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Slave-spin-1 formulation: A simple approach to time-dependent
transport through an interacting two-level system
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We introduce and develop a slave-spin mean-field technique for describing generic interacting two-level
systems under time-dependent drivings, where an auxiliary S = 1 spin is added to describe the localized character
of the electrons. We show that the approach efficiently captures the main effects of the strong correlations as well
as the dynamical nature of the driving, while remaining simple enough to allow for an analytical treatment. Our
formalism provides a flexible solution method, which can be applied to different device configurations at an
extremely small numerical cost. Furthermore, it leads to a very practical description of adiabatically driven
systems in terms of frozen static solutions.
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I. INTRODUCTION

A two-level quantum system in contact with electron reser-
voirs is one of the most basic but at the same time meaningful
theoretical setup for studying the effect of strong correlations
on the transport properties of numerous nanoscale devices. We
consider a general and simple system as illustrated in Fig. 1,
where the coupling between two energy levels is dominated by
the Coulomb repulsion between electrons, Un1n2 that depends
on the level occupation number ni. The two levels can be seen
as the two spin levels of a magnetic impurity, or two orbitals of
an atom or a molecule, in which case the Coulomb repulsion
is a local quantity, but also two spinless single-level quantum
dots coupled by a nonlocal Coulomb repulsion.

These configuration are paradigmatic realizations of fun-
damental collective phenomena ranging from the celebrated
Kondo peak in the conductance [1] of the Anderson impurity
model (AIM) to the Coulomb drag observed in Coulomb-
coupled quantum dots [2,3]. The latter effect can be exploited
for new technological applications, such as, the implemen-
tation of a self-contained quantum refrigerator [4] or a heat
diode [5] leading to renewed interest in the subject [6–13].

Exploring the above effects when the system is in addi-
tion driven by time-dependent on-site energies εi(t ) and/or
tunneling barriers w ji(t ), is still an open field of great im-
portance for diverse areas including those of thermoelectrics
[14–18], energy harvesting [19,20], and also electron quantum
optics [21,22]. Despite the simplicity of a two-level device
and that some approaches have been developed to address
similar problems [23–26], those effects remain less studied
in the presence of an external driving due to the challenges
and numerical costs implied by the theoretical descriptions.
A simple and effective semianalytical framework to explore
the dynamics of interacting systems is given by nonequilib-
rium extensions of slave-particles techniques, like slave-boson
[27,28] and more recent slave-spin [29–32] approaches. In

particular, the U → ∞ Coleman slave-boson approach within
the mean-field approximation [20,33] and beyond [34], and
a nonequilibrium slave-spin-1/2 [35] have been applied to a
single magnetic impurity.

Here we introduce a time-dependent mean-field slave-spin-
1 approach (S-S1), that presents several advantages over other
slave-particles methods, namely, (i) It can be used to describe
a generic Coulomb-coupled two-level device like those in
Fig. 1, (ii) it leads to a reduction of the numerical costs due to
a much lower number of parameters describing the Coulomb
interaction, and finally (iii) it offers a pragmatical and simple
way of studying adiabatically driven systems, for which we
show that the full dynamics is described in terms of frozen
static solutions at every instant of time.

The paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian and develop the time-dependent S-S1
technique. Then, in order to benchmark our approach, we
present the stationary case in Sec. III. Section IV is devoted
to show how to apply the S-S1 approach for studying adiabat-
ically driven systems. In Sec. V, we consider a magnetically
driven Anderson impurity as an illustrative example to show
that the presented approach, in spite of being simple, it is
capable to predict interesting phenomena of a pure dynam-
ical nature. Finally Sec. VI is devoted to the summary and
conclusions.

II. MODEL HAMILTONIAN
AND SLAVE-SPIN 1 APPROACH

We describe the full system in Fig. 1 by the Hamiltonian
HFS (t ) = H(t ) + HR, where

H(t ) =
∑
i=1,2

⎛
⎝εi(t )ni +

∑
α,kα

wα,i(t )
(
c†

kα
di + d†

i ckα

)⎞⎠
+ th (d†

1 d2 + d†
2 d1) + Un1n2 (1)
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FIG. 1. Scheme of the theoretical model considered in this work.
It consists of a two energy level system which is in contact to
an arbitrary number N of noninteracting electron reservoirs with
tunneling amplitudes w j,i(t ). Here, i = 1 and 2 denotes the level
number and j = 1, 2, . . . , N corresponds to a reservoir index. The
two levels, ε1(t ) and ε2(t ), are coupled through a Coulomb interac-
tion with and energy U . For generality, hopping between the levels
with an amplitude th is also allowed. All the tunneling rates with the
reservoirs and the energy levels can be time-dependent functions.

represents the two-level subsystem along with the tunneling
contacts. In the above equation, the occupation operator reads
ni = d†

i di, and α runs over all the reservoirs. Moreover, for
completeness we consider a hopping amplitude th between the
levels or sites. The operator c†

kα
(ckα

) belongs to the reservoir
denoted by α and creates (destroys) an electron with momen-
tum kα . Our results can be applied to an arbitrary choice of HR

describing the noninteracting reservoirs, which are assumed
to be at equilibrium.

We consider a system in which each of the levels can
be at most single occupied, so that there are only four pos-
sible electronic configurations (n1, n2) for the two energy
levels: F = {|e〉 = (0, 0); |s+〉 = (1, 0); |s−〉 = (0, 1); |d〉 =
(1, 1)}. Within the S-S1 approach, all these configurations are
represented by introducing a single S = 1 auxiliary spin in
correspondence with the total fermionic number. This auxil-
iary spin, like in other slave-spin methods, is not related with
any physical magnetic moment or total spin of the two-level
subsystem but it is merely a variable having the commutation
relations of a S = 1 spin. In this representation, the physical
Fock space F is mapped onto a larger one F∗ including
the auxiliary spin and two fermionic degrees of freedom
connected to the physical fermions, which lead to the above
four charge states |m∗〉 with m = e, s±, d , plus the auxiliary
spin. Then, we associate to each of the real states in F one of
the states living in F∗ in the following way:

|e〉 ⇔ |e∗, Sz = −1〉; |s+〉 ⇔ |s∗
+, Sz = 0〉,

(2)
|s−〉 ⇔ |s∗

−, Sz = 0〉; |d〉 ⇔ |d∗, Sz = 1〉.
While the eight remaining states in F∗, as, for example,
|d∗, Sz = 0〉 or |s∗

+, Sz = 1〉, are interpreted as unphysical
states and they are excluded by enforcing a constraint on the
total number of electrons

n∗
T = Sz

h̄
+ 1, (3)

where n∗
T = n∗

1 + n∗
2, with n∗

i = d∗
i

†d∗
i and d∗

i being the
fermionic operators in the enlarged space. Now, the original

Hamiltonian in Eq. (1) that contains the Coulomb interaction
term, must be mapped onto an auxiliary H∗(t ) acting in
the enlarged F∗. For this, we can see that the local opera-
tors are equally represented under the transformations: di →
d∗

i S−/(h̄
√

2) and ni → n∗
i , while the density-density interac-

tion n1n2 → Sz(Sz + h̄)/(2h̄2) can be rewritten in terms of the
spin solely. Then,

H∗(t ) =
∑
i=1,2

⎛
⎝ε∗

i (t )n∗
i +

∑
α,kα

wα,i(t )

h̄
√

2
S−c†

kα
d∗

i + H.c.

⎞
⎠

+ th(d∗
1

†d∗
2 + d∗

2
†d∗

1 )

+
(

U

2h̄
Sz − λ(t )

)(
Sz

h̄
+ 1

)
, (4)

where ε∗
i (t ) = εi(t ) + λ(t ) are the renormalized energy levels,

and λ(t ) is the Lagrange multiplier enforcing the constraint
in Eq. (3) at every time. On the other hand, the hopping
contribution between the levels remains unchanged since it
is represented in the same way as in the original Fock space,
i.e., d†

1 d2 → d∗
1

†d∗
2 .

Mean-field dynamics

So far we have just introduced a new-look representation
for the original interacting Hamiltonian H(t ) in an enlarged
Hilbert space. As customary in other slave-particle meth-
ods, we are going to treat the problem within a mean-field
approximation (MFA) that mainly consists of two steps: (i)
decoupling fermionic ( f ) and spin (S) degrees of freedom,
so that all the states in F∗ are factorized as |ψ〉 = | f 〉 ⊗
|S〉; and (ii) treating the constraint in Eq. (3) on average.
These assumptions are justified for U 	 {γα, Vi, V̇i}, where
γα is the hybridization with the reservoir α and Vi(t ) =
(εi(t ),w1i(t ), . . . ,wNi(t )) a vector containing all the time-
dependent parameters acting on the i level. We ensure thereby
that fluctuations of the spin with respect to the mean val-
ues can be neglected, even under the action of slow time-
dependent drivings.

Then, step (i) of the MFA leads to a noninteracting theory
for the fermions with an effective Hamiltonian

H∗
f (t ) =

∑
i=1,2

⎛
⎝ε∗

i (t )n∗
i +

∑
α,kα

w∗
α,i(t )c†

kα
d∗

i + H.c.

⎞
⎠

+ th(d∗
1

†d∗
2 + d∗

2
†d∗

1 ) + β(t ), (5)

where w∗
α,i(t ) = wα,i(t )〈S−〉s(t )/(h̄

√
2) are the renormal-

ized tunneling factors, and β(t ) = U
2h̄2 (〈S2

z 〉s(t ) + h̄〈Sz〉s(t )) −
λ(t )

h̄ (〈Sz〉s(t ) + h̄). Here, the subscript s denotes the part |S〉 of
the compound state which corresponds solely to the spin. On
the other hand, (ii) establishes that the ẑ component of the spin
evolves according to the constraint

〈Sz〉s = h̄(〈n∗
T 〉 f − 1), (6)

where, similarly as before, index f means the fermonic state
| f 〉. Therefore, this approach steers to a coupled problem
between fermionic and spin dynamics, since all the parameters
entering Eq. (5) depend on the spin values which are at
the same time determined by the evolution of the fermionic
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subsystem. The evolution of other expectation values or com-
ponents of the spin can be computed from the equation of mo-
tion −ih̄dt 〈OS〉s = 〈ψ |[H∗,OS]|ψ〉 with OS being any spin
operator. In the case of the raising operator S+ (or equivalently
S−) renormalizing the coupling with the reservoirs, it reads

−ih̄dt 〈S+〉s =
(

U

2
− λ

)
〈S+〉s + U

2h̄
〈{Sz, S+}〉s

− 2〈Sz〉s

2∑
i=1

∑
α,kα

wα,i√
2

〈
c†

kα
d∗

i

〉
f , (7)

that depends also on 〈{Sz, S+}〉s, for which we have

−ih̄dt 〈{Sz, S+}〉s =
(

U

2
− λ

)
〈{Sz, S+}〉s + U

2
h̄〈S+〉s

− 2
2∑

i=1

∑
α,kα

wα,i√
2

[〈
d∗

i
†ckα

〉
f 〈S+2〉s

− 〈
c†

kα
d∗

i

〉
f

(
2h̄2 − 3

〈
S2

z

〉
s

)]
. (8)

Now, due to the fact that the most general normalized spin
state can be written as [36]

|S〉=
√

1−(|d|2+ |e|2)|Sz =0〉 + d|Sz=1〉 + e|Sz=−1〉, (9)

all the expectation values for the spin can be expressed as a
function of d and e, 〈OS〉s = gOS (d, e), where d and e play the
role of the amplitudes to have double or zero occupancy (see
Appendix A for the specific expressions of gOS ). Therefore
the coefficients d (t ) and e(t ) and the Lagrange multiplier
λ(t ) constitute the set of time-dependent variables encoding
the full solution of the problem. Their dynamics is obtained
solving the system of ordinary differential equations (SODE)
composed by (6)–(8).

III. STATIONARY CASE

In order to benchmark our approach, we start from the
case where all the parameters V0

i = (εi,w1i, . . . ,wNi ) with
i = 1, 2, are constant functions. For this static configuration,
transport through the system could be driven only by the
application of bias voltages or temperature differences
between the reservoirs. In particular, we are interested in the
steady state regime for which all the parameters entering H∗

f
in Eq. (5) have already attained their stationary value. Thus
we move to a stationary S-S1 formulation, in the sense that
the system does not evolve in time. Imposing the stability
condition dt 〈OS〉0

s = 0 for the spin values on Eqs. (7) and (8),
we find out that in this specific case, the spin problem is fully
determined by only one real variable, the z component of the
spin 〈Sz〉0

s = h̄(|d|2 − |e|2). Any other expectation value of the
spin is therefore written in terms of 〈Sz〉0

s . Particularly, for the
Hamiltonian parameters we have |〈S+〉0

s |2 = h̄2 − 〈Sz〉0
s

2 and
〈S2

z 〉0
s = (〈Sz〉0

s
2 + h̄2)/2. Moreover, Eqs. (7) and (8) lead to

0 =
[
λ0 − U

2

(
1 + 〈Sz〉0

s

h̄

)](
1 − 〈Sz〉0

s
2

h̄2

)

+ 〈Sz〉0
s

h̄

∑
α

∫
dε

π
Tr

[
ρ̂0

α (ε)(ε − Ĥ∗
0 )

]
fα (ε), (10)

while the constraint reads

〈Sz〉0
s

h̄
+ 1 =

∑
α

∫
dε

2π
Tr

[
ρ̂0

α (ε)
]

fα (ε). (11)

Here the matrix ρ̂0
α (ε) is the partial density of state of the

two-level system and [Ĥ∗
0 ]i j = ε∗

i δi, j + th(δi, j+1 + δi, j−1).
fα (ε) is the Fermi-Dirac distribution of the reservoir α.
Details can be found in Appendix B.

In this way, the stationary S-S1 allows to describe the
effect of a finite interaction U on a generic two-level setup
in terms of only two parameters, λ0 and 〈Sz〉0

s , which are the
solutions of the reduced 2 × 2 system of nonlinear equations
composed by (10) and (11) (SNLE). The low dimensionality
of the involved system of equations represents one of the
advantages of this method with respect to other slave-particles
techniques. For instance, the Kotliar-Ruckenstein approach
(KR) [28] for the AIM makes use of seven parameters in
total (four bosons and three Lagrange multipliers) for the
nondegenerated case. For an explicit comparison with the KR
predictions, we refer the reader to Appendix C.

IV. ADIABATICALLY DRIVEN SYSTEMS

In this stage, we consider an adiabatic driving (ad), namely,
a slow evolution in time of all the parameters, V̇i → 0. As
a consequence of the quasistatic evolution of the system we
expect the solutions to remain close to the static solutions at
every instant of time t . For this reason, the spin values and the
Lagrange multiplier may be approximated as [20]

〈OS〉ad
s (t ) ∼ Ot

S + �OS (t ),
(12)

λad (t ) ∼ λt + �λ(t ),

where Ot
S ≡〈O0

S〉s(Vi(t )) and λt ≡λ0(Vi(t )) are the static
values of the observables computed using the values of the
parameters Vi(t ) at a given time. Hence, t is used as an index
to stress that the dependence on time is purely parametric as
in a series of snapshots with frozen parameters. The first-order
corrections �OS (t ), �λ(t ) ∝ V̇i take into account the effect
of the slow driving.

Following Refs. [14,20], we can evaluate the SODE in
linear response in the small V̇i (see Appendix D). As a conse-
quence of this adiabatic expansion, we find again that the spin
values are expressed in terms of 〈Sz〉ad

s (t ) solely: |〈S+〉ad
s |2 =

h̄2 − 〈Sz〉ad
s

2
and 〈S2

z 〉ad
s = (〈Sz〉ad

s
2 + h̄2)/2, as expected for a

quasistatic evolution. Therefore 〈Sz〉ad
s (t ) together with λad (t )

constitute the full set of variables describing the interactions
under an adiabatic driving, whose static (or frozen) values
St

z and λt are obtained by solving the stationary SNLE with
the instantaneous values of the parameters Vi(t ). Moreover,
the linear response treatment allows to easily compute the
corrections, collected in � = (�λ,�Sz/h̄), as solutions of a
system of linear equations L̂(t )�(t ) = C(t ) (SLE), thus

�i = CiL̂ j j − C j L̂i j

det[L̂]
for i = 1, 2 and j �= i. (13)

The linear coefficients in L̂(t ) as well as the independent
vector C(t ), are all evaluated only with the instantaneous λt

and St
z. Hence the corrections �(t ), and consequently the
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entire dynamics of the electron system, are determined ex-
clusively by the frozen solutions of the SNLE. The analytical
expressions are the following:

L̂ii = 1 + h̄St
z(

h̄2 − St
z
2
) ∫

dε

π
f ′(ε)Tr[ρ̂t (ε)(ε − Ĥ∗

t )],

L̂21 = −
∫

dε

2π
f ′(ε)Tr[ρ̂t (ε)],

L̂12 = −
[

h̄St
z(

h̄2 − St
z
2
)
]2 ∫

dε

π
f (ε)Tr[�̂t ρ̂t (ε)(ε − Ĥ∗

t )ρ̂t (ε)]

− h̄
(
λt − U

2

)
St

z

, (14)

where ρ̂t ≡ ∑
α ρ̂0

α (Vi(t ), λt , St
z ) is the total frozen den-

sity matrix and Ĥ∗
t ≡ Ĥ∗

0 (ε∗
i →εi(t ) + λt ). The effective hy-

bridization reads �̂t = ∑
α γ̂α (t )(1 − St

z
2
/h̄2)/2, and f is the

Fermi function evaluated at zero bias voltage and temperature
difference between the reservoirs. Moreover,

C1 = St
z

2
(
1 − (

St
z/h̄

)2)
∫

dε

2π
f ′(ε)

d

dt
Tr[ρ̂t (ε)�̂t ],

C2 = h̄
∫

dε

2π
f ′(ε)Im

{
Tr

[
Ĝt†

(ε)
dĜt (ε)

dt
�̂t

]}
, (15)

with Ĝt = [(εÎ − Ĥ∗
t ) + i�̂t/2]−1 being the frozen retarded

Green’s function of the two-level system. We notice that L̂
corresponds to the Jacobian matrix of the SNLE evaluated at
λt and St

z, and therefore it describes steady-state phenomena.
On the other hand, the time derivatives in C give rise to
terms ∝V̇i, which describe pumping effects. In particular,
the coefficient C2 corresponds to a correction in the number
of electrons held by the two-level system due to the time
variation of the parameters.

V. EXAMPLE: A MAGNETICALLY DRIVEN
ANDERSON IMPURITY

In this section, we show that our description of the adi-
abatic dynamics is able to capture the main effects of a
time-dependent driving. Thus we analyze the behavior of
the magnetization M = n↑ − n↓ of a single level Anderson
impurity merely driven by an oscillating Zeeman field h(t ) =
h0 cos(ωt ), for h̄ω � γ with γ being the total hybridization
with the reservoirs. In this case, the levels i = 1 and 2 in the
Hamiltonian in Eq. (1) represent the genuine spin projections
↑,↓ of the electrons. We consider a time-dependent Zeeman
splitting ε↑,↓(t ) = ε0 ∓ h(t ) with ε0 being the bare energy of
the impurity, and th = 0. All the couplings with the reservoirs
wα are taken constant and spin independent. It is worth men-
tioning that even though γ is time-independent, the effective
hybridization �t = γ (1 − St2

z /h̄2)/2 depends on time through
the frozen value of the auxiliary spin. The magnetization can
be expanded within the adiabatic regime as [14]

M ∼ Mt + FM ḣ, (16)

where Mt is the frozen magnetization and FM is a pseud-
oforce accounting for changes on the magnetization due to

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

FIG. 2. Frozen magnetization Mt as a function of the Zeeman
field h, which is expressed in units of the total bare hybridization
with the reservoirs γ . We consider that the impurity is connected to
two reservoirs at the same temperature T and chemical potential μ.
Parameters: U = 4γ , h̄ω = 3 × 10−3γ , h0 = 3γ , kBT = μ = th =
0, and ε0 = 0. Typical experimental values of the hybridization γ ∼
10−6–10−5eV correspond to magnetic fields B ∼ 10−2–10−1 T.

the variation of the external field. The features of the frozen
magnetization are shown in Fig. 2. As reported in Ref. [31] for
a constant magnetic field, the instantaneous Mt is a monoton-
ically increasing function of |h| which vanishes when h → 0
and reaches its maximum absolute value Mt → ±1 at large
magnetic fields |h| 	 γ .

Nonetheless, the behavior of M departs from the frozen
magnetization when |h| � γ , owing to the fact that the ef-
fect of the modulation of the field is more perceived within
that range. This is shown in Fig. 3(a), where in particular
we observe that the impurity is magnetized even when h =

(a) (b)

FIG. 3. Magnetization of an impurity as a function of the driving
Zeeman field h. (a) The blue solid line corresponds to the mag-
netization M, while the red dashed curve is the frozen value Mt .
(b) Pseudoforce FM in units of h̄/γ 2 as a function of h. All the
parameters are the same as in Fig. 2.
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0. Black arrows indicate the direction in which the curve
is followed during the period of oscillation, thus we can
see that two opposite values of the zero-field magnetization
M(h = 0) are attained at different moments. This is an intrin-
sic nonequilibrium effect purely originated by the variation of
the field ḣ, and as such it can not be described in terms of
different stable solutions. Indeed, the finite magnetization at
zero field will vanish if the field suddenly becomes constant.
On the other hand, the behavior of FM is exposed in Fig. 3(b).
We notice that the pseudo-force is restorative FM � 0, conse-
quently resulting in a sort of inertia or memory of part of the
alignment, that is of dynamical nature. As the field increases
|h| > γ , the latter force vanishes FM → 0, so that M → Mt .
It is worth mentioning that the significant increment of the
magnetization at zero field M(h = 0) ∼ 0.1 merits a deeper
analysis beyond the adiabatic regime.

VI. CONCLUSION

We have developed a mean-field S-S1 technique for de-
scribing Coulomb-coupled two-level systems in which time-
dependent drivings are introduced through the different tun-
neling elements with the reservoirs wi j (t ) as well as by a
modulation of the energy levels εi(t ). This approach can be
applied for quite generic device configurations, in the sense
that the finite interaction U can be local as well as nonlocal,
and also the number and connection locations of the reservoirs
can be arbitrary. A hopping amplitude between the level (or
sites) is contemplated as well. In this way, the S-S1 is capable
to describe not only the already well studied AIM but also
Coulomb-coupled quantum dots systems where Coulomb-
drags effects can take place.

We showed that in the stationary limit but also within the
adiabatically driven regime, the effects of the interactions are
encoded by only two parameters: A Lagrange multiplier λ and
the component of the auxiliary spin Sz. In the stationary case,
the latter are the solutions of the 2 × 2 SNLE in Eqs. (10)
and (11). Particularly, for an adiabatic driving we presented
a practical manner to solve the SODE by considering the
solutions as little perturbations from the instantaneous (or
frozen) values λt and St

z, which are found by solving again
the SNLE but at every instant of time. Then, the corresponding
perturbative corrections �λ(λt , St

z ) and �Sz(λt , St
z ) are simply

the solutions of a SLE in Eq. (13) evaluated only with the
frozen values. Finally we considered a magnetically driven
Anderson impurity as an example to show that the above
perturbative treatment, in spite of being simple, it is capable
to predict interesting phenomena of a pure dynamical nature.
More precisely we found a finite magnetization of the impu-
rity even at zero magnetic field, which is merely originated by
the time-dependent driving.
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APPENDIX A: SPIN EXPECTATION VALUES

From the generic normalized spin state in Eq. (9), we can
easily compute the expectation value of any spin operator
〈OS〉s = gOS (d, e) as a function of the amplitudes of doubly
occupied and empty sites. In particular,

〈S+〉s = 〈Sx〉s + i〈Sy〉s = 2h̄√
2

s(d∗ + e),

〈{Sz, S+}〉s = 2h̄2

√
2

s(d∗ − e),

〈Sz〉s = h̄(|d|2 − |e|2), (A1)〈
S2

z

〉
s = h̄2(|d|2 + |e|2),

〈S+2〉s = 2h̄2d∗e,

with s =
√

1 − (|d|2 + |e|2) being the amplitude of the |Sz =
0〉 state.

