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Phonon scattering induced carrier resistivity in twisted double-bilayer graphene
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In this work we carry out a theoretical study of the phonon-induced resistivity in twisted double bilayer
graphene (TDBG), in which two Bernal-stacked bilayer graphene devices are rotated relative to each other
by a small angle θ . We show that at small twist angles (θ ∼ 1◦) the effective mass of the TDBG system is
greatly enhanced, leading to a drastically increased phonon-induced resistivity in the high-temperature limit
where phonon scattering leads to a linearly increasing resistivity with increasing temperature. We also discuss
possible implications of our theory on superconductivity in such a system and provide an order of magnitude
estimation of the superconducting transition temperature.
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I. INTRODUCTION

Recent experimental discoveries of correlated insulator and
superconductivity in twisted bilayer graphene (TBG) [1–5]
have attracted great interest in the community. The fact that
the electronic band structure of TBG can become almost
flat near the magic angle [6] strongly enhances the effect
of interactions, making it possible to study novel quantum
phases that are otherwise difficult to realize experimentally.
Furthermore, the apparent similarities between the phase dia-
gram of TBG and cuprate high-temperature superconductors
[7] suggest that the study of electron correlations in TBG may
provide useful hints for our understanding of the electronic
properties in cuprates.

The experimental observation of novel quantum phases
in TBG has since stimulated the investigation of other van
der Waals heterostructures using the twist angle degree of
freedom, including, e.g., the trilayer graphene/h-BN moiré
superlattice [8,9]. One of the motivations of such studies is to
go beyond certain limitations of TBG. For example, although
the twist angle offers an unprecedented tuning knob to modify
the electron band structure in TBG, it still cannot be changed
continuously. To date, properties of TBG are mostly modi-
fied by fabricating new devices with different twist angles
or by applying hydrostatic pressure [3,10]. It will thus be
advantageous to find a way to modify the band structure of
a van der Waals heterostructure continuously near quantum
critical points, which will enable a more detailed experimental
characterization of the electron correlation effects.

Twisted double bilayer graphene (TDBG) has emerged
as a promising platform in this respect, because the band
structure of a single Bernal-stacked bilayer graphene [11,12]
can be tuned continuously by an external perpendicular elec-
tric field. Consequently, one can expect to adjust the band
structure of TDBG continuously by an external electric field.

*xiao.li@cityu.edu.hk

Such a tunability is highly desirable, especially near certain
quantum critical points. As a result, TDBG has attracted
much attention and rapid experimental [13–16] and theoretical
[17,18] progress has been made. In particular, the application
of an external electric field has indeed given rise to a very
rich TDBG phase diagram, including signatures of correlated
insulator states as well as superconductivity and possibly
ferromagnetism in some cases.

The interesting TDBG physics for small twist angles arises
from the same moire flatband physics dominating the exten-
sively studied TBG phenomena near the magic twist angle.
Basically, the moire potential for small twist angle strongly
flattens the relevant graphene bands, leading to very small
band velocities (or very large carrier effective masses), which
lead to a great enhancement of all interaction phenomena
since typically interaction physics is proportional to the carrier
effective mass. In the current work, we use a suitable contin-
uum model TDBG band structure to estimate band flattening
effects.

In this work, however, we take a different perspective and
study the resistivity in TDBG in the high-temperature limit,
when phonon scattering will be the dominant mechanism for
resistivity. Thus, instead of focusing on the T = 0 ground-
state phase diagram, we investigate the ohmic transport prop-
erties of the finite-temperature effective metallic TDBG phase
above the applicable critical temperatures (or the ground-state
energy gaps) of the symmetry-broken states where TDBG
behaves as a metal. Considering rather clean systems, and
focusing specifically on the temperature dependence of carrier
resistivity, we neglect effects of disorder, impurities, and
defects since the main temperature dependence of metallic
resistivity arises from phonon scattering effects. We also
ignore all electron-electron interaction effects, and only take
into account resistive scattering by acoustic phonon scattering.

Specifically, the scattering of electrons by acoustic
phonons can be generally divided into two regimes: a low-
temperature regime (T < TBG) and a high-temperature one
(T > TBG). The characteristic temperature TBG is known as
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the Bloch-Grüneisen (BG) temperature, given by kBTBG =
2h̄vphkF [19,20], where kB is the Boltzmann constant, vph

is the phonon velocity, and kF is the Fermi wave vector.
(We note that for regular metals where TBG is very high, or
in any situation where TBG > TD with TD being the Debye
temperature, the characteristic temperature defining the low-
and high-temperature phonon scattering regimes is TD and not
TBG.) In the high-temperature regime, the electron resistivity
will scale as a linear function of temperature T , giving rise
to ρ ∼ T , which has been well understood in the context
of graphene devices [11,21,22]. We are interested in this
regime because similar to TBG, a wide range of linear-in-T
resistivity has been observed in this temperature range in
TDBG [13–15]. In the context of TBG, such a behavior is
often attributed to the putative “strange-metal” phase [23,24],
although it can be compatible with a phonon-scattering mech-
anism [25], albeit with greatly enhanced phonon scattering
induced carrier resistivity. In this work, we will theoretically
study the phonon-induced resistivity in TDBG in the high-
temperature regime and analyze its compatibility with the
experimental observations. In particular, we want to under-
stand whether electron-phonon scattering in TDBG can be a
contributing factor for the linear-in-T resistivity seen in recent
experiments. Our work can be thought of as the TDBG gener-
alization of Ref. [25] or as the small twist angle double-bilayer
generalization of Ref. [20]. The goal is to theoretically obtain
the acoustic phonon scattering induced carrier resistivity of
TDBG as a function of temperature, twist angle, and carrier
density.

