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Time-dependent spintronic anisotropy in magnetic molecules
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We theoretically study the quench dynamics of induced anisotropy of a large-spin magnetic molecule
coupled to spin-polarized ferromagnetic leads. The real-time evolution is calculated by means of the time-
dependent density-matrix numerical renormalization group method implemented within the matrix product states
framework, which takes into account all correlations in a very accurate manner. We determine the system
response to a quench in the spin-dependent coupling to ferromagnetic leads. In particular, we focus on the
transient dynamics associated with crossing from the weak- to the strong-coupling regime, where the Kondo
correlations become important. The dynamics is examined by calculating the time-dependent expectation values
of the spin-quadrupole moment and the associated spin operators. We identify the relevant timescales describing
the quench dynamics and determine the influence of the effective exchange coupling of molecules and spin
polarization of the leads on the dynamical behavior of the system. Furthermore, the generalization of our
predictions for large spin values of molecules is considered. Finally, we analyze the effect of finite temperature
and show that it gives rise to a reduction of magnetic anisotropy by strong suppression of the time-dependent
spin-quadrupole moment due to thermal fluctuations.
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I. INTRODUCTION

Molecular magnetism is a rapidly developing area of the-
oretical and experimental research, providing concepts for
novel applications in spintronic devices and quantum tech-
nologies [1–10]. Single-molecule magnets (SMM), in particu-
lar those of large spin (S � 1), are especially appealing due to
their unique magnetic characteristics and a wide perspective
of engineering and synthesizing new specimen with sought
properties [3]. One prominent feature present in magnetic
molecular systems is the uniaxial magnetic anisotropy, which
leads to the magnetic bistability and suppression of spin-
reversal processes [11–15]. It is a property of crucial im-
portance for the memory storage and information processing
applications. Additionally, when transverse anisotropy com-
ponent is considerable, quantum tunneling of magnetization
may occur [16–19]. The transport properties of magnetic
molecules have already been extensively studied [20–31],
including the influence of the Kondo effect [32–36] in the
strong-coupling regime [37–43]. However, when the physics
of SMM systems incorporates spintronics, new prominent
effects are revealed, including switching with spin-polarized
currents, the Berry-phase blockade, or spintronic anisotropy
among many others [44–52]. In fact, the latter effect is of
the particular interest, as it allows for generation of magnetic
anisotropy in spin-isotropic molecules [53].

Moreover, the dynamics of molecular systems, an impor-
tant aspect of the on-going research in molecular magnetism,
has recently gained a lot of attention and has been explored
both experimentally [54–56] and theoretically [57–60]. Thus
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broadening further the knowledge and understanding of trans-
port and dynamical properties of large-spin molecules is im-
portant both because of exciting fundamental aspects as well
as due to possible applications in modern nanoelectronics,
spintronics, and quantum information.

Motivated by recent progress within this field, in this
paper we investigate the dynamical behavior of a large-spin
magnetic molecule attached to spin-polarized leads, with an
emphasis on the buildup of quadrupolar exchange field, re-
ferred to as spintronic anisotropy. Commonly, the intrinsic
magnetic anisotropy arises from the spin-orbit interaction.
However, it has been shown that the ferromagnetic proximity
effect [61–64] can generate significant magnetic anisotropy in
molecular systems in form of an effective exchange field [53].
The advantage of this approach is the possibility to electrically
control both the magnitude of the anisotropy and the spin state
of the system. When the coupling strength to external contacts
is varied, a rapid change in the magnetic properties of the
system occurs [53,65]. In particular, the quadrupolar moment
of molecules is significantly reduced, when the system is
tuned from the weak- to the strong-coupling regime. This sub-
stantial change of the moment is due to the Kondo screening
of the orbital level spin of the molecule and is a nontrivial
many-body effect resulting from the interplay of magnetism
and the Kondo physics. It was also shown experimentally that
quadrupolar interaction in SMM systems has an important
influence on tunneling dynamics [66]. In a real setup, tuning
between the different coupling regimes can be achieved by
electrically shifting the tunnel barriers with respective gates.

