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We apply the semiclassical Boltzmann formalism for the computation of transport properties to multilayer
graphene. We compute the electrical conductivity as well as the thermal conductivity and thermopower for
Bernal-stacked multilayers with an even number of layers. We show that the window for hydrodynamic transport
in multilayer graphene is similar to the case of bilayer graphene. We introduce a simple hydrodynamic model
which we dub the multifluid model and which can be used to reproduce the results for the electrical conductivity
and thermopower from the semiclassical Boltzmann equation.
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I. INTRODUCTION

Ultraclean materials such as graphene offer a new per-
spective on electronic transport. At low enough temperatures,
momentum-relaxing scattering of the electrons such as the
scattering with phonons and impurities is subdominant and
the dominant source of collisions are the collisions of the
electrons with themselves. This is the realm of electron hy-
drodynamics [1]. In the hydrodynamic regime, the electron-
electron scattering rate τ−1

ee is larger than the electron-phonon
scattering rate τ−1

ep . Both monolayer and bilayer graphene
have garnered much attention in recent years for their sup-
posed hydrodynamic transport [2–10]. In the present paper,
we focus on a related material: multilayer graphene (MLG).

The Boltzmann equation is an equation of motion for the
distribution function of particles and has traditionally been
applied to the classical kinetic theory of gases. Extending this
approach to the study of electron gases in graphene and related
materials leads to the celebrated semiclassical Boltzmann
equation (SCBE) [11–18].

In recent work, the present authors presented the SCBE
formalism for bilayer graphene [19]. It was then shown in
Ref. [20] that the SCBE results agree well with experimental
measurements of the electrical conductivity of suspended
bilayer graphene in Ref. [21]. Despite its success, the SCBE
is a heavy-handed approach and this led to the development
of the two-fluid model. In bilayer graphene, the low-energy
band structure consists of two gapless quadratic bands which
can be populated with electrons and holes. The dynamics of
the electron and hole fluids can be captured accurately from
simple hydrodynamic equations, at least for the calculation of
the electrical conductivity and thermopower [20].

In this paper, we generalize the formalism we developed
for bilayer graphene (BLG) to MLG, in particular, we focus
on Bernal (AB) stacked multilayers. We consider the special
case of an even number of layers N to avoid the additional
complication of the linear band that arises for odd N . We study
the regime near charge neutrality, i.e., βμ � 1, where β is

inverse temperature and μ is the chemical potential. In fact, in
this regime, we expect the behavior for even N and odd N + 1
to be very similar, since the density of states is dominated by
the quadratic bands. We use the SCBE to compute the electri-
cal conductivity, the thermal conductivity, and thermopower
for multilayers with N = 2 to N = 8 layers. We discuss how
the transport properties evolve, as the number N of layers is
increased. In particular, in previous work [19,20], the present
authors discussed two signatures of the hydrodynamic regime:
the Wiedemann-Franz law violation and the fast increase of
the electrical conductivity away from charge neutrality. We
will show that both of the signatures remain as we increase
the number of layers in our graphene multilayer. We then
develop a hydrodynamic approach in terms of a multicom-
ponent fluid and show that it accurately matches the SCBE
predictions.

There has been previous theoretical work on transport
in MLG using the Kubo formula [22]. Reference [23] does
study MLG using the Boltzmann formalism, however, they
focus on the case where impurities are the main source of
scattering. Reference [24] calculates the thermal conductivity
due to phonons, however, they do not explore the electronic
contribution to the thermal conductivity.

The electrical conductivity of MLG has been measured ex-
perimentally for a range of temperatures and densities [25,26].
In Ref. [27], measurements on the minimum of the electrical
conductivity for different numbers of layers are reported.
Further experiments by a different experimental group have
been reported [28], however, they consider the high-density
regime which is the opposite limit to the one we will consider
in this paper.

The structure of our paper is as follows. We start by
introducing the tight-binding model for MLG and we discuss
the screening of the Coulomb interaction in MLG. We then
introduce the SCBE formalism and present the numerical
results for different numbers of layers. Finally, we discuss how
many of the salient features of our numerics can be captured
by a simple hydrodynamic model.
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FIG. 1. AB-stacked multilayer with N = 4 layers. We use a tight-
binding model with nearest-neighbor intralayer (t0) and interlayer
(t⊥) hopping.

II. BAND STRUCTURE AND INTERACTIONS

For the Bernal (AB) stacking of N graphene multilayers
shown in Fig. 1, the tight-binding (Bloch) Hamiltonian ex-
panded near the K and K ′ valleys is the 2N × 2N matrix
[22,29–35]:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 vπ † 0 0 0 0 0 0

vπ 0 t⊥ 0 0 0 0 0

0 t⊥ 0 vπ † 0 t⊥ 0 0

0 0 vπ 0 0 0 0 0

0 0 0 0 0 vπ † 0 0

0 0 t⊥ 0 vπ 0 t⊥ 0

0 0 0 0 0 t⊥ 0 vπ †

0 0 0 0 0 0 vπ 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here π = ξ px + ipy, with valley index ξ = ±. The Fermi

velocity is v =
√

3
2 at0, where t0 is the intralayer hop-

ping parameter and a is the lattice constant. t⊥ is
the interlayer hopping [36]. The wave function is ψ =
(ϕA1 , ϕB1 , ϕA2 , ϕB2 , . . . , ϕAN , ϕBN ), where ϕAi (Bi ) is the wave
function of an electron at site Ai(Bi ).