APPENDIX B: STATIONARY LIMIT

By taking the real part of Eq. (7) multiplied by 〈S−〉s, we
get

h̄φ̇+|〈S+〉s|2 =
(

U

2
− λ

)
|〈S+〉s|2 + h̄U 〈Sz〉s

(
1 −

〈
S2

z

〉
s

h̄2

)

−2 h̄〈Sz〉s

2∑
i=1

∑
α,kα

Re
{
w̃α,i

〈
c†

kα
d∗

i

〉
f

}
, (B1)

where φ+ is the complex argument of 〈S+〉s = |〈S+〉s|eiφ+

when written in a phasor form. On the other hand, the imagi-
nary part reads

dt |〈S+〉s|2 = 4h̄Us2Im{d e} − dt 〈Sz〉2
s , (B2)

or equivalently

|〈S+〉s|2(t ) = 4h̄U
∫ t

t0

dt ′s2(t ′)Im{d (t ′)e(t ′)}

+β − 〈Sz〉2
s (t ), (B3)

with β being a constant number. In the stationary case, all the
spin expectation values remain constant dt 〈OS〉0

s = 0, so that
from Eq. (B2), we find

Im{d e} = 0 ⇔
{

d, e ∈ R
φd = −φe + mπ with m ∈ Z

, (B4)

where φl are the phases of the complex amplitudes l = |l|eiφl ,
with l = d, e. The above possibilities for d and e, can be
thought as a kind of different “gauge choices.” Plugging the
latter condition into Eq. (B3) we can see that in the stationary
limit |〈S+〉0

s |2 = β − 〈Sz〉0
s

2. The constant β, can be obtained
from the partial derivatives

∂
∣∣〈S+〉0

s

∣∣2

∂|d|2 = −2h̄2〈Sz〉0
s = −∂

∣∣〈S+〉0
s

∣∣2

∂|e|2 , (B5)

which is satisfied for 2|d||e| = 1 − |d|2 − |e|2, and leads
to β = h̄2 and 〈S2

z 〉0
s = (〈Sz〉0

s
2 + h̄2)/2 when replaced into

Eq. (A1).
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On the other hand, the stationary condition also sets φ̇+ =
0, so that Eq. (B1) reads

0 =
[
λ0 − U

2

(
1 + 〈Sz〉0

s

h̄

)](
1 − 〈Sz〉0

s
2

h̄2

)

+ 2
〈Sz〉0

s

h̄

∑
i=1,2

∑
α,kα

Re
{
w̃α,i

〈
c†

kα
d∗

i

〉
f

}
. (B6)

The same is obtained when starting from Eq. (8).
Finally, by following Ref. [37], we find the final ex-

pressions of the SNLE in Eqs. (10) and (11) of the
main text, where the partial density matrix reads ρ̂0

α (ε) =
Ĝ0(ε)�̂0

αĜ0(ε), with Ĝ0 = [(εÎ − Ĥ∗
0 ) + i

∑
α �̂0

α/2]−1 being
the retarded Green’s function of the two-level subsystem when
connected to the reservoirs, and �̂α = γ̂α|〈S+〉0

s |2/(2h̄2) is
the renormalized hybridization with the α reservoir due to
the interactions. The bare hybridization matrix reads [γ̂α]i j =
wα,iwα, j�α where �α corresponds to the density of state of the
α lead which is considered energy-independent.

APPENDIX C: COMPARISON WITH
KOTLIAR-RUCKENSTEIN PREDICTIONS

Here we show the results given by the stationary S-S1
formulation when applied to describe a single level magnetic
impurity, and we also compare with Kotliar-Ruckenstein (K-
R) predictions [28,38]. In particular, we exhibit the behavior
of the electrical conductance G and the spin amplitudes d , e
as functions of the energy level of the impurity ε0.

From Fig. 4, we can see that the S-S1 approach reproduces
well the peak in the linear conductance G = 2e2/h̄ at the
symmetric point ε0 = −U/2, as well as the critical energies
in which the conductance is significantly suppressed (around

-6 -4 -2 0 2
0

0.5

1

1.5

2

-6 -4 -2 0 2
0

0.2

0.4

0.6

0.8

1

FIG. 4. (a) Electrical conductance G as a function of the energy
level of the impurity ε↑ = ε↓ = ε0. S-S1 predictions are shown for
U = 4γ (blue solid line) with γ being the total hybridization with the
reservoirs, as well as in the strongly interacting limit U → ∞ (red
dot-dashed curve). Finally, the blue-dashed line corresponds to the
K-R predictions in the case of U = 4γ . (b) Behavior of d2, e2, and
s2 = 1 − (d2 + e2) as a function of ε0. Other parameters are kBT =
μ = th = 0

ε0 ∼ −6γ and ε0 ∼ 2γ , with γ being the total hybridization
with the reservoirs). For intermediate energies, the values of
G slightly differ from the K-R curve, which is not worri-
some since both methods only provide qualitative predictions
within this energy range. On the other hand, in the strongly
interacting limit U → ∞ the conductance shows a strong en-
hancement from energies slightly below the Fermi level of the
reservoirs ε0 � 0 and it reaches its maximum for −2γ > ε0 >

−3γ , in agreement with experimental observations [38,39].
Then, in panel (b), we depict the amplitudes of the doubly

occupied d2 and empty e2 configurations and s2 = 1 − (d2 +
e2) for U = 4γ . As expected, we can see that when the energy
is far below the Fermi level ε0 � 0, then the impurity is
double occupied so that d2 = 1 and e2 = 0. As the energy
level ε0 is pushed up, d2 inevitably decreases and the singly
occupied state amplitude s2 starts to increase and reaches its
maximum at the symmetric point ε0 = −U/2. After that, with
a further increase of the energy level, there are no electrons in
the impurity so that e2 = 1 and d2 = 0.

APPENDIX D: AN ADIABATIC DRIVING

In this Appendix, we evaluate the SODE up to first order
in the small rate of change of the time-dependent parameters
V̇i following Eq. (12).

We start from Eq. (B2) in which we approximate
dt |〈S+〉s|2 ∼ dt |S+t |2 and dt 〈Sz〉2

s ∼ dt St
z
2 so that

dt |S+t |2 = 4h̄Us2Im{d e} − dt S
t
z
2
. (D1)

Now, since the frozen values satisfy the relation |S+t |2 =
h̄2 − St

z
2, we get again that Im{d e} = 0 ∀t as long as the

evolution of the system is quasistatic. In the same way as for
the stationary case, the latter condition leads to |〈S+〉ad

s |2 =
h̄2 − 〈Sz〉ad

s
2

and 〈S2
z 〉ad

s = (〈Sz〉ad
s

2 + h̄2)/2.
On the other hand, when writing down Eq. (B1) up to

first order, we should also approximate φ̇+ ∼ φ̇+ f
. The phase

φ+ f behaves as a Gauge choice due to its static nature, and
therefore it does not depend on time (or equivalently, on the
parameters of the system) so that we have φ̇+ f = 0. Finally,
after Ref. [20], we can perform the following approximations
in Eqs. (6) and (B1)

2∑
i=1

∑
kα

2Re
{
w̃α,i

〈
c†

kα
d∗

i

〉
f

} ∼
∫

dε

2π

(
Re

{
Tr[Ĝ(t, ε)�̂α (t )]

}
fα

− h̄

2
f ′ d

dt
Tr

[
ρ̂t

α (ε)�̂t
])

, (D2)

〈n∗
T 〉 f ∼

∫
dε

2π

(∑
α

Tr[ρ̂α (t, ε)] fα

+ h̄ f ′Im
{

Tr

[
Ĝt†

(ε)
dĜt (ε)

dt
�̂t

]})
, (D3)

where Ĝ(t, ε) ∼ Ĝt (ε) − ∂εĜt (ε)�λt + ∂St
z
Ĝt (ε)�St

z,

�̂α (t ) = γ̂α (t )(1 − 〈Sz〉ad
s

2
/h̄2)/2, and ρ̂α (t, ε) =

Ĝ(t, ε)�̂α (t )Ĝ†(t, ε).
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In this way, we can compute Eq. (B1) in the linear-response approximation, which reads

0 =
[
λad (t ) − U

2

(
1 + 〈Sz〉ad

s (t )

h̄

)](
1 − 〈Sz〉ad

s
2
(t )

h̄2

)

+ 〈Sz〉ad
s (t )

h̄

∫
dε

2π

(∑
α

Re{Tr[Ĝ(t, ε)�̂α (t )]} fα − h̄

2
f ′ d

dt
Tr[ρ̂t (ε)�̂t ]

)
, (D4)

hence, we were able to reduce the SODE to a system of nonlinear equations composed by Eqs. (D3) and (D4).
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