The structure of the paper is the following. In Sec. II
we set up a continuum model for TDBG and demonstrate
that its low-energy bands become almost flat (i.e., very large
effective mass or equivalently very small effective velocity)
at small twist angles (θ ∼ 1◦). In Sec. III we explain the
theoretical framework we use to evaluate phonon-induced
resistivity in TDBG and present our numerical results. In
Sec. IV we provide some additional discussions. In particular,
we will comment on the possible implications of our theory
on superconductivity in TDBG and provide a rough estimate
of the superconducting transition temperature Tc arising from
the enhanced electron-phonon coupling. Finally, in Sec. V we
provide a brief summary of our results.

II. CONTINUUM DESCRIPTION OF A TWISTED DOUBLE
BILAYER GRAPHENE

We start by introducing the continuum model of a TDBG.
We consider two Bernal-stacked bilayer graphene (BLG) ro-
tated relative to each other by a small angle θ , as shown in
Fig. 1(a). In particular, we adopt the convention that the top
BLG will be rotated by an angle of θ/2, while the bottom
one will be rotated by −θ/2. As a result, the continuum
description of TDBG near valley +K can be written as

H+ =
(

ht (k) T (r)
T †(r) hb(k)

)
, (1)

which is given in the basis of {A1, B1, A2, B2, A3, B3, A4, B4}.
Here A and B denote the two sublattices of BLG and indices
1–4 denote the four atomic layers, with 1 and 2 belonging to
the top BLG and 3 and 4 to the bottom one.

FIG. 1. (a) Illustration of the moiré Brillouin zone in twisted
double bilayer graphene. Here the red and blue hexagon denotes
the Brillouin zone of the top and bottom bilayer graphene, respec-
tively, while the black hexagon represents the moiré Brillouin zone.
(b) Band structure of twisted double bilayer graphene at various
different twist angles. Here we choose γ1 = 380 meV and w =
118 meV. [(c) and (d)] Density of states per spin per valley in twisted
double bilayer graphene at a twist angle of θ = 1.5◦ and θ = 1.33◦,
respectively.

In the continuum model Eq. (1), ht (b) denotes the Hamilto-
nian for the isolated top (bottom) BLG, given by

hλ(k) =

⎛
⎜⎝

0 h̄vk∗
λeilλθ/2 0 0

h̄vkλe−ilλθ/2 0 γ1 0
0 γ1 0 h̄vk∗

λeilλθ/2

0 0 h̄vkλe−ilλθ/2 0

⎞
⎟⎠.

(2)

In the above equation λ = t, b denotes the top and bottom
BLG and lt (b) = +1(−1). In addition, kt (b) ≡ k[t (b)]

x + ik[t (b)]
y

denotes the (complex) in-plane momentum measured from the
Brillouin zone corner of the top (bottom) BLG. In addition,
v = 1 × 106 m/s is the bare Dirac velocity of monolayer
graphene, while γ1 is the interlayer coupling energy of an
isolated BLG. Note that the value of γ1 in the literature varies
widely from 300 to 400 meV [12]. In this work we will take
γ1 = 380 meV, but note that results do depend on the specific
choice of the γ1 band parameter.

In TDBG the moiré potential arising from the twist angle
between the two BLGs only induces direct coupling between
atomic layers 2 and 3. As a result, the moiré potential term in
the continuum model Eq. (1) can be written as

T (r) =
(

0 0
t(r) 0

)
, (3)

where t(r) = w
∑3

j=1 TjeiQ j ·r. Here w � 118 meV [26] and

Tj = σ0 + cos(2π j/3)σx + sin(2π j/3)σy, ( j = 1, 2, 3),
(4)

where σi are the Pauli matrices. The three vectors Q j read as

Q1 = Kθ

(√
3

2
,

1

2

)
, Q2 = Kθ

(
−

√
3

2
,

1

2

)
,

Q3 = Kθ (0,−1),
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with Kθ = 4π/(3aM ). Here aM = a0/[2 sin(θ/2)] is the lat-
tice constant of TDBG, and a0 = 2.46 Å is the lattice constant
of monolayer graphene.

Within this continuum description, the band structure of
TDBG can be obtained by diagonalizing a large matrix in
the momentum space which connects each k point in the first
superlattice moiré Brillouin zone (MBZ) to three other points
k + Q j ( j = 1, 2, 3) in an adjacent MBZ. The resulting band
structures for TDBG at three different twist angles are shown
in Fig. 1(b). For a large twist angle (θ = 5.0◦), the band struc-
ture near the κ− point in the MBZ is close to that of pristine
BLG, although a small band gap opens up due to the broken
inversion symmetry. In contrast, for much smaller twist angles
(θ = 1.5◦ and θ = 1.33◦), the bands near the κ− point become
very flat, giving rise to a large density of states (DOS) near
the band bottom. In Figs. 1(c) and 1(d) we show the DOS per
spin per valley ν(εF ) in TDBG, which indeed becomes quite
large for small twist angles (θ ∼ 1◦). In addition, the flattened
bands also lead to a much reduced Fermi velocity, as shown
in Fig. 2. This physics strongly enhances phonon scattering
as we discuss later in the paper. Note that in this figure we
have introduced the total electron density ns of a filled con-
duction band, taking into account both the spin and the valley
degeneracies. Its explicit expression reads as ns = 8/(

√
3a2

M )
[16]. In particular, we find ns = 5.81 × 1013 cm−2 when θ =
5.0◦, and ns = 4.11×12 cm−2 when θ = 1.33◦. Both results in
Fig. 2 are plotted against the respective ns in order to provide
a context for the corresponding electron densities.

A. Approximate zero-energy eigenstates

In order to obtain the full band structure of TDBG one must
numerically diagonalize a large matrix. However, near the κ±
points in the MBZ it is possible to obtain an approximate
analytical expression for the two lowest-energy eigenstates.
Such a method was first developed in Ref. [6] to obtain an
approximate two-band model for TBG, and was used to obtain
approximate lowest-energy eigenstates in TDBG in Ref. [17].

Specifically, one can truncate the Hamiltonian H+ in
Eq. (1) by retaining only four momentum points kt , and k( j)

b ≡
kt + Q j ( j = 1, 2, 3), and obtain an 8 × 8 Hamiltonian H (k)
as follows:

H (k) =

⎡
⎢⎢⎣

h̃0(k) T1(k) T2(k) T3(k)
T †

1 (k) h̃1(k) 0 0
T †

2 (k) 0 h̃2(k) 0
T †

3 (k) 0 0 h̃3(k)

⎤
⎥⎥⎦, (5)

where [17]

h̃0(k) =
(

0 −v2(k∗
θ )2/γ1

−v2(kθ )2/γ1 0

)
,

h̃ j (k) =
(

0 −v2
[
(k + Qj )∗−θ

]2
/γ1

−v2
[
(k + Qj )−θ

]2
/γ1 0

)
,

Tj (k) =
(−tMvk∗

θ /γ1 tMv2λ∗
j k

∗
θ (k + Qj )∗−θ /γ

2
1

tmλ j −tMv(k + Qj )∗−θ /γ1

)
. (6)

In the above results, we have defined λ j = e2π i j/3 ( j =
1, 2, 3). In addition, we have introduced a short-hand notation
that kθ ≡ (kx + iky)e−iθ/2.

FIG. 2. Fermi velocity vF of TDBG for a twist angle of (a) θ =
5.0◦ and (b) θ = 1.33◦. The horizontal axes in the two panels are
chosen so that the actual density range is similar. The red and
blue lines represent the Fermi velocity along kx and ky directions,
respectively. The set of parameters used in this figure is the same
as Fig. 1. In particular, v = 1 × 106 m/s is the Fermi velocity of a
pristine monolayer graphene. Moreover, the corresponding value of
ns (see text) in each case is shown in the figure.

One can verify that in the k → 0 limit the two zero-energy
eigenstates of H (k) in Eq. (5) can be approximately written as

|� (α)〉 = Sα

⎡
⎢⎢⎢⎢⎣

ψ
(α)
0

ψ
(α)
1

ψ
(α)
2

ψ
(α)
3

⎤
⎥⎥⎥⎥⎦, α = A, B, (7)

where Sα is the normalization factor, ψ (α)
0 is a two-component

spinor, and

ψ
(α)
j = tM

vK4
θ

(
0 K2

θ (Qj )θ
0

γ1

v
ei jφ[(Qj )2

θ ]∗

)
ψ

(α)
0 ≡Mjψ

(α)
0 ,

j = 1, 2, 3.
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The wave-function normalization can be determined from the
following condition:

1 = 〈� (α)|� (α)〉 = |Sα|2(ψ (α)
0

)†
[1 +

3∑
j=1

M†
j Mj]ψ

(α)
0

= |Sα|2(ψ (α)
0

)†
(

1 0
0 1 + 3�

)
ψ

(α)
0 , (8)

where � = γ 2
1 t2

M

v4K4
θ

(1 + v2K2
θ

γ 2
1

). Now if we adopt the natural

choice of ψ
(A)
0 = (1

0), and ψ
(B)
0 = (0

1), we find that

SA = 1, SB = 1√
1 + 3�

. (9)

This approximate analytical expression for the lowest-energy
states in TDBG will be helpful for our analysis of phonon-
induced resistivity in the next section.

III. PHONON-INDUCED RESISTIVITY

In the previous section we have shown that for small twist
angles (θ ∼ 1◦), the Fermi velocity of TDBG near the MBZ
corners can become quite small. As we will show in this
section, such a substantial reduction in Fermi velocity can
give rise to a much enhanced phonon-induced resistivity in the
high-temperature (T � TBG) limit as happens also for TBG at
small twist angles [25]. In particular, in such a limit the resis-
tivity scales linearly with temperature, ρ ≈ CT , and our goal
is to estimate the coefficient C and explain how it increases
substantially at small twist angles. To verify the validity of our
theory, we also numerically evaluate the resistivity in the full
temperature range (i.e., T � TBG as well as T  TBG), and
estimate the crossover temperature above which this enhanced
linear-in-T resistivity regime applies.

A. Resistivity from Boltzmann transport theory

To begin with, we recall that in the Boltzmann transport
theory the energy-averaged scattering time τ in monolayer
graphene in the limit of kBT  εF is given by [20]

〈τ 〉−1 = 2π

h̄
ν0|W (kF )|2I, (10)

where ν0 is the DOS per spin and valley at the Fermi en-
ergy, and |W (kF )|2 = D2h̄kF /(2ρmvph) is the squared ma-
trix element for acoustic phonon scattering. Here ρm =
7.6 × 10−8 g/cm2 is the mass density of a single graphene
sheet, vph = 2.6 × 106 cm/s is the velocity of longitudinal
acoustic (LA) phonon in monolayer graphene, D = 25 eV is
the acoustic phonon deformation potential [20], and vF is the
Fermi velocity. The integral I has the following form:

I =
∫

φ

2π

F (q)(1 − cos φ)

ε2(q)

2q

kF
β h̄ωqNq(Nq + 1), (11)

where q = 2kF sin(φ/2) is the magnitude of the acoustic
phonon wave vector, β = 1/(kBT ), and F (q) is the chiral
factor defined as the square of the wave-function overlap
between incoming and scattered electrons. In addition, Nq =
(eβ h̄ωq − 1)−1 is the phonon occupation number, with ωq =
vphq being the frequency of the acoustic phonon. Finally,

ε(q) is the dielectric function, which takes into account the
screening effect at wave vector q. In this work we will only
consider the unscreened limit, so we will take ε(q) = 1. The
reason for neglecting screening, which is easy to include,
is that there is no experimental evidence that the electron-
acoustic phonon resistive scattering gets screened in graphene
as a direct comparison between theory [19] and experiment
[27] supports the unscreened approximation. We thus do not
believe that screening plays any role in TDBG (or TBG)
phonon scattering.

Before we proceed, we note that in this work we have
left out two important aspects of the phonons in TDBG.
First, we did not account for the possible modification of
electron-phonon coupling when the twist angle is varied [28],
which can be strong near small twist angles. Second, we only
consider the contributions to the resistivity from longitudi-
nal acoustic (LA) phonons, as it has been shown to be the
main contribution in monolayer graphene at low temperatures
[19]. However, because TDBG has lower symmetry than
monolayer graphene does, it is possible that the out-of-plane
phonon modes [29], i.e., the transverse acoustic (TA) and
the parabolic ZA mode, may also contribute to the resistivity
in TDBG. A more comprehensive modeling for phonons in
TDBG should account for these effects. However, we do
not attempt to present such a model in this work because
currently there is considerable sample to sample variations in
TDBG, which prevents the construction of a phonon model
on a more quantitative level. We hence leave such work
for the future.

We now apply the above formalism to the case of TDBG,
and obtain the electron resistivity as ρ = σ−1, where σ is the
electron conductivity, given by

σ = gsgve2ν(εF )
v2

F

2
〈τ 〉. (12)

In the above equation gs = 2 and gv = 2 are the degeneracies
due to electron spin and valley degrees of freedom, respec-
tively, while ν(εF ) is the DOS per spin per valley in TDBG
shown in Fig. 1. It is worth noting that when evaluating the
scattering time 〈τ 〉 in TDBG using Eq. (10), we should replace
the DOS ν0 there by ν(εF )/2, for the following reasons. In
this work we only consider electron densities below the van
Hove singularity in TDBG, in which case the topology of the
Fermi surface consists of two disconnected minivalleys (κ±)
in the MBZ near the +K valley in the original Brillouin zone
of BLG. As a result, the scattering matrix element W (kF ) in
Eq. (10) is only appreciable for electrons within the same
minivalley. The above observation leads us to conclude that
in the low-density regime we are interested in, only half of
electrons at the Fermi surface contribute to the scattering
time. Consequently, we need to substitute ν0 by ν(εF )/2 in
Eq. (10).1 Putting everything together, we finally obtain the
following expression for the resistivity in TDBG:

ρ = 1

2gsgv

(
h

e2

)(
D2kF I

h̄ρmvphv
2
F

)
. (13)

1Note that we should still use the full DOS ν(εF ) in Eq. (12), be-
cause all electrons at the Fermi surface contribute to the conductivity.
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In order to calculate the resistivity in TDBG using the
above equation, we need to evaluate the integral I , whose
explicit form is given in Eq. (11). It can be simplified by
setting x = q/(2kF ) = sin(φ/2), which yields

I = 16

π

∫ 1

0
dx

F (2kF x)√
1 − x2

zBGx4ezBGx

(ezBGx − 1)2
, (14)

where zBG = TBG/T . In the high-temperature limit (T � TBG)
we are interested in, we find that I ≈ z∞/zBG, where

z∞ = 16

π

∫ 1

0
dx

x2F (2kF x)√
1 − x2

, (15)

and therefore the resistivity in Eq. (13) becomes ρ ≈ CT ,
where the coefficient C is given by

C = πD2kBz∞
2gsgve2h̄ρmv2

phv
2
F

. (16)

Therefore, phonon-induced electron resistivity becomes linear
in T in the high-temperature (T � TBG) limit, a regime we
focus on in this work. In addition, from the above result
one can see that the quantity z∞ is a key quantity in this
calculation, which depends solely on the chiral form factor
F (q) [or, equivalently, F (φ)]. Thus, we will discuss this
quantity first.

B. The chiral form factor

We will use three different approximations to evaluate
the chiral form factor F (φ) and hence z∞ for low-energy
conduction-band states in TDBG. Specifically, we will use
the two-band and four-band description for a pristine BLG, as
well as a low-energy two-band description for TDBG. We will
see that they capture different aspects of the band structure. A
more accurate estimate of F (φ) necessitates a full numerical
evaluation, which we leave for future studies. We comment
that, given the simplified nature of our TDBG band structure
model, it is unclear that a full numerical calculation of the
form factor is warranted.

1. Two-band model for bilayer graphene

We start with the simplest case, where a pristine BLG is
described by a two-band model, given by

HBLG-2band = − h̄2v2

γ1

(
0 (kx + iky)2

(kx − iky)2 0

)
. (17)

As a result, the conduction band eigenstates are given by

|ψ+(φk)〉 = 1√
2

(
e−2iφk

1

)
, (18)

and the chiral form factor is given by

F (φ) = |〈ψ+(φk + φ)|ψ+(φk)〉|2. (19)

In order to evaluate z∞, we note that x = sin(φ/2), and thus
F (φ) = (1 − 2x2)2. It follows that

z(BLG-2band)
∞ = 16

π

∫ 1

0
dx

x2

√
1 − x2

(1 − 2x2)2 = 2. (20)

As a result, within the two-band model of BLG, z∞ is a
constant, independent of either electron density or twist angle.

2. Four-band model for bilayer graphene

Next, we consider pristine BLG in the four-band descrip-
tion. The corresponding Hamiltonian is given by

HBLG-4band =

⎛
⎜⎜⎝

0 h̄vke−iφk 0 0
h̄vkeiφk 0 γ1 0

0 γ1 0 h̄vke−iφk

0 0 h̄vkeiφk 0

⎞
⎟⎟⎠,

(21)

which is written in the {A1, B1, A2, B2} basis. We consider the
lower conduction band of BLG, whose energy is

Ec(k) = 1

2

[√
4h̄2v2k2 + γ 2

1 − γ1
]
, (22)

and the corresponding wave function is given by

ψ (φk)† =
[

e2iφk
−√

1 + η

2
, eiφk

−√
1 − η

2
,

× eiφk

√
1 − η

2
,

√
1 + η

2

]
. (23)

In the above expression, n is the electron density and η =
(1 + n

n0
)−1/2, with n0 = k2

0/π and h̄vk0 = γ1/2. From this
wave function, we can obtain the chiral form factor F (φ) as
follows:

F (φ) = 1
4 [(1 − η) + (1 + η) cos φ]2. (24)

Note that in the low-density limit (η → 1) the above form
factor reduces to cos2 φ, the result derived from the two-band
model given in Eq. (19), as expected.

The expression for z∞ derived from the four-band model
for pristine BLG has an appreciable electron density depen-
dence. In particular, we find that

z(BLG-4band)
∞ = 1

2 (5η2 − 2η + 1). (25)

3. Two-band model for TDBG

Finally, we consider a low-energy two-band description
of TDBG. Because we are only interested in the chiral form
factor, we do not need the exact two-band model for TDBG.
Instead, we know from symmetry considerations that to lead-
ing order the two-band model for TDBG must be of the form

HTDBG = A
(

0 (kx + iky)2

(kx − iky)2 0

)
, (26)

where the coefficient A depends on band structure details,
which we do not need. However, we do need explicit ex-
pressions for the basis states of this two-band Hamiltonian
at k = 0, which were already given in Eq. (7) as |� (A)〉 and
|� (B)〉. With this knowledge, we can write down general
expressions for the eigenstates of this two-band model at small
k as follows:

|ζ , k〉 = 1√
2

(|� (A)〉 + ζe−2iφk |� (B)〉)

≡ (|ζ , k〉0, |ζ , k〉1, |ζ , k〉2, |ζ , k〉3), (27)

where ζ = ±1 is the band index, and

|ζ , k〉n = 1√
2

(
SA

∣∣ψ (A)
n

〉 + SBζe−2iφk
∣∣ψ (B)

n

〉)
, (28)
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where n = 0, 1, 2, 3. One can verify that |ζ = ±1, k〉 are
indeed the two eigenstates of the two-band Hamiltonian
Eq. (26).

When calculating the chiral form factor, we will consider
phonon scattering in the two layers independently. In par-
ticular, note that the first component of the four-component
eigenstate |ζ = ±1, k〉 in Eq. (27) resides in the top BLG,
while the other three reside in the bottom one. As a result,
the chiral form factor should be evaluated as follows:

F (φ) = |0〈ζ ′, k′|ζ , k〉0|2 +
∣∣∣∣∣∣

3∑
j=1

j〈ζ ′, k′|ζ , k〉 j

∣∣∣∣∣∣
2

≡ |F1(φ)|2 + |F2(φ)|2. (29)

The above derivations lead to the following results:

F1(φ) = 1

2

(
1 + ζ ζ ′

1 + 3�
e2iφ

)
, F2(φ) = ζ ζ ′

2

3�

1 + 3�
e2iφ,

(30)

which then gives rise to the following form factor for the two-
band model of TDBG:

F (φ) = 1

4

[
1 + 9�2 + 1

(3� + 1)2
+ 2

3� + 1
cos(2φ)

]
. (31)

Such a chiral form factor yields the following result for z∞:

z(TDBG)
∞ = 1 + 9�2 + 1

(3� + 1)2
. (32)

Some numerical results for z∞ under different approxima-
tions are given in Fig. 3. One can see that the three different
approximations of z∞ are of the same order, although they
capture different aspects of the band structure. In the rest
of the paper, we will use both z(TDBG)

∞ and z(BLG-4band)
∞ to

calculate the phonon-induced resistivity. Note that in order to
evaluate z∞ for TDBG accurately, one has to resort to full
numerical evaluations from the band structure. Although such
a calculation is beyond the scope of this work, we expect
that the exact value of z∞ is still within the same order of
magnitude as the ones we used in this work.

C. Phonon-induced resistivity: High-temperature limit

After explaining the calculations of z∞, we are now ready
to evaluate the phonon-induced resistivity explicitly. In this
subsection we will consider the high-temperature limit only,
when the resistivity is a linear function of temperature, and
then present results for the full temperature range in the
next subsection. Before showing our results, however, we
make a few comments on our numerical evaluation of the
coefficient C using Eq. (16). First, we will use both z(TDBG)

∞ and
z(BLG-4band)
∞ to approximate z∞ and demonstrate how different

approximations affect the final value of C. Second, the Fermi
velocity vF will be extracted directly from the full numerical
band structure of TDBG, instead of just from the two-band
effective model in Eq. (26). Finally, all of our calculations are
limited to carrier densities below the van Hove singularities
in the band structure, because our theory will break down
for higher carrier densities, when the topology of the Fermi
surface is different from our assumptions because of the

FIG. 3. Plot of z∞ in (a) the four-band model for pristine bilayer
graphene [i.e., z(BLG-4band)

∞ ] and (b) the two-band model for TDBG
[i.e., z(TDBG)

∞ ]. The set of parameters used in this figure is the same as
that in Fig. 1. As a comparison, note that within the two-band model
of pristine bilayer graphene, we have z(BLG-2band)

∞ = 2.

complications arising from van Hove singularities. Thus, our
theory is explicitly limited to low carrier densities where the
Fermi level stays below the van Hove singularities.

Some numerical results for the coefficient C are given in
Fig. 4. In Figs. 4(a) and 4(b) the results for two different twist
angles are shown. One can see that as the twist angle decreases
from 5.0◦ to 1.33◦, the coefficient C increases substantially.
Such a trend is also apparent in panel (c), which shows
how the coefficient C depends on the twist angle at a fixed
electron density. We note that such an angular dependence
with resistivity increasing strongly with decreasing twist angle
is consistent with recent resistivity measurements in TDBG
[13–15].

In addition, we find from Fig. 4 that within our theory the
coefficient C has a strong density dependence, especially at
low electron densities (n < ns/4, where ns is the total electron
density in a moire unit cell). This feature in our theory arises
from the fact that the coefficient C is inversely proportional
to the Fermi velocity, which has a strong density dependence
for parabolic bands. It is interesting to draw a comparison
between TBG and TDBG in this context. In particular, note
that such a density dependence in C is weak in the case of
TBG, even within the framework of phonon-induced resis-
tivity and at small twist angles [25]. The underlying reason
is straightforward: the low-energy electronic states in TBG
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FIG. 4. [(a) and (b)] Slope of the linear-in-T phonon-induced
resistivity for two different twist angles. The circles and stars rep-
resent the results obtained with two different approximations of
z∞, respectively. The experimental data in (b) were adapted from
Ref. [16]. (c) Slope of the linear-in-T phonon-induced resistivity as
a function of twist angle at two fixed electron densities. Note that in
this panel the results are obtained by using z(TDBG)

∞ as the form factor.
In addition, a constant deformation potential of D = 25 eV is used for
this calculation. Since the actual deformation potential in TDBG can
vary between different devices (and hence between different twist
angles), the quantitative behavior of dρ/dT as a function of twist
angle may not be captured accurately. However, the qualitative trend
that at a fixed carrier density dρ/dT increases with decreasing θ

shall stand.

has an approximate linear dispersion. As a result, the Fermi
velocity and hence the coefficient C in TBG has a weak
dependence on the carrier density. It is worth noting that such
a weak density dependence in C is consistent with the exper-
imental observations in TBG [2]. By contrast, TDBG bands
are parabolic, and hence one expects a density dependence in
the temperature coefficient of the resistivity.

It is also instructive to compare our theory with existing
experimental results [13–16]. First of all, we note that our
calculated TDBG resistivity approximately agrees with recent
measurements [30] at various carrier densities with n > ns/4.
For example, we find that dρ/dT ∼ 95 �/K at a twist
angle of θ ∼ 1.24◦ and a carrier density of 3.0 × 1012 cm−2,
compared well with the experimental values of dρ/dT ∼
75 �/K. In addition, in another recent experiment [16] it was
found that in a TDBG sample with θ = 1.33◦ the value of
dρ/dT varies between 50 �/K and 100 �/K for carrier den-
sities 0.2 < n/ns < 0.4 and 0.6 < n/ns < 0.8, see Fig. 4(b).
In comparison, this measurement is qualitatively captured by
our theory.

On the other hand, we find that we cannot fully capture
the density dependence of C observed in the experiments,
although the experimental results are not unanimous at the
moment either. In particular, our theory shows that dρ/dT
varies strongly with the electron density, especially at low
carrier densities (n < ns/4). On the experimental side, two
earlier experiments [14,15] show that dρ/dT has almost no
dependence on the carrier density at low carrier densities
and small twist angles (θ ∼ 1◦). In a more recent experiment
[16] [see a quotation of their results in Fig. 4(b)], however,
dρ/dT is shown to depend on the electron density in both
TDBG samples they studied (with a twist angle of θ = 1.01◦
and θ = 1.33◦, respectively). We speculate that one of the
main reasons for such a discrepancy between our theory and
the experimental results is that we did not include electron
correlations in our theory, as the purpose of this study is
to demonstrate that phonon scattering alone can produce a
linear-in-T resistivity at high temperatures along with the
correct magnitude for dρ/dT . As a result, the variation of
dρ/dT with the electron density may be overestimated in
our theory, especially at low carrier densities (n/ns < 0.2).
We expect that for larger twist angles (θ � 2.0◦), when the
band width becomes large, electron-phonon scattering will
overcome the electron correlation effects, and become the
dominant mechanism for resistivity in the high-temperature
limit. In that regime, we expect that dρ/dT will exhibit a
much stronger carrier density dependence in the experiments.
It will thus be interesting to carry out an experiment to resolve
the crossover between these two regimes, which will help us
better understand the role of electron correlation in TDBG.

Given the lack of experimental consensus on the exact be-
havior of dρ/dT as a function of carrier density, it is difficult
to determine the cause of the current discrepancy between
theory and experiments. Any definitive agreement between
our current theory and the measured TDBG temperature-
dependent resistivity awaits a careful experimental study of
temperature, twist angle, and density dependence of TDBG
resistivity, which is unavailable right now.
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D. Phonon-induced resistivity: Full temperature range

Finally, we evaluate the phonon-induced resistivity in the
full temperature range. Such a calculation will not only allow
us to present a complete result for the phonon-induced resis-
tivity in TDBG, but also help us determine the temperature
range in which the resistivity is linear in T .

To begin with, we consider the integral I in the low-
temperature limit (T  TBG), which can be evaluated by
introducing y = zBGx, yielding

I ≈ 16

πz4
BG

∫ +∞

0

y4ey

(ey − 1)2
dy = 16

π
× 4!ζ (4)

z4
BG

∝ T 4, (33)

where we have used F (0) ≈ 1, and ζ (s) is the Riemann-
ζ function. As a result, in the low-temperature limit the
resistivity depends on the temperature as ρ ∝ T 4. This is
the so-called Bloch-Grüneisen regime of phonon scatter-
ing, which in 3D metals produces a T 5 power law for the
temperature-dependent resistivity. In addition, the resistivity
becomes independent of the chiral form factor F (θ ) in this
low-temperature limit. In Fig. 5 we show the resistivity in
TDBG across the full temperature range for a carrier density
of 3.0 × 1012 cm−2 and two different twist angles. These
results are obtained by using the chiral form factor for the two-
band model of TDBG in Eq. (31). One can clearly observe that
the resistivity has a ρ ∝ T 4 behavior in the low-temperature
range, while a ρ ∝ T behavior in the high-temperature limit.

After obtaining the resistivity in the full temperature range,
it is instructive to examine the crossover temperature above
which the resistivity becomes linear in temperature. It has
been established previously that the linear-in-T behavior al-
ready kicks in at a characteristic temperature T � TL ≈ TBG/4
[19,20]. In Fig. 6 we plot the crossover temperature TL in
TDBG as a function of carrier density for three different
twist angles. We find that TL is below 11 K for almost all
carrier densities and twist angles we considered. As a result,
our analysis of the phonon-induced resistivity in the high-
temperature limit should be applicable above ∼11 K. In
fact, recent resistivity measurements in TDBG indeed show
a linear-in-T behavior for temperatures between 10 K and
30 K [30], a temperature range where our theory is applicable.
Therefore, our theory will be relevant for the understanding of
the linear-in-T resistivity observed in recent experiments in
TDBG [13–15]. We note that in the low-temperature Bloch-
Grüneisen regime, the T 4 power law in the resistivity may
not be easy to discern because of other resistive scattering
contributions such as electron-impurity and electron-electron
interactions which are neglected in our theory.

IV. PHONON-MEDIATED SUPERCONDUCTIVITY

We now discuss possible implication of our theory on
superconductivity in TDBG. The electron-acoustic phonon
coupling mediates an effective attractive electron-electron
interaction with a strength given by g0 = D2/(4ρmv2

ph) ≈
50 meV nm2 [25]. The dimensionless electron-phonon cou-
pling constant is determined by λ∗ = g0ν(εF ), where ν(εF ) is
the DOS per spin and valley. Because of the narrow bandwidth
for small twist angle (∼1◦), λ∗ in TDBG can reach order
of 0.25 given the DOS shown in Fig. 1(d). The supercon-

FIG. 5. (a) Phonon-induced resistivity in TDBG across the full
temperature range. The results for two different twist angles are
shown, and the electron density is taken to be n = 3.0 × 1012 cm−2

for both cases. These results are evaluated by using the chiral form
factor for the two-band model of TDBG in Eq. (31). The red and blue
dashed lines represent a ρ ∼ T 4 and ρ ∼ T asymptotic behavior,
respectively. (b) The result in (a) is shown here in a linear scale to
make it easier to make comparisons with experimental results.

FIG. 6. Critical temperature TL = TBG/4 as a function of electron
density for three different twist angles.
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ducting transition temperature Tc can be roughly estimated
as kBTc = � exp(−1/λ∗) within a BCS-type theory, where
� is a cutoff energy approximately given by the flatband
bandwidth (∼5 meV). Therefore, Tc can be of order 1 K
from electron-phonon interactions. Moreover, the effective
attractive interactions mediated by acoustic phonons have an
enlarged SU(2) × SU(2) symmetry, namely, each valley has
its own spin rotational symmetry. Therefore, acoustic phonons
mediate both spin singlet and spin triplet pairings [25], and
can account for the spin triplet superconductivity experimen-
tally identified in TDBG [15]. We note that the possibility
of the electron-phonon mediated superconductivity at low
temperatures (<1 K) and the large phonon-induced linear-
in-T resistivity at high temperatures (>10 K) are closely
connected, both arising from the strongly enhanced electron-
phonon coupling induced by flatband moire physics, as has
already been emphasized in the context of TBG in Ref. [25].

V. DISCUSSIONS AND CONCLUSIONS

Before we conclude, we explain why the level of phonon
model we adopt is adequate for our purpose. We start by
noting that in our theory only two quantities depend on the
phonon model: the sound velocity and the electron-phonon
coupling. As we now explain, the sound velocity is not sub-
stantially affected by the moiré potential, while the electron-
phonon coupling should be regarded as an unknown fitting
parameter, as it is almost impossible to determine without
experimental inputs.

To begin with, we explain why the sound velocity is in
principle not substantially affected by the moiré potential. We
believe that the acoustic phonons are quite similar in TDBG
and TBG, and the latter has been analyzed in the literature.
For example, the low-energy phonon spectrum (in particular
the sound velocity) in TBG has been analyzed in Ref. [31].
It was shown that the moiré interlayer potential gives rise to
superlattice zone folding, which resulted in the appearance of
minibands in the phonon spectrum. In particular, in the long
wavelength limit (the limit we are working in) the phonon
spectrum in TBG only consists of two branches, just like what
happens in two decoupled graphene sheets. Furthermore, it
was found that as the twist angle is reduced to 1◦, the two
sound velocities are only reduced by 20–30% compared to
their values in a pristine single-layer graphene. Thus, the im-
pact of the moiré structure on the sound velocities is generally
not important.

Next, we note that it is almost impossible to estimate the
electron-phonon coupling without experimental inputs. On
the one hand, there is no consensus on the precise value of
the deformation potential even in pristine graphene (see the
new references we added). The commonly quoted values vary
between 10 and 40 eV [32–38], which already resulted in a
substantial uncertainty. On the other hand, this coupling can
be renormalized by effects like electron-electron interactions,
which is not taken into account in our theory to begin with.
The above discussion not only applies to our system, but also
to most electronic materials (e.g., regular monolayer graphene
and bilayer graphene) because estimating the deformation
potential in real samples accurately in theory is essentially
an impossible task. In fact, resistivity measurements are often

used to estimate the electron-phonon coupling strength in met-
als and semiconductors. Consequently, we believe that there is
no point in trying to calculate the deformation potential accu-
rately. Instead, we leave it as an unknown fitting parameter,
which should be extracted from experimental results.

Since our electron-phonon coupling strength is a tuning
parameter to be obtained by comparing with experiments
(and right now there are experimental variations of unknown
origin since the resistivity measured in different laboratories
do not quite agree), it makes little sense to discuss whether
we are considering deformation potential coupling or the so-
called “gauge coupling” (associated with the phonon-induced
variations in the off-diagonal terms in the electron hopping
parameter [29,32–34], since the transport theory for the two
cases are identical [19,29] with the only difference being
that the electron-phonon coupling strength is calculated using
different microscopic theories in the two cases (and we are not
calculating the electron-phonon coupling microscopically, we
are choosing it as a phenomenological parameter). We argue
below that screening plays no role in determining the electron-
phonon coupling strength, and therefore a single parameter D
can represent the overall electron-phonon coupling strength in
our theory. Future improvements of our theory may take into
account the microscopic aspects of electron-phonon coupling
in real TBG or TDBG, but such theories will be highly
numerical and must take into account the random strain in the
twisted structures, which may turn out to be a huge challenge
in calculating the coupling strength from first principles.