At low energies, we can focus on the gapless bands. We
write down a low-energy N × N Hamiltonian for these N
quadratic bands, which we label with r = (R, σ ), where R =
1, . . . , N/2 and σ = ±1. The energies are

εRσ (p) = σ
p2

2mR
, (1)

where the mass is

mR = 2m∗ cos

(
Rπ

N + 1

)
, (2)

with m∗ = t⊥/2v2. Therefore, the bands appear in pairs la-
beled by the same R which have the same mass. For a fixed
R, we have the same band structure as in BLG. We call the
corresponding Bloch wave functions |ψRσ (p)〉. The matrix
elements for the Bloch functions are

MRσ,R′σ ′ (p, p′) ≡ 〈ψR′σ ′ (p′)|ψRσ (p)〉

= δRR′

2
(1 + σσ ′e−2i(θp−θp′ ) ), (3)

where cos θp = p · x̂. The derivations of the effective mass
mR as well as the matrix elements Eq. (3) are left for
Appendix A. There will be no vertex coupling electrons with
different R in the Coulomb interaction. For a pair of bands
with the same value of R, the matrix elements are the same
as for BLG. Using this result, one can perform the classic
Lindhard calculation for the polarization �0(q, ω) in the limit
βμ � 1 and βq2/m � 1. This is a calculation analogous to
Refs. [37,38] and the details are in Appendix B. We focus on
the static polarization, which is valid at low enough tempera-
tures. The result for the polarization is

�0(q, 0) = −Nf m∗

2π

(
1

sin
(

π
2(N+1)

) − 1

)
, (4)

where Nf = 2 × 2 accounts for the spin and valley degrees of
freedom. In the screening calculation, we have assumed that
the screening due to the phonons is negligible. The Thomas-
Fermi screening wave vector is then given by

qTF(q) = −�0(q, 0)2πα, (5)

where α is the electromagnetic fine-structure constant. We
will use the fully screened Coulomb interaction V (q) =
2πα/qTF(q), which is a good approximation at low temper-
atures, where the typical momentum of electrons is much
smaller than qTF. Now we approximately have the behavior
qTF ∝ N . Since each electron can now scatter off N species of
electrons, the electron-electron scattering rate will be τ−1

ee ∝
N/q2

TF ∝ 1/N .

III. SEMICLASSICAL BOLTZMANN EQUATION

Away from charge neutrality, one needs to include
momentum-relaxing scattering to obtain a well-defined con-
ductivity. Based on the results in bilayer graphene, we ex-
pect electron-phonon collisions to be the dominant source
of momentum-relaxing scattering and hence this is the only
momentum-relaxing mechanism that we include in our cal-
culations [20]. Depending on the experimental conditions,
we may envisage electron-impurity and electron-boundary
scattering as well and this would be a simple extension of
the present calculation. The phonon scattering is proportional
to band mass and we extract the proportionality constant by
comparing the BLG results to available experimental data
[20]. The SCBE is an evolution equation for the distribution
function fr (k, x, t ) of the particles of species r of the form(

∂

∂t
+ vr (k) · ∂

∂x
+ eE · ∂

∂k

)
fr (k, x, t )

= −Ir[{ fri}](k, x, t ), (6)
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where vr (k) = ∂kεr (k), e < 0 is the electron charge and
the collision integral on the right hand side (RHS) in-
cludes electron-electron and electron-phonon collisions. The
electron-electron collision integral can be derived from the
Kadanoff-Baym equations [39] using the Born approximation.
The derivation is identical to the BLG case in Ref. [19]. The
electron-phonon collision integral uses the simple relaxation-
time approximation with scattering rate

τ−1
ep,r = D2mrkBT

2ρ h̄3c2
, (7)

where D is the deformation potential, ρ is the mass den-
sity of MLG, and c is the speed of sound. We also define
the corresponding dimensionless parameter αep = βτ−1

ep =
βm∗τ−1

ep,r/mr . The full details of the SCBE are shown in
Appendix C. c = 2000 m/s in BLG [40] and in previous
work [20] we found D ≈ 27 eV for BLG, although the values
given in the literature vary somewhat. We note that ρ ∝ N
and c = const as a function of N , so assuming that D only
depends weakly on N , we have αep ∝ 1/N . We now see that
both the electron-electron and the electron-phonon scattering
rates behave like 1/N , although the reasons behind this scaling
are very different for the two scattering mechanisms. Based on
this simple scaling, it stands to reason that the hydrodynamic
window in MLG is similar to that of BLG: τ−1

ee /τ−1
ep is

only weakly N dependent. Since we successfully applied a
hydrodynamic model to BLG [20], we expect this to work for
MLG as well.

To solve the SCBE, we expand the distribution function
in terms of 4N basis functions. Based on our previous work
[20], this is a sufficient number of basis functions to obtain a
convergent result. The SCBE then turns into an equation for
the expansion coefficients in front of the basis functions. Once
we know the perturbation of the distribution function due to
an applied thermal gradient ∇T or electric field E, we can
compute the electrical current

J = Nf e
∑

r

∫
d2k

(2π )2

σk
mr

fr (k) (8)

and heat current

JQ = Nf

∑
r

∫
d2k

(2π )2

σk
mr

(εr (k) − μ) fr (k). (9)

We define the electrical conductivity σ , the thermal conduc-
tivity K , and the thermopower � by(

J
JQ

)
=

(
σ �

T � K

)(
E

−∇T

)
. (10)

Note that the open circuit thermal conductivity κ measuring
the heat current in the absence of electrical current is given by

κ = K − T �σ−1�. (11)

In the absence of a magnetic field, the transport coefficients
are diagonal. In Fig. 2, we plot the dimensionless transport
coefficients

σ̃xx ≡ 2

Nf e2
σxx, (12)

FIG. 2. Results from the SCBE calculation for different even
values of N . We plot the normalized electrical conductivity
σ̃xx (βμ)/σ̃xx (βμ = 0), thermal conductivity K̃xx (βμ)/K̃xx (βμ = 0),
and thermopower �̃xx (βμ)/�̃xx (βμ = 1). We have set αep = 0.1/N
consistent with our previous work on BLG.

