 12(f)].
The evolution of the bulk bands demonstrates the consecutive
phase transitions of the two QAHE copies of the quasiparticles
in the chiral topological superconductor.

APPENDIX C: SINGLE CHIRAL MAJORANA FERMION
FROM AN ASYMMETRIC SUPERCONDUCTING GAP

We find for the �A
S -�B

S parameter space (Fig. 13) a gap
closing when the asymmetry between the superconducting
pairing on A and B is large enough and is accompanied by
a phase transition of one copy of the quasiparticle QAHE,
indicated by the change in the BdG Chern number from −2
to −1.
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