It is also instructive to discuss the applicability of our
theory. First, electron-electron interaction is not accounted
for in our theory. As a result, when the conduction band is
nearly empty, half-filled, or full, our theory is likely to fail, as
these are the density ranges in which correlation effects are
strong, as can be seen from the experimental results quoted in
Fig. 4(b). Moreover, our theory does not capture the physics
near Van Hove singularities in the band structure, such as the
ones shown in the density of states plots in Figs. 1(c) and 1(d),
as our theory is based on a parabolic band approximation.
However, it is difficult to give a quantitative estimate on the
exact range of carrier densities in which our theory applies,
as many factors can come into play. In our opinion, direct
comparisons with experimental results (like the one shown in
Fig. 4) will provide the best test of our theory.

One question which is relevant here is the possi-
ble role electron-electron interactions (and consequentially,
screening) play in determining the electron-phonon cou-
pling strength in TDBG (or for that matter, twisted bilayer
graphene, monolayer graphene, and bilayer graphene). This
is a question of some importance since electron-electron
interactions are strongly enhanced in twisted moiré systems
because of the suppression of the Fermi velocity. A complete
answer to this question, which has recently been discussed
also in Ref. [39], is well beyond the scope of the current
work, and has not been attempted in any theoretical work in
the graphene literature. In fact, the microscopic interplay of
electron-electron interaction, screening, and electron-phonon
interaction is extremely difficult even in simple metals where
the effect is often subsumed in an unknown phenomenological
parameter, called μ∗, in the context of theories on super-
conductivity. Obviously, this is not a problem, which can be
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solved theoretically at any level of rigor. Our approach in the
current work, following the highly successful similar theories
in Refs. [19,20,25,26] is to take the basic electron-phonon
coupling strength as an unknown parameter to be determined
from experiments, where this coupling strength (“deforma-
tion potential”) sets the overall scale of the high-temperature
linear-in-T resistivity. This approach has not only been highly
successful in graphene, but also has been used extensively in
semiconductors and metals. We therefore believe that such
a phenomenological approach is the appropriate theoretical
approach at this early stage of the subject. There are very good
reasons to believe that screening plays no role in the theory
developed in this paper, and we elucidate these reasons in the
next two paragraphs.

One reason for the irrelevance of screening is provided by
recent experiments [40–42] which directly studied the screen-
ing effects in twisted graphene systems by tuning nearby
screening gates. The experimental conclusion of these direct
twisted graphene screening experiments is unambiguous—it
shows that neither superconductivity nor the linear-in-T high-
temperature resistivity are affected by screening in contrast to
the correlated insulator phase which disappears under strong
screening. One therefore must conclude that screening does
not affect the scattering mechanism controlling the high-
temperature resistivity which is the main subject matter of
our work. Thus, phonon scattering is unaffected by screening
according to direct experimental investigations. This provides
strong empirical support for our phenomenological electron-
phonon interaction model ignoring any screening by electron-
electron interactions.

The second reason for our neglect of screening is that the
electron Fermi velocity in the flatband twisted moiré graphene
system is smaller than the phonon velocity in sharp contrast
to ordinary metals where the Fermi velocity is orders of
magnitude larger than the phonon velocity. In such a situation,
instead of static screening, the screening by electrons should
be highly dynamical since the phonons are moving much
faster than the electrons (i.e., the opposite of what happens
in metals). The dynamical screening situation usually im-
plies antiscreening rather than screening, i.e., the dynamically
screened interaction is in fact stronger than the unscreened
interaction. Hence, “screening” in our system may even lead
to an enhanced effective electron-phonon interaction instead
of a weakened electron-phonon interactions. It is therefore

possible for the effect studied in our work to be enhanced by
electron-electron interactions, leading to an effectively larger
deformation potential coupling. This issue should be revisited
in future theories once the experimental resistivity measured
in different laboratories agrees with each other necessitating a
quantitatively accurate theoretical description.

We also emphasize that there exists important differences
between the phonon scattering induced resistivity in TBG
and TDBG. In particular, our work shows that dρ/dT in
TDBG has a strong dependence on the carrier density, which
is completely absent in the corresponding theory for TBG.
This qualitative difference is one of the key findings in our
work, and it provides an important theoretical reference for
ongoing experiments. Future experiments should study the
density-dependent resistivity carefully in order to verify our
predictions. Moreover, in contrast to TBG, the TDBG studied
in this work is characterized by an effective mass rather than
a constant Fermi velocity. In addition, TDBG does not have
a magic angle whereas TBG does. These differences make
the current TDBG theory completely different from earlier
theories on phonon scattering in TBG.

To summarize, in this work we developed a theory to
calculate the phonon-induced resistivity in twisted double
bilayer graphene in the high-temperature (T > TBG) limit,
where the resistivity ρ scales linearly with temperature T ,
ρ ≈ CT . We present a quantitative analysis of the coefficient
C and showed that it increases substantially as the twist
angle θ is reduced. However, since we did not account for
electron correlation effects on the resistivity, we expect that
our predictions are likely applicable for devices in which the
twist angle is relatively large (θ � 2◦). The main qualitative
conclusion of our theory is that for T > 10 K or so, TDBG
should manifest a very large linear-in-T resistivity arising
from phonon scattering at small twist angles. The linear coef-
ficient should manifest a strong density dependence, which is
not seen in current experiments for reasons not obvious right
now.
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