�̃xx ≡ 2

Nf ekB
�xx, (13)

K̃xx ≡ 2

Nf k2
BT

Kxx, (14)

for different values of N .
If we could treat the N-layer multilayer as N/2 indepen-

dent bilayers, then we would expect the transport coefficients
to increase proportionally to N . However, this is not what
happens. Indeed we find approximately K (βμ = 0) ∝ N2 in
Fig. 3. The reason for this behavior is that K at charge
neutrality is limited by collisions with phonons—it would
diverge in the absence of phonon scattering since Coulomb
scattering does not relax the mode where all carriers move
at the same velocity. Recall the formula from basic kinetic
theory K ∼ �k2

BnτepT/m, where �kB is the heat capacity per
particle and n is the number density. Now τ ∝ N as explained

FIG. 3. Results for the thermal conductivity K̃ (μ = 0)/N2 from
the SCBE calculation for different even values of N . We have set
αep = 0.1/N consistent with our previous work on BLG.
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FIG. 4. Results for the electrical conductivity σ̃ (μ = 0)/N2 from
the SCBE calculation for different even values of N . We have set
αep = 0.1/N consistent with our previous work on BLG.

in the previous section. We also have n ∝ N . This explains the
observed K (βμ = 0) ∝ N2 behavior.

We plot the results for the electrical conductivity at charge
neutrality as a function of N in Fig. 4. We observe that the
conductivity scales with N approximately as σ (βμ = 0) ∝
N2. Recall the Drude formula σ ∼ e2nτ/m, where τ is the
collision time for current-relaxing collisions. For different
species, the individual conductivities will add up, i.e., σ ∼∑

r e2nrτr/mr . σ (βμ = 0) is well-defined even in the absence
of phonons and indeed electron-electron collisions will domi-
nate the current relaxation. As we increase N , we increase the
density of states and hence the screening wave vector scales
approximately as qTF ∝ N and hence the potential scales
as V ∼ 1/N . Therefore Fermi’s golden rule for scattering
of particles of species r off particles of species r′ yields
τ−1

rr′ ∝ |V |2 ∝ 1/N2. The scattering time for species r then
roughly scales as τ−1

r ≡ ∑
r′ τ

−1
rr′ ∝ 1/N . So τr ∝ N , and with

nr ∝ mr , we find σ ∼ ∑
r e2nrτr/mr ∝ ∑

r τr ∝ N2, as in the
numerical results.

Let us discuss two signatures of the hydrodynamic regime:
(i) the ratio σ (βμ = 1)/σ (βμ = 0) and (ii) the Wiedemann-
Franz law violation. The ratio σ (1)/σ (0) stays relatively
constant as N is increased. Recall that for bilayer graphene,
the reason for the large value of σ (1)/σ (0) is that σ (βμ =
0) is limited by electron-electron collisions, which operate
on a timescale τee. On the other hand, away from charge
neutrality (CN), the momentum mode carries charge and this
momentum mode is relaxed on a much longer timescale τep.
Since τep � τee in the hydrodynamic regime, charge transport
is greatly enhanced away from CN. Since both τee and and τep

scale proportional to N , σ (1)/σ (0) does not vary significantly
with N . In the hydrodynamic regime, the Lorenz number is
much larger than predicted by the Wiedemann-Franz law.
Since σ increases as fast as K with N , the violation of the
Wiedemann-Franz law at charge neutrality will also remain
relatively constant as a function of N . We show plots of
σ (1)/σ (0) and the Lorenz number in Appendix E.

In Fig. 5, we show the results for the three transport
properties considered for the representative case of N = 8.

FIG. 5. Dimensionless transport coefficient calculated for the
representative case N = 8. Comparison of the SCBE results with
the multifluid model introduced in the main text. The value for the
Coulomb scattering strength αee to use in the multifluid model has
been extracted from the SCBE results, such that σ̃xx (βμ = 0) is
the same for both plots (i.e., we have one fitting parameter). The
multifluid model performs well for the electrical conductivity and
the thermopower but a bit less well for the thermal conductivity.

Other even values of N yield similar results. As N → ∞
and we approach the graphite limit, our numerics become
unmanageable and a full 3d theory becomes necessary, where
the bands are dispersive along kz, instead of having a large
number N of 2d bands as in our 2d model. In fact, due to
the approximations we have made, the low-energy theory we
have derived is valid in the limit N � 100 [41].

At this point, a few more words are in order about the
range of validity of our model. We treat the band structure
of MLG as N gapless quadratic bands. This breaks down at
too low temperatures, where a gap is seen to open up [26],
in particular, we require T > 12 K for N = 2, T > 40 K for
N = 4, and T > 90 K for N = 6. On the other hand, devi-
ations from the quadratic band model will become apparent
at high temperatures, so we further require T < 300 K (this
corresponds to 10% of the gap to the higher energy bands that
we have neglected). Finally, our screening calculation requires
βμ � 1.

In Appendix F, we compute the thermoelectric figure of
merit zT and find zT ∼ 1 for βμ ∼ 1, showing that MLG is a
good thermoelectric material.

IV. MULTIFLUID MODEL

Following the usual procedure for deriving hydrodynamic
equations from kinetic theory, we can obtain the fluid equa-
tions from the full SCBE. We have r species of fermions in
the low-energy theory and, in the hydrodynamic description,
we can associate each fluid species with a mean velocity ur .
The equation of motion that follows from the SCBE for ur

under an applied electric field E and thermal gradient ∇T is

mr∂t ur = −
∑

r′

mr

τrr′
(ur − ur′

) − mrur

τep,r
+ σeE − �rkB∇T,

(15)
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where τrr′ is the effective scattering time of particles of species
r off particles of species r′ due to Coulomb interactions, τep,r

is the effective electron-phonon scattering time for species r,
and �r is the entropy per particle:

�(R,+) = −
∫ d2p

(2π )2

[(
1 − f 0

r (p)
)

ln
(
1 − f 0

r (p)
) + f 0

r (p) ln f 0
r (p)

]
∫ d2p

(2π )2 f 0
r (p)

, (16)

�(R,−) = −
∫ d2p

(2π )2

[(
1 − f 0

r (p)
)

ln
(
1 − f 0

r (p)
) + f 0

r (p) ln f 0
r (p)

]
∫ d2p

(2π )2

[
1 − f 0

r (p)
] . (17)

We also define a typical electron-electron scattering time τee

[see Eq. (D8) for a precise definition] and a corresponding
dimensionless quantity αee = βτ−1

ee . Solving the fluid equa-
tions for a steady-state flow yields an expression for ur . The
electrical current is then given by

J = e
∑

r

σnrur (18)

and the heat current by

Q = kBT
∑

r

�rnrur . (19)

The detailed derivation is in Appendix D.
In Fig. 5, we compare the results from the multifluid model

and the SCBE and find that for the electrical conductivity
the agreement is excellent, whereas for the thermal conduc-
tivity, the qualitative behavior is correct but the quantitative
agreement is off by around 20%. The reason for this is that
the multifluid model is equivalent to solving the SCBE by
using only N basis functions in the expansion of the distri-
bution function. These basis functions correspond to uniform
motion with velocity ur of the fermions of species r. For an
applied electric field, these modes capture the charge transport
accurately, as exemplified by the good overlap in Fig. 5. On
the other hand, for an applied thermal gradient, we do not
accurately capture the heat transport with those modes. We
found the same situation in Ref. [20] for BLG.

The success of the multifluid model as well as the two-fluid
model in our previous work on BLG [20] suggests that the
hydrodynamic description of electrons in bilayer and MLG is
accurate. This once again confirms the idea that electrons in
strongly interacting systems can be considered as (multicom-
ponent) fluids [1].

V. SUMMARY

We have applied the semiclassical Boltzmann formalism to
study the transport properties of MLG. We find results very
similar to bilayer graphene. We introduce a hydrodynamic
model which agrees accurately with the SCBE results for
the electrical conductivity and thermopower. We hope that
future experiments on transport in MLG will reveal whether
the SCBE formalism performs as well for MLG as it does for
BLG, although we see no apparent reason why it should not.

We have only studied even N in this paper. For odd N , the
low-energy theory consists of N − 1 parabolic bands and one
Dirac cone. However, in the regime βμ � 1, the density of

states will be dominated by the quadratic bands. Therefore,
the results for odd N are expected to be similar to the results
for even N , as long as one accounts for the different values of
the band masses.

The behavior of the transport properties as the number
N of layers is varied shows some interesting features. First,
the thermal conductivity at CN K (βμ = 0) is approximately
proportional to N2. This is due to the fact that the thermal
conductivity at CN is limited by phonons and the phonon scat-
tering time is proportional to N , so K (βμ = 0) ∝ nτ ∝ N2.
The electrical conductivity at CN σ (βμ = 0) ∝ N2 as well,
but for a different reason. In contrast to K (βμ = 0), σ (βμ =
0) is limited by electron-electron collisions. As N is increased,
the screening increases and so the electron scattering time
τ ∝ N , leading to σ (βμ = 0) ∝ nτ ∝ N2. Put together, this
implies that the violation of the Wiedemann-Franz law stays
constant as N is increased. Finally, σ (βμ = 1)/σ (βμ = 0),
which is another measure of the relative size of the electron-
electron and the electron-phonon scattering times. is relatively
flat as a function of N .

In future work, we plan to compute the viscosity for MLG.
Adding the viscosity to the multifluid model will give us the
Navier-Stokes equations, which can then be used to simulate
the electron fluid in MLG for realistic geometries. We expect
those simulations to yield interesting results such as the vor-
tices which have been predicted for single-layer graphene [3]
and negative resistivity, which has been seen in experiments
in single-layer graphene [2]. One can go even further and
consider spin transport by applying a weak magnetic field.
We then have a very interesting multicomponent fluid which
carries charge, heat, and spin.

ACKNOWLEDGMENTS

This work was supported by EPSRC Grants No.
EP/N01930X/1 and No. EP/S020527/1. D.X.N. was sup-
ported partially by Brown Theoretical Physics Center.

APPENDIX A: DERIVATION OF EFFECTIVE MASS
mr AND MATRIX ELEMENT Mrr′ (p, p′ )

1. Low-energy band theory and matrix elements

We use the effective Hamiltonian from Ref. [29]. For
Bernal (AB) stacking of N graphene multilayers, the tight-
binding Hamiltonian is the 2N × 2N matrix:
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H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 vπ† 0 0 0 0 0 0

vπ 0 γ 0 0 0 0 0

0 γ 0 vπ† 0 γ 0 0

0 0 vπ 0 0 0 0 0

0 0 0 0 0 vπ† 0 0

0 0 γ 0 vπ 0 γ 0

0 0 0 0 0 γ 0 vπ†

0 0 0 0 0 0 vπ 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

Here π = ξ px + ipy, with valley index ξ = ±. The Fermi

velocity is v =
√

3
2 at0, where t0 is the intralayer hopping

parameter and a is the lattice constant. γ = t⊥ is the inter-
layer hopping. The Schrödinger equation becomes H |ψ±

r 〉 =
ε±

r |ψ±
r 〉 where the 2N eigenfunctions are

|ψ±
r 〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕA1

ϕB1

ϕA2

ϕB2

...

ϕAN

ϕBN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A2)

and the eigenenergies are

ε±
r = γ cos

(
rπ

N + 1

)
±

√
(vp)2 + γ 2 cos

(
rπ

N + 1

)2

(A3)

for r = 1...N . Let us focus on even N for now, in which case
there are 2N quadratic bands, of which N bands, |ψ−

r 〉 are
at low energies (gapless). For odd N , there is also a Dirac
cone and we will avoid the complications coming from that
situation. The low-energy bands are

ε−
r (p) =

{
p2

2mr
if cos

(
rπ

N+1

)
< 0

− p2

2mr
if cos

(
rπ

N+1

)
> 0,

(A4)

where

mr =
∣∣γ cos

(
rπ

N+1

)∣∣
v2

= 2m∗
∣∣∣∣ cos

(
rπ

N + 1

)∣∣∣∣, (A5)

where m∗ = γ /2v2. So the bands come in pairs with the same
effective mass mr , the bands related by r + r′ = N + 1 are
such pairs. Let us call them conjugate bands.

2. Low-energy effective theory

In the low-energy limit εr � pv, we can also write down a
low-energy effective Hamiltonian. The Schrödinger equation
of the full Hamiltonian is

vπ†ϕB2n−1 = εϕA2n−1 , (A6)

γ (ϕA2n−2 + ϕA2n ) + vπϕA2n−1 = εϕB2n−1 , (A7)

vπϕA2n = εϕB2n , (A8)

γ (ϕB2n−1 + ϕB2n+1 ) + vπ†ϕB2n = εϕA2n . (A9)

We can now eliminate ϕA2n and ϕB2n−1 from these equations
and use ε � πv. We can then write these equations as the
Schrödinger equation for the simpler effective Hamiltonian

Heff = h + h†, (A10)

where

h = − 1

2m∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 . . .

π2 0 0 0 0 0 . . .

0 0 0 0 0 0 . . .

−π2 0 π2 0 0 0 . . .

0 0 0 0 0 0 . . .

π2 0 −π2 0 π2 0 . . .

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A11)

To solve this, we note that ϕA0 = ϕAN+1 = 0 and ϕB0 =
ϕBN+1 = 0, so we try the ansatz

ϕAn = A sin

(
nrπ

N + 1

)
, ϕBn = B sin

(
nrπ

N + 1

)
. (A12)

This ansatz works and the reduced (Bloch) wave function is
then (for the K valley)

|ψr (p)〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕA1

ϕB1

ϕA2

ϕB2

...

ϕAN

ϕBN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
√

2

N + 1

⎛
⎜⎜⎜⎜⎝

e−2iθp sin rπ/(N + 1)

sin 2rπ/(N + 1)

e−2iθp sin 3rπ/(N + 1)
...

⎞
⎟⎟⎟⎟⎠,

(A13)
with eigenvalues ε−

r (p). We can easily see that for N = 2 we
obtain the same results as previously for BLG.

3. Matrix elements

We define the matrix elements Mrr′ (p, p′) as

Mrr′ (p, p′) ≡ 〈ψr′ (p′)|ψr (p)〉, (A14)

245438-6
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= 2

N + 1

[
e−2i(θp−θp′ )

∑
n odd

sin

(
nrπ

N + 1

)

× sin

(
nr′π

N + 1

)
, (A15)

+
∑

n even

sin

(
nrπ

N + 1

)
sin

(
nr′π

N + 1

)]
, (A16)

where 1 � n � N . Using the trigonometric identities,

∑
n odd

sin

(
nrπ

N + 1

)
sin

(
nr′π

N + 1

)
=

⎧⎨
⎩

N+1
4 if r = r′

N+1
4 if r + r′ = N + 1

0 otherwise
(A17)

and ∑
n even

sin

(
nrπ

N + 1

)
sin

(
nr′π

N + 1

)

=

⎧⎪⎨
⎪⎩

N+1
4 if r = r′

−N+1
4 if r + r′ = N + 1

0 otherwise

, (A18)

we obtain

Mrr′ (p, p′) =

⎧⎪⎨
⎪⎩

1
2 (1 + e−2i(θp−θp′ ) ) if r = r′
1
2 (−1 + e−2i(θp−θp′ ) ) if r + r′ = N + 1

0 otherwise.
(A19)

We will find it useful to introduce a more appropriate notation
for the even N case, namely, (r, N + 1 − r) → (R, σ ) where
R = r mod( N

2 + 1) = 1...N/2 and σ = +,−, where

σ =
{

+ if cos
(

rπ
N+1

)
< 0 i.e., r > N/2

− if cos
(

rπ
N+1

)
> 0 i.e., r � N/2.