Considering all the above, we focus on the theoretical study
of the quench dynamics of the spintronic quadrupole moment
due to the Kondo correlations. In particular, we identify the
universal timescale for the dynamics describing the quench
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of spintronic anisotropy. Moreover, we examine the influence
of the magnitude of effective exchange coupling, leads spin
polarization, and the total spin of the molecule on discussed
dynamical effects. Lastly, we also analyze the influence of
finite temperature, showing that in certain range of tempera-
tures, a strong suppression of magnetic properties is predicted.
In pursuance of the precise analysis of the system response
to the considered quench in the strong-coupling regime, we
resort to the Wilson’s numerical renormalization group (NRG)
method [67–69]. We use the extended implementation allow-
ing for studying the time evolution of the system, namely,
the time-dependent numerical renormalization group (tNRG)
[70–74]. This method allows for taking into account all the
correlations in a fully nonperturbative manner and, thus, gen-
erating reliable predictions for the dynamics of the system
under investigation.

This paper is structured as follows. Section II consists
of the Hamiltonian description of the considered system,
the overview of the quench protocol and a summary of the
numerical renormalization group method used for calculations
of time-dependent expectation values of local observables.
In Sec. III, we present the numerical results and relevant
analysis for the quantum quenches in the coupling strength
from the weak to the strong-coupling regime. We also present
and discuss the effects of finite temperature on dynamical
behavior. Finally, the work is concluded in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Hamiltonian

The effective spin Hamiltonian of a molecular magnet
expressed only with spin coordinates can be written as

Heff = BSz + DQzz. (1)

Here, Sz is the zth component of the total spin S, Qzz ≡
S2

z − S(S + 1)/3 is the zth diagonal tensor element of the
spin-quadrupole moment, B is a dipolar field corresponding
to external magnetic field, D is a quadrupolar field related
to intrinsic spin-orbit interaction. This approximate approach
is well-established for convenient description of the system
spectrum and is often used to interpret the spectroscopic
data [3]. In our considerations, however, the above-introduced
quantities are generated purely by the spin-dependent cou-
pling to ferromagnetic leads [53,62], which allows for tuning
of both B and D by electrical means—the property that makes
this approach advantageous from the application point of
view.

In order to analyze the dynamical behavior of the system
with tNRG and, especially, capture all the ferromagnetic-
proximity induced effects, we model the entire system in
the following way. Magnetic molecule is described by a
single molecular level, through which the electronic transport
takes place, which is exchange-coupled to magnetic core of
the molecule specified by the effective spin SMC. Thus the
molecule can be expressed by the Hamiltonian

HSMM = εn + Un↑n↓︸ ︷︷ ︸
molecular level

−JSMC · s, (2)

R
SMC

U

J

s

L

FIG. 1. Schematic of the considered system. A large-spin
molecule with a molecular level is coupled to external spin-polarized
leads with the spin-dependent coupling strengths �σ

L and �σ
R, for

the left and right lead. The molecular level is exchange-coupled
to magnetic core spin of the molecule with strength J . Coulomb
correlations of the molecule are denoted by U.

where the level occupation is expressed as, n = n↑ + n↓ =
d†

↑d↑ + d†
↓d↓, with d†

σ (dσ ) being the fermionic creation (anni-
hilation) operator for an electron with spin σ . The molecular
level energy is denoted by ε and the Coulomb correlations
are described by U . We assume ferromagnetic exchange in-
teraction J > 0 between the spin of the electron on the orbital
level s and the magnetic core spin SMC. The total spin is then
expressed as S = SMC + s.

The molecule is coupled to left and right spin-polarized
ferromagnetic leads [61,62,75,76], see Fig. 1. Here, we exploit
the correspondence between the coupling to two leads at equi-
librium with the magnetic moments arranged in the parallel
configuration and the coupling to a single ferromagnetic lead.
The equivalence can be shown by carrying out an orthogonal
transformation [33], after which the central part of the system
couples exclusively to even linear combination of reservoir
operators with effective coupling strength �σ = �σ

L + �σ
R and

spin polarization p. Consequently, the leads can be described
by an effective reservoir of noninteracting quasiparticles

HLead =
∑
kσ

εkσ c†
kσ ckσ , (3)

where c†
kσ (ckσ ) is the creation (annihilation) operator of an

electron with momentum k, spin σ and energy εkσ , which is
given by appropriate linear combination of electron operators
in the left and right leads. On the other hand, the spin-
dependent coupling is specified by the tunneling term

HTun =
∑
kσ

Vσ (c†
kσ dσ + H.c.), (4)

where Vσ are the effective tunnel matrix elements, assumed to
be momentum independent.

The spin-dependent coupling between the molecule and
the effective lead is expressed as, �σ = πρσ |Vσ |2, with ρσ

being the spin-dependent density of states of ferromagnetic
electrodes. By introducing the spin polarization of the leads
p, the coupling strength can be written in the following
manner, �↑(↓) = �(1 ± p), with �↑(↓) denoting the coupling
to the spin-up (spin-down) electron band of the ferromagnetic
reservoir and � = (�↑ + �↓)/2.

Finally, the full Hamiltonian of the considered system
reads

H = HSMM + HLead + HTun. (5)
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B. Quench protocol and NRG implementation

The time-dependent Hamiltonian describing the dynamics
after a quantum quench has the following general form

H (t ) = θ (−t )H0 + θ (t )H, (6)

where the Hamiltonian H0 denotes the initial Hamiltonian
of the system. On the other hand, H is the Hamiltonian
describing the time evolution after the sudden quench at
time t = 0 and θ (t ) is the Heaviside step function. Both
Hamiltonians have a form outlined in Eq. (5) with appropriate
parameters modified according to the evaluated quench. The
time-dependent expectation value of a given local operator
O(t ) can be calculated from

O(t ) ≡ 〈O(t )〉 = Tr{e−iHtρ0eiHtO}. (7)

Here, ρ0 is the initial density matrix of the system described
by the Hamiltonian H0.

Let us now briefly discuss the most important aspects
concerning the NRG implementation of the quench calcula-
tions [67–69]. The essential part of the NRG procedure is the
logarithmic discretization of the conduction band followed by
mapping of the discretized Hamiltonian to a one-dimensional
tight-binding chain called the Wilson chain [68]. This step
is performed for both Hamiltonians H and H0. Subsequently,
the two Hamiltonians are independently solved in an iterative
fashion using the NRG procedure [69]. At each iteration, there
are states that are used to construct the state-space of the next
iteration and the states that are discarded. The discarded states
are used to create the full many-body eigenbases [70]∑

nse

|nse〉D0 D
0〈nse|=1 and

∑
nse

|nse〉D D〈nse|=1, (8)

of both Hamiltonians, H0 and H , respectively, and to construct
the full density matrix ρ0 at temperature T ≡ 1/β [77]

ρ0 =
∑
nse

e−βED
0ns

Z
|nse〉D0 D

0〈nse|, (9)

where

Z ≡
∑
nse

e−βED
0ns (10)

is the partition function. Here, s denotes a state at Wilson site
n, while e corresponds to an environmental state describing
the rest of the chain.

The time-dependent expectation value 〈O(t )〉 of an op-
erator O can be conveniently evaluated in the frequency
space and then Fourier-transformed to the time domain [78].
The frequency-dependent expectation value 〈O(ω)〉 of a local
operator O expressed in the corresponding eigenstates of the
two Hamiltonians is given by [79]

〈O(ω)〉 =
XX ′ �=KK∑

n

∑
n′

∑
ss′e

X 〈nse|wn′ρ0n′ |ns′e〉X ′

× X ′〈ns′e|O|nse〉X δ
(
ω + EX

ns − EX ′
ns′

)
. (11)

where X = K (X = D) denotes a kept (discarded) state. Here,
ρ0n′ is the contribution of the density matrix coming from
iteration n′ and wn′ is the corresponding weight.

We also use NRG to determine the linear-response conduc-
tance between the two ferromagnetic leads from the following
formula [80]:

G = e2

h
π�

∫
dω

(
− ∂ f

∂ω

)
[(1 + p)A↑(ω) + (1 − p)A↓(ω)],

(12)

where Aσ (ω) is the molecular level spectral function, de-
fined as Aσ (ω) = −(1/π )Im〈〈dσ |d†

σ 〉〉R
ω, with 〈〈dσ |d†

σ 〉〉R
ω be-

ing the Fourier transform of the retarded Green’s function
〈〈dσ |d†

σ 〉〉R
t = −iθ (t )〈{dσ (t ), d†

σ (0)}〉.
For the NRG calculations we used the discretization pa-

rameter 2 � � � 3, set the length of the Wilson chain to be
N = 80 and kept at least NK = 4000 energetically lowest-
lying states at each iteration. In order to suppress the band
discretization effects, we also used the Oliveira’s z aver-
aging [81] by performing calculations for Nz = 4 different
discretizations. More details and technicalities concerning the
implementation of calculations can be found in Ref. [79].

III. RESULTS AND DISCUSSION

A. Static properties of the molecule

In order to obtain a better understanding of the magnetic
correlations present in the considered system, let us first
examine the static properties. As the main focus is put on
the quadrupolar field, we tune the system to the particle-hole
symmetry point by setting the energy of the orbital level to
ε = −U/2. As a result, the dipolar field vanishes [61] and
only quadrupolar term is present in the system [second term
of Eq. (1)]. This approach allows us to precisely describe the
generated uniaxial anisