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Fundamental and environmental contributions to the cyclostationary third moment of current
fluctuations in a tunnel junction
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Current fluctuations generated by tunnel junctions are known to be non-Gaussian. However, this property is
lost when fluctuations are measured at high frequency and limited bandwidth. We show that the fluctuations of
the electric field generated by a tunnel junction at frequency f displays third order correlations, i.e., skewness,
when the junction is electrically driven at 3 f , revealing the Poisonnian statistic of charge transfer by the barrier
even at short timescales. In addition to this intrinsic contribution from the junction, we observe extra correlations
induced by the environmental noise at frequency f as well as a feedback effect coming from the environmental
impedance not only at frequency f but also at some multiples of f .
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I. INTRODUCTION

Electronic noise in mesoscopic conductors has been the
object of many investigations [1]. Indeed, quantum transport
is determined by the statistics, dynamics, and interactions of
charge carriers. These are imprinted in the statistics of current
fluctuations, the study of which thus provides insights into
the conduction mechanisms. Many experiments deal with the
variance of voltage or current fluctuations, measured over
long timescales, i.e., at low frequency, which already provides
interesting information beyond the measurement of the con-
ductance. However, in order to access dynamical properties, it
is usually necessary to perform detection at shorter timescales,
i.e., to work at finite frequency f . Unfortunately, the variance
of fluctuations, which is the simplest quantity to measure
beyond average current, is usually frequency independent
when charge is conserved [2]. Beyond the variance, the noise
susceptibility, i.e., the dynamical response of noise to an ac
excitation, has proven to be a probe of the energy relaxation
time in wires [3,4]. Photoassisted noise can also be used to
access the same quantity [5].

Beyond usual variance, higher order moments have been
measured in various samples [6,7]. For systems with slow
dynamics like quantum dots, frequency-dependent statistics
reveal the tunnel rates through the barriers [8,9]. In sam-
ples with fast dynamics such as metallic wires [10–12], the
frequencies involved are in the GHz range, and microwave
techniques are mandatory. The third moment of current fluc-
tuations in such a frequency domain has been performed in
tunnel junctions [13] and short diffusive wires [14]. These
experiments face, beside the very low signal, two difficulties:
first, the need for a very wide bandwidth, which is difficult
to achieve in microwave circuits. Second, it involves environ-
mental contributions which arise as soon as the impedance
of the detecting apparatus is nonzero [15]. In practice, this
impedance is usually 50 � and of the same order as that of the
sample. As a consequence, there is no report of detection of
third order fluctuations in mesoscopic devices beyond 1 GHz,

except by a mixed detection which involves both low and high
frequencies [16,17].

The constraint on the detection bandwidth is stringent: A
signal in the range [ f1, f2] has no third moment if f2 < 2 f1, so
for example, experiments working with a 4–8 GHz bandwidth,
common in the detection of cryogenic microwave signals,
are useless for the detection of a third moment. This severe
condition originates from stationary: The third moment in
frequency domain 〈i( f1)i( f2)i( f3)〉 is zero unless f1 + f2 +
f3 = 0. This condition can be relaxed into f1 + f2 + f3 = n f0

with n any integer if the system is excited by a periodic signal
at frequency f0. This condition of cyclostationarity can be
obeyed with a detector of narrow bandwidth for n = ±1, f0 =
f , to give the cyclic moment K1( f ) = 〈i2( f )i(− f )〉, or for
f0 = 3 f , to give the cyclic moment K3( f ) = 〈i3( f )〉. Under
cyclostationary conditions, a third moment of current fluctu-
ations can in principle be measured with a narrow bandwidth
detection scheme. The purpose of this paper is to implement
such a measurement to address the second difficulty related
to measurements of third moments in the microwave domain:
What are the environmental effects in this measurement? This
question has been partially addressed theoretically [18].

This communication is organized as follows: In Sec. II
we describe the experimental setup and results of the mea-
surement of the cyclostationary third moment of voltage
fluctuations generated by a tunnel junction placed at low
temperature; in Sec. III we analyze the results in terms of
intrinsic contributions and environmental effects. Section IV
contains a conclusion, remarks, and perspectives.

II. EXPERIMENTAL SETUP

A. Sample and biasing

Tunnel junctions are known to produce non-Gaussian fluc-
tuations due to the binomial statistics of the charge transfer
through the tunneling barrier. We used a junction similar
to the ones used in shot-noise thermometry [19], with a
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FIG. 1. Experimental setup. The sample is excited at frequency
f0 = 3 f = 14.55 GHz. The LO of the IQ mixer is at frequency f =
4.85 GHz.

planar geometry of area 5 × 1 μm. It has been made using
usual lithography techniques and evaporation of aluminum
electrodes on a silicon substrate. The insulating tunnel barrier
is obtained by controlled oxidation of the first electrode under
oxygen atmosphere. The dc resistance of the junction is RJ =
130 � at 3.7 K (116 � at 300 K). The experiment has been
performed in a helium-free cryostat with a base temperature of
3.7 K so that aluminum is not superconducting. The junction
is current biased through a bias-Tee (see Fig. 1), allowing
the separation of high frequency signals from the dc bias
line. The junction is ac biased by a single tone at frequency
f0 = 3 f = 14.55 GHz using a directional coupler.

B. Homodyne measurement

The spectral density of voltage fluctuations at the junction
is of the order of 10−10 V/

√
Hz which is way too small

for direct detection without amplification. The microwave
signal generated by the junction propagates through an iso-
lator before amplification by a low-noise 4–8 GHz cryogenic
amplifier with a noise temperature of 2.5 K. The role of
the isolator is to make the temperature and the impedance
of the environment seen by the junction well defined: a
50 � load at 3.7 K instead of the input of the amplifier
with an unknown, frequency-dependent impedance and noise
temperature. After extra amplification at room temperature,
the signal is down-converted from f = 4.85 GHz to low fre-
quency by an IQ mixer with high linearity. The in-phase and
in-quadrature components X and P are amplified and low-pass
filtered, with a measurement bandwidth of � f = 225 MHz.
The signal is then digitized with a fast acquisition card (14
bits, 400 MS/s). The joint probability density P (X, P) is
calculated on the fly from the acquired data. The skewness
of the voltage fluctuations 〈X 3〉 and 〈P3〉 is directly linked to
the cyclic third moments Kv,3( f ) = 〈vmes( f )3〉 and Kv,1( f ) =
〈vmes( f )2vmes(− f )〉 of voltage fluctuations vmes( f ) measured
at the input of the cryogenic amplifier:

〈X 3〉 + i〈P3〉 = 3
4 G3[Kv,3( f )ei3φ0 + 3Kv,1( f )eiφ0 ]� f 2, (1)

where G is the total voltage gain of the amplification chain
and φ0 a global phase due to the delay between excitation and
detection. The amplitude of the ac excitation Iac, the gain G,
and the noise added by the amplification chain are calibrated
by measuring the variance of the photoassisted noise 〈X 2〉 and
〈P2〉 vs Idc, the theory of which is well established [20,21].
The power gain G2 is estimated around 78 dB and the effective

FIG. 2. Differential probability density �P (X, P) of the in-
phase and in-quadrature components of voltage fluctuations at fre-
quency f = 4.85 GHz generated by a tunnel junction under cyclo-
stationary excitation at frequency 3 f (after subtraction of the phase
insensitive contributions). The existence of a third order moment
is revealed by the rotational symmetry clearly visible in the data.
Different plots correspond to different dc biases.

noise temperature of the measurement is 3 K, as expected for
a 130 � load with this specific cryogenic amplifier. The signal
to noise ratio at high bias is limited by the noise of the junction
itself.

C. Third moment from the symmetries of the histograms

The phase coherence between the detection at frequency f
and the excitation at frequency 3 f can be switched on or off.
When off, a slight detuning of one of the microwave sources
averages to zero the contributions that depend on φ0 and thus
should lead to 〈X 3〉 = 0 and 〈P3〉 = 0. All remaining contri-
butions are due to the nonlinearity of the amplification chain
and of the acquisition card. To remove these unwanted contri-
butions in P (X, P), we measure the difference in histograms
obtained with and without phase coherence. The resulting
differential probability �P (X, P) showed Fig. 2 has a finite
order rotational symmetry. This is the direct consequence of
the homodyne demodulation of the noise at a fraction of the
modulation frequency. It is then natural to write P (X, P) in
polar coordinates: X = r cos θ and P = r sin θ and express
P (r, θ ) as the Fourier series:

P (r, θ ) =
∑
n∈Z

Pn(r)e−inθ . (2)

We define:

Wα,n = π

2

∫ +∞

0
Pn(r)rα+1dr. (3)

Moments of the probability distribution P (X, P) are re-
lated to the Wα,n, which can be interpreted as the contribution
of the rotational symmetry of order n to the moment of order
α. For the third moment we find:

〈X 3〉 = Re(W3,3 + 3W3,1)

〈XP2〉 = Re(W3,1 − W3,3)

〈P3〉 = Im(W3,3 − 3W3,1)

〈PX 2〉 = Im(W3,1 + W3,3). (4)

The skewness of the marginal probability distributions
P (X ) and P (P) is finite when P (X, P) shows either a onefold
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FIG. 3. Contributions W3,3 and W3,1 to the third moment of
voltage fluctuations as a function of Idc for various ac excitations.
They are calculated using Eq. (3) from the measurements of the
differential probability density �P (X, P) of Fig. 2. The distributions
P (X, P) have been rotated by a global angle in order to maximize
the signal at high dc bias on the in-phase component X . Each data
point is averaged over 45 mn.

or threefold symmetry characterized, respectively, by W3,1 and
W3,3. The measurement of the joint probability is necessary to
separate these two contributions. In our experiment, it appears
that W3,1 � 0 (see Fig. 3). This corresponds to Kv,1 = 0 as
expected for a modulation at frequency 3 f . We consider in
the following 〈X 3〉 = Re(W3,3) and 〈P3〉 = Im(W3,3), in order
to improve signal to noise ratio, and an arbitrary phase φ0 that
maximizes 〈X 3〉 and makes 〈P3〉 vanish at high bias.

From Fig. 3, we see that the measured third moment at high
bias (Idc > 40 μA) shows a plateau with an amplitude propor-
tional to Iac. This is qualitatively close from what is expected
for a tunnel junction, i.e., a third moment proportional to the
average current 〈I〉: 〈(I − 〈I〉)3〉 = e2〈I〉 [6,22]. In the limit
where the noise is adiabatically modulated, all the moments
of the current distribution follow the bias modulation, and we
should have Kv,3 ∝ e2Iac. The third moment at low bias shows,
however, a clear deviation from this behavior. In the following
we show that there are extra contributions that comes from the
measurement setup and demonstrate how to separate them.

III. EFFECT OF THE ENVIRONMENT

Ideally, current fluctuations in a conductor should be mea-
sured using a ammeter with both a fast response and a zero
input impedance. However, microwave equipment has a 50 �

input impedance. Furthermore, the tunnel junction is embed-
ded in an electromagnetic environment consisting of its own
capacitance, connecting leads, wire bonds, and a transmission
line (TL). This can be modeled by the effective reciprocal
circuit shown in Fig. 4. The input impedance Zin represents
the impedance seen by the junction, the output impedance
Zout, the effective load on the TL. The voltage transmission
coefficients t(resp. t ′), from the junction to the TL (resp. the
TL to the junction), include the finite propagation time in the

FIG. 4. Model for the impedance mismatch between the junction
and the transmission line. The box represents an effective four ports
circuit.

circuit. This environment induces voltage fluctuations across
the junction given by:

δV ( f ) = −i( f )Zeff ( f ) + t ′( f )venv( f ) (5)

with Zeff = RJZin( f )/(RJ + Zin( f )). venv is the noise coming
from the measurement setup (here dominated by the thermal
noise of the 50 � load of the isolator) and i( f ) the current
fluctuations generated by the junction. Voltage fluctuations
across the junction lead to environmental corrections to the
cyclostationary third moment, in a similar way they do in the
stationary regime [15,23,24]. Using circuit theory, we find the
different contributions to the cyclostationary third moment of
voltage fluctuations detected by the amplifier connected to the
transmission line [18]:

Kv,3( f ) = t ( f )3R3
J [Kint ( f ) + Kenv( f ) + Kf b( f )] (6)

with Kint the intrinsic contribution of the sample, Kenv the
contribution due to the term t ′( f )venv( f ) in Eq. (5) and Kf b,
the contribution due to the term i( f )Zeff ( f ). In Ref. [18],
these quantities have been calculated at zero bias and zero
frequency, i.e., neglecting the signal propagation in the circuit,
which does not correspond to our experiment. In the following
we derive the last two terms in Eq. (6) at any bias Idc and in
the case of realistic microwave setup. We have computed the
contributions to the third moment due to thermal fluctuations
of the environment Kenv and the feedback effect Kf b using
the so-called cascaded Langevin approach [15], where we use
the separability of timescales between the fluctuations δV (t )
and i(t ).

Considering that the noise generated by the junction re-
sponds adiabatically to the applied voltage, we have:

〈i(t )2〉 = S(V (t )) + δV (t )
dS

dV

∣∣∣
V (t )

, (7)

where brackets 〈〉 designate an ensemble average and V (t ) =
RJ [Idc + Iac cos(2π f0t )] is the periodically modulated bias
voltage. In the following, we choose a more general approach.
Because of cyclostationarity, Fourier components i( f ′) sepa-
rated by a frequency α f0 where f0 is the driving frequency
(here f0 = 3 f with f the detection frequency) and α an
integer, can be correlated:

Sα ( f ′) = 〈i( f ′)i(α f0 − f ′)〉. (8)

Sα ( f ′) is the dynamical response of order α > 0 of the
noise at frequency f ′ to an excitation at f0 [25]. S0 is the
static response, i.e., the photoexcited noise. On the top of
the excitation at f0, the voltage fluctuations δV ( f + ε) around
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frequency f introduce additional correlations:

〈i( f ′)i(α f0 + f + ε − f ′)〉 = Dα ( f ′)δV ( f + ε), (9)

where Dα ( f ′) is the noise susceptibility of order α. The most
general correlator thus reads:

〈i( f ′)i( f ′′)〉 =
∑
α∈Z

Sα ( f ′)δ( f ′′ + f ′ − α f0)

+ Dα ( f ′)δV ( f ′′ + f ′ − α f0). (10)

Because of the adiabaticity, the quantities Sα and Dα are fre-
quency independent, given by the coefficients of the Fourier
series:

S(t ) =
∑
α∈Z

Sαei2πα f0t ,
dS

dV
(t ) =

∑
α∈Z

Dαei2πα f0t . (11)

A. Environmental thermal noise

We now evaluate the term Kenv of Eq. (6), the contri-
bution to the third moment of the noise generated by the
external circuit. Due to the impedance mismatch between the
junction and the measuring circuit, the voltage fluctuations
propagating from the environment towards the junction are
partially reflected back to the amplification chain, and the
measured voltage is vmes( f ) = −i( f ) 1

2 t ( f )RJ + r( f )venv( f )
with r( f ) = (Zout ( f ) − Z0)/(Zout ( f ) + Z0). The modulation
by venv of the variance of the noise generated by the junction
leads to a third order correlation:

Kenv( f ) = 3
2r( f )

t ( f )RJ
〈venv( f )i2( f )〉. (12)

According to Eq. (10), 〈i2( f )〉 = D1( f )δV (− f ) =
D1( f )t ′(− f )venv(− f ). Since the circuit is reciprocal,
t ′(− f )/t ( f ) = (RJ/Z0)e−2iφ with φ the phase of t ( f ).
Introducing the spectral density of the environmental noise
〈venv( f )venv(− f )〉 = 1

2 kBTenvZ0 Eq. (12) becomes:

Kenv( f ) = 3D1kBTenvr( f )e−2iφ. (13)

To demonstrate this environmental effect experimentally,
we increased the effective temperature Tenv so that Kenv be-
comes the main contribution to the measured third moment.
To do so, we excited the sample with a sine wave venv(t ) =
A sin 2π ( f + ε)t with ε = 83 MHz in addition to the drive at
frequency 3 f . This is equivalent to an increase in the noise
temperature at frequency f + ε in a very narrow band. The
effective Tenv is estimated from the amplitude of the reflected
sine wave superimposed to the measured noise. We measured
the skewnesses 〈X 3〉 and 〈P3〉 for different Iac and Idc and
are presented in Fig. 5. One clearly observes a quantitative
agreement between the measurements (symbols) and the the-
oretical prediction of Eq. (13), both for the dependence on
Idc (main plot in Fig. 5) and Iac (right inset), up to an overall
multiplicative factor.

B. Feedback effect

The feedback term Kf b in Eq. (6) represents the contri-
bution of the junction modulating its own noise through the
impedance Zin. Using Eq. (10) we calculate the feedback

FIG. 5. 〈X 3〉 (solid circles) and 〈P3〉 (dashed lines) for Iac =
20 μA in the presence of a tone at frequency f + 83 MHz of various
amplitude. Black lines correspond to fit with Eq. (13). Quadratures
have been rotated to maximize the signal on 〈X 3〉. Left insets:
differential probability �P (X, P) for each excitation power. Right
inset: measured 〈X 3〉(Iac ) for Idc = 0.

contribution to the three current correlation:

〈i( f )i( f ′)i( f ′′)〉 f b =
∑
perm

〈i( f )〈i( f ′)i( f ′′)〉〉

=
∑
perm,

α ∈ Z

Dα ( f ′)〈i( f )i( f ′ + f ′′ − α f0)〉

× Zeff ( f ′ + f ′′ − α f0), (14)

where the sum is over the cyclic permutation of frequencies
f , f ′, and f ′′ with f + f ′ + f ′′ = 3 f as imposed by the
cyclostationarity. This gives for a narrow bandwidth:

Kf b( f ) = 3
∑
α∈Z

DαS1−αZeff ((2 − 3α) f ). (15)

This is a quite unexpected result: The feedback effect on
the cyclostationary third moment measured in a narrow band
around frequency f involves the environmental impedance not
only at f but also at higher frequencies 2 f , 4 f , 5 f , etc. This
is a generalization of previous derivation [18], which treated
only the case Idc = 0.

At zero dc bias Idc = 0, only the term D1S0Zeff ( f ) is
nonzero. In contrast with the environmental contribution
which is proportional to D1 and saturates at high ac excitation,
the D1S0 term is almost linear in Iac, see insets of Fig. 6. We
use this property to separate the different contributions to the
skewnesses, which can be reliably fitted by aIac + bD1(Iac),
with a and b real numbers (which are different for the in-
phase and in-quadrature component), see Fig. 6. Besides the
global gain of the measurement, a = (Kint + Kf b)/Iac, and
b = 3kBTenvr( f ). b being known allows us to remove the
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FIG. 6. Dependence of the measured third moment with ac bias
Iac on both in-phase and in-quadrature components. Data are fitted
by aD1(Iac ) + bIac, with a = 1.2 × 1011, b = −9 × 10−6 for 〈X 3〉
and a = 0, b = 0.4 × 10−6 for 〈Y 3〉. The global phase has been
chosen to maximize contribution of Kenv on the X component. Insets:
Dependence with Iac of D1 and D1S0 (in arbitrary units). D1S0 is
almost linear whereas D1 shows a saturation for Iac 
 2kBT/eRJ

(dashed line).

Kenv contribution from previous measurements, by subtracting
bD1(Iac, Idc) from 〈X 3〉 and 〈P3〉 for all values of Idc and Iac.

We show in Fig. 7 the skewnesses of both compo-
nents after subtraction of environmental contributions Kenv.
Obviously, these differ from a constant, indicating the pres-

FIG. 7. Third moment of in-phase (X ) and in-quadrature (P)
components of voltage fluctuations after subtraction of the environ-
mental contribution Kenv. Graphs on the left: Dots represent data and
black plain lines are the result from the fitting routine using Eq. (15)
plus a constant which is attributed to the intrinsic contribution Kint .
Graphs on the right: each contribution to 〈X 3〉 and 〈Y 3〉 for Iac =
20 μA plotted separately.

FIG. 8. Top: Input impedance Zin seen by the junction, extracted
from the fit of Kf b (circles). Bottom: Magnitude of the reflection
coefficient of the sample at 300 K (solid line), measured using a
vector network analyzer. The dashed line corresponds to the reflexion
of a pure resistance of 116 �, i.e., the dc resistance of junction
measured at 300 K.

ence of extra terms in the feedback contributions, see Eq. (15).
This equation contains an infinite sum involving the environ-
mental impedance taken at very high frequency. We expect
however these contributions to decay as frequency increases
because of the capacitance of the junction (C ≈ 0.2 pF based
on geometry) shunting the environmental impedance at high
frequency, the cutoff being approximately given by ∼20 GHz.

To obtain quantitative results, we extracted the values of
the environmental impedance using a fitting routine. First we
determine the global gain G( f )3� f 2, from the magnitude
of Kenv, assuming Tenv = 3.7 K and |r| = 0.44. Then we
used a three parameter fit on the in-phase and in-quadrature
component of Kint + Kf b, corresponding to the environmental
impedances appearing in Kf b for α < 4, plus one parameter
for the dephasing φ between Kint and Kenv. The fitted data
are represented on Fig. 7. The fitting routine has also been
performed with less parameters, by omitting for example the
D2S1 contribution, however the obtained impedances were
unrealistic.

C. Characterization of the electromagnetic environment

Our data on 〈X 3〉 and 〈P3〉 are very well accounted for by
Eq. (6) for all dc and ac excitations. This involves, beside
the total gain G( f )3� f 2, environmental parameters: the elec-
tromagnetic response of the environment through the phase
φ = −0.1 rad (for Kenv) and the impedances Zin( f ), Zin(2 f ),
and Zin(4 f ) (for Kf b), whose values are presented in Fig. 8.

We also show in Fig. 8 the magnitude of the reflection
coefficient |r| measured at room temperature with a vector
network analyzer. The magnitude below 5 GHz is close to
what is expected for a transmission line terminated by a
simple resistor, which coincides with Zin( f ) being close to
50 �. At 10 GHz, a lower reflection can indicate a better
matching which coincides with Zin(2 f ) being closer to the
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junction resistance. Our knowledge of the environment is
however too crude to predict the value of Zin(4 f ) from |r|.

From this analysis, two conclusions can be drawn for future
works. Because of the frequency dependence of the reactive
part of Zeff ( f ) and r( f ), all environmental contributions can-
not be projected on the in-phase component X of voltage
fluctuations. Therefore, in order to extract the intrinsic third
moment of the sample, both noise components X and P must
be measured. Second, a careful design of the electromagnetic
environment is necessary to separate the intrinsic contribution
from the environmental ones. For example, by providing a
low impedance environment at frequency 2 f , Kint becomes
the dominant contribution at high dc bias.

IV. CONCLUSION

We have measured the cyclostationary third moment of
current fluctuations at finite frequency f = 4.85 GHz in a
tunnel junction photoexcited at frequency 3 f . We have ob-
served third order correlations between the in-phase and in-
quadrature components of the electric field at frequency f
which depends on both the dc and ac bias. Thanks to a
theoretical analysis we can decompose these correlations into
three contributions: the intrinsic shot noise of the junction and
its modulation by the external noise at frequency f as well as
through a feedback mechanism that involves the impedance
of the detection circuitry even way outside the detection
bandwidth.

Our analysis paves the way towards the design of new
experiments probing the third moment of current fluctuations
at high frequencies. This includes, for example, the case of

systems with nontrivial dynamics, like diffusive wires [11] or
systems in the regime where the quantum dynamics associated
with the timescale h/eV matters [25–27]. It also includes the
case of high impedance samples (quantum dots, Coulomb
blockaded systems, etc.) which can be matched to 50 � only
around a single frequency f and where usual wide-band
techniques fail to operate. It also opens the possibility to use
quantum limited amplifiers, such as the Josephson parametric
amplifier, to study non-Gaussian noise in the quantum regime.
As a matter of fact, the existence of correlations similar to
the one we observed but at temperatures such that kBT < h f
would imply third order squeezing in the radiation emitted
by a tunnel junction, as has been recently observed in su-
perconducting parametric amplifiers [28]. We hope our work
will also trigger theoretical advances, such as how to extend
theories used to link quantum fluctuations of electrical current
to that of the radiated electromagnetic field [29], which has
proven successful to predict second order correlations that
lead to squeezing but are probably insufficient to account for
third order correlations.
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