(A20)

In this notation, we have paired up conjugate bands and hence

εRσ (p) = σ
p2

2mR
(A21)

and

MRσ,R′σ ′ (p, p′) = δRR′ 1
2 (σσ ′ + e−2i(θp−θp′ ) ). (A22)

Now just make a slight redefinition of our wave functions,

ψRσ (p) = σψr (p), (A23)

and with this additional sign,

MRσ,R′σ ′ (p, p′) = δRR′ 1
2 (1 + σσ ′e−2i(θp−θp′ ) ), (A24)

so we just have N/2 copies of the BLG matrix elements,
labeled by R, and where we denote particle-hole index by σ .

We have π = px + ipy in the K band and π = −px + ipy

in the K ′ band. So to treat the K ′ band, we need to replace
πK ′ = −π

†
K . Since only π2 appears in the Hamiltonian, we

obtain the K ′ wave functions from the K wave functions by
simple complex conjugation. So the matrix elements will also
be complex conjugates of each other. However, we have a
freedom to choose the overall phase of our wave functions,
and this allows us to redefine our wave functions to cancel
off this complex conjugation and we end up with the same

FIG. 6. Feynman diagram for polarization. Note that due to the
form of the vertex, the two electrons have the same values of R
and f .

matrix elements as for the K valley. Therefore, the valley
degeneracy can be taken into account simply by including a
factor of Nf = 2 × 2 for the number of fermion species in
the calculation (the additional factor of 2 comes from spin
degeneracy).

The charge density operator can be derived in the same
manner as in Ref. [19], and we obtain the result

ρ(q) =
∑

f

∑
RR′

∑
σσ ′

∫
d2k

(2π )2
c†

Rσ f (k)cR′σ ′ f (k + q)

× MRσ,R′σ ′ (k, k + q), (A25)

where c†
Rσ f (cR′σ ′ f ) is the creation (annihilation) operator of

an electron. The result shows that the Coulomb vertex will
not allow transitions between bands with different masses and
different flavors due to the explicit form of MRσ,R′σ ′ (k, k + q)
in Eq. (3).

APPENDIX B: RPA SCREENING CALCULATION

In this section, we calculate the screened Coulomb poten-
tial in the random phase approximation (RPA). We use the ex-
plicit form of the density operator Eq. (A25) and consider the
RPA diagram Fig. 6.One can calculate the RPA polarizability
and obtain

�0(q, 0) = −Nf

∑
σ,σ ′

∑
R,R′

∫
d2k

(2π )2

f R′σ ′
(k + q) − f Rσ (k)

εR′σ ′ (k + q) − εRσ (k)

× |MRσ,R′σ ′ (k, k + q)|2, (B1)

and using the δRR′ in the matrix elements:

�0(q, 0) = −Nf

∑
R

∑
σ,σ ′

∫
d2k

(2π )2

f Rσ ′
(k + q) − f Rσ (k)

εRσ ′ (k + q) − εRσ (k)

× |MRσ,Rσ ′ (k, k + q)|2. (B2)

But now, for each R, the calculation is identical with the BLG
case, so in the limit βμ � 1:
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�0(q, 0) =
∑

R

�0
R(q, 0) = Nf

2π

∑
R

mR

= Nf m∗

2π

N/2∑
R=1

2 cos

(
πR

N + 1

)

= Nf m∗

2π

(
1

sin( π
2(N+1) )

− 1

)
. (B3)

APPENDIX C: DETAILS OF SEMICLASSICAL
BOLTZMANN EQUATION

In this section, we follow Ref. [19]. In the low-energy band
structure of MLG with an even number N of layers, there are
N quadratic bands, which we label by r = (R, σ ), where R =
1, 2, · · · N/2 and σ = ±. The band energy is

εRσ (p) = σ
p2

2mR
. (C1)

The band mass is mR = 2m∗|cos((Rπ )/(N + 1))|, where
m∗ = 0.033me. The equilibrium distribution of the electrons
in band r = (R, σ ) is given by the Fermi distribution:

fr (p) = f 0(εr (p)) = 1

1 + eβ(εr (p)−μ)
. (C2)

We write the deviation from the equilibrium distribution as

fr (p) = f 0(εr (p)) + f 0(εr (p))[1 − f 0(εr (p))]hr (p) (C3)

and expand the Boltzmann equation up to first order in hr (p).
The Boltzmann equation is now a set of N equations:

2πσβ

mr
f 0
r (p)

[
1 − f 0

r (p)
](

eE · p − 1

T
∇T · p(εr (p) − μ)

)

= I tot
r

[
hri (ki )

]
(p). (C4)

The LHS of the SCBE includes the driving force due to the
electric field E and the thermal gradient ∇T . The collision
integral is

I tot
r

[
hri (ki )

]
(p) = I (1)

r,Coul

[
hri (ki )

]
(p)

− 1

τep,r
f 0
r (p)

[
1 − f 0

r (p)
]
hr (p) (C5)

The second term on the RHS of Eq. (C5) is the contribution to
the collision integral coming from electron-phonon collisions,
for which the scattering rate is

τ−1
ep,r = D2mrkBT

2ρ h̄3c2
, (C6)

where D is the deformation potential, ρ is the mass density
of MLG, and c is the speed of sound. Let us define the
corresponding dimensionless number:

αep = βτ−1
ep = D2m∗

2ρ h̄3c2
. (C7)

The first term on the RHS of Eq. (C5) is the linearized
collision integral for scattering between electrons, which is

I (1)
r,Coul

[
hri (ki )

]
(p) = −(2π )

∑
r1r2r3

∫
d2k

(2π )2

d2q
(2π )2

δ(εr (p) + εr1 (k) − εr2 (p + q) − εr3 (k − q))

× [
Nf

∣∣Trr1r3r2 (p, k, q)
∣∣2 − Trr1r3r2 (p, k, q)T ∗

rr1r2r3
(p, k, k − p − q)

]
× [[

1 − f 0
r (p)

][
1 − f 0

r1
(k)

]
f 0
r2

(p + q) f 0
r3

(k − q)
][ − hr (p) − hr1 (k) + hr2 (p + q) + hr3 (k − q)

]
. (C8)

The matrix elements in Eq. (C8) are

Tr1r2r3r4 (k, k′, q) = V (−q)Mr1r4 (k + q, k)Mr2r3 (k′ − q, k′),
(C9)

with

Mr,r′ (p, p′) = δRR′ 1
2 (1 + σσ ′e−2i(θp−θp′ ) ), (C10)

and with screened Coulomb potential

V (q) = 2π

Nf m∗

(
1

sin( π
2(N+1) )

− 1

)−1

. (C11)

The equations for the charge current and heat current are

J = Nf e
∑

r

∫
d2k

(2π )2

σk
mr

fr (k), (C12)

JQ = Nf

∑
r

∫
d2k

(2π )2

σk
mr

(εr (k) − μ) fr (k). (C13)

In the case where we only have an applied electric field E, the
suggested ansatz to solve the SCBE Eq. (C4) is [14,19,20]

hr (p) = β
eE
m∗ · pχr (p). (C14)

We expand Eq. (C14) in terms of basis functions

χr (k) = β
∑

n

angn(r, k) (C15)

such that the an are dimensionless. Here the basis functions
are taken to be

gn(r, k) = δr=1, δr=2, ...δr=N , δr=1K, δr=2K, ...δr=N K, ...,

(C16)

where K = √
β/mk is the dimensionless momentum. For all

powers n > 2, we multiply by an exponential factor so the
basis function is Kne−K/2. We expand in up to 4N basis
functions. Increasing the number of basis function changes
the results only marginally. We use the fact that this must be
valid for all E, sum over r, multiply separately by p̂gm(r, p),
and integrate over p. This yields an equation that can be
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summarized in matrix form as

Mmnan = Fm, (C17)

where we defined the dimensionless matrices

Mmn = β

(
β

m

)3/2 ∑
r

∫
d2p

(2π )2
gm(r, p)Ir

× [{p̂ · kign(ri, ki )}](p) (C18)

and the dimensionless vector

Fm = β

(
β

m

)1/2 ∑
r

∫
d2p

(2π )2

σ p

mr
f 0
r (p)

[
1 − f 0

r (p)
]
gm(r, p).

(C19)
Equation (C17) can be inverted to yield a. The charge current
is

J = Nf

∑
r

e

mr

∫
d2p

(2π )2
σp fr (p) (C20)

= βNf

∑
r

∫
d2p

(2π )2
σp f 0

r (p)
[
1 − f 0

r (p)
] e2E

m∗mr
· pχr (p).

The DC conductivity is read as

σxx = βNf

∑
r

∫
d2p

(2π )2
σ f 0

r (p)
[
1 − f 0

r (p)
] e2 p2

x

mrm∗ χr (p)

= Nf e2

2h̄
G · M−1F, (C21)

where we have exceptionally restored h̄ and where the dimen-
sionless vector is

Gm = β

(
β

m

) ∑
r

∫
d2p

(2π )2

σ p2

mr
f 0
r (p)

[
1 − f 0

r (p)
]
gm(r, p).

(C22)
The thermal conductivity and thermopower can be calculated
completely analogously.

APPENDIX D: MULTIFLUID MODEL

We can now derive a multifluid model. We assume that
the electrons/holes in band (R,+/−) have mean velocity
u(R,+/−). The corresponding ansatz for the perturbation of
the distribution function is hr (k) = βk · ur . We obtain the
fluid equations by multiplying the SCBE Eq. (C4) by p and
integrating over p. We then divide by the number density nr

to obtain the coupled set of equations:

mr∂t ur = −
∑

r′

mr

τrr′
(ur − ur′

) − mrur

τep,r
+ σeE − �rkB∇T .

(D1)
Remember that we have defined e < 0 as the electron charge.
We define �r through the integrals

�(R,+) =
∫ d2p

(2π )2
βp2

mr
β(εr (p) − μ) f 0

r (p)
[
1 − f 0

r (p)
]

∫ d2p
(2π )2 f 0

r (p)
, (D2)

�(R,−) =
∫ d2p

(2π )2
βp2

mr
β(−εr (p) + μ) f 0

r (p)
[
1 − f 0

r (p)
]

∫ d2p
(2π )2

(
1 − f 0

r (p)
) .

(D3)
Note that �r = �(R,σ ) only depends on σ , not r itself, since
the species mass mr drops out when we dedimensionalize. So
this is in fact exactly the same expression as in BLG. These
integrals are in fact the entropy per particle:

�(R,+) = −
∫ d2p

(2π )2

[(
1 − f 0

r (p)
)

ln
(
1 − f 0

r (p)
) + f 0

r (p) ln f 0
r (p)

]
∫ d2p

(2π )2 f 0
r (p)

, (D4)

�(R,−) = −
∫ d2p

(2π )2

[(
1 − f 0

r (p)
)

ln
(
1 − f 0

r (p)
) + f 0

r (p) ln f 0
r (p)

]
∫ d2p

(2π )2

[
1 − f 0

r (p)
] . (D5)

The number density of species r is

nr = Nf mr

2πβ
ln(1 + eσβμ), (D6)

where σ = +/−, depending on whether we are dealing with a
particle or a hole band. To obtain the scattering time between
species r and r′ due to Coulomb interactions, we need to solve
the equation

∫
d2p

(2π )2
pI (1)

r,Coul

[
hri (kri ) = βkri · uri

]
(p)

= −
∑

r′

nrmr

τrr′
(ur − ur′

). (D7)

Instead of explicitly computing this collision integral for all
βμ and all r, a reasonable first guess (that needs to be checked
against the SCBE results) would be

τ−1
rr′ = nr′∑

r′′ nr′′

(
mr∑
r′′ mr′′

)−1/2

τ−1
ee , (D8)

such that we only need to evaluate τee. To see where this
guess comes from, remember that basic kinetic theory yields
τ−1

rr′ ∼ nr′
�〈vr〉 (� is the collision cross section) and 〈vr〉 ∼√

kBT/mr . We then plug the steady-state solution of the fluid
Eq. (D1) into the formula for the electrical current,

J = e
∑

r

σnrur, (D9)
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and heat current,

Q = kBT
∑

r

�rnrur . (D10)

We can change this into a 1d problem in the absence of a
magnetic field. To this end, consider the steady-state form of
Eq. (D1):

0 = −
∑

r′

mr

τrr′
(ur − ur′

) − mrur

τep,r
+ σeE − �rkB∇T .

(D11)
We can turn this into a matrix equation by defining the
scattering rate between species as

�rr′ = δrr′

( ∑
r′′

τ−1
rr′′ + τ−1

ep,r

)
− τ−1

rr′ , (D12)

such that Eq. (D11) becomes

mr

∑
r′

�rr′ur′ = σeE − �rkB∇T . (D13)

The solution is obtained by taking the matrix inverse:

ur =
∑

r′

1

mr
�−1

rr′ (σ ′eE − �r′
kB∇T ). (D14)

Plugging Eq. (D14) into the electrical current Eq. (D9), one
finds

J = e
∑

r

σnr
∑

r′

1

mr
�−1

rr′ (σ ′eE − �r′
kB∇T ), (D15)

and similarly for the heat current Eq. (D10), one obtains

Q = kBT
∑

r

�rnr
∑

r′

1

mr
�−1

rr′ (σ ′eE − �r′
kB∇T ). (D16)

Finally, this leads to the expressions for the electrical conduc-
tivity,

σxx = e2
∑
rr′

nr

mr
σσ ′�−1

rr′ = Nf e2
∑
rr′

σσ ′ñrα−1
rr′ ≡ Nf e2

2
σ̃xx,

(D17)
the thermopower

�xx = Nf ekB

∑
rr′

nr

mr
�−1

rr′ �
r′
σ

= Nf ekB

∑
rr′

σ ñrα−1
rr′ �

r′ ≡ Nf ekB

2
�̃xx, (D18)

and the thermal conductivity (modulo the usual caveat about
the open-circuit thermal conductivity):

Kxx = k2
BT

∑
rr′

nr

mr
�r�−1

rr′ �
r′

= Nf k2
BT

∑
rr′

ñr�rα−1
rr′ �

r′ ≡ Nf k2
BT

2
K̃xx, (D19)

where we have dedimensionalized by defining

ñr = β
nr

Nf mr
= ln(1 + eσβμ)

2π
(D20)

and

αrr′ = β�rr′ . (D21)

In analogy with BLG, we define dimensionless tildered quan-
tities, which for conciseness we reproduce here again:

σ̃xx = 2
∑
rr′

σσ ′ñrα−1
rr′ , (D22)

�̃xx = 2
∑
rr′

σ ñrα−1
rr′ �

r′
, (D23)

K̃xx = 2
∑
rr′

ñr�rα−1
rr′ �

r′
. (D24)

APPENDIX E: SUPPLEMENTARY FIGURES

In previous work [20] we showed that two signatures of
the hydrodynamic regime in BLG are (i) the violation of
the Wiedemann-Franz law and (ii) the sharp increase of the
electric conductivity away from CN. In Figs. 7 and 8 we show
that both of these signatures survive in MLG, demonstrating
that the hydrodynamic regime in MLG is almost as strong as
in BLG.

FIG. 7. Results for L(μ = 0)/LWF, where L = σ/κT is the
Lorenz number and LWF = π 2/3(k2

B/e2) is the Wiedemann-Franz
result. We present the SCBE results for different even values of N .
We have set αep = 0.1/N consistent with our previous work on BLG.
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FIG. 8. Results for σ̃ (βμ = 1)/σ̃ (βμ = 0) from the SCBE cal-
culation for different even values of N . We have set αep = 0.1/N
consistent with our previous work on BLG.

APPENDIX F: FIGURE OF MERIT

In this section, we show results for the thermoelectric
figure of merit, defined as

zT = σS2T

κ
, (F1)

where S = �/σ is the Seebeck coefficient. Using Eq. (11)
along with the definitions Eqs. (12)–(14), we can re-express

FIG. 9. Plot of the figure of merit zT (βμ) from the SCBE
calculation N = 8. We have set αep = 0.1/N consistent with our
previous work on BLG. The results for different values of N are
similar.

zT as

zT = �̃2

σ̃ K̃ − �̃2
. (F2)

The figure of merit is plotted in Fig. 9 and shows that MLG is
a good thermoelectric material, since zT � 1 for βμ ∼ 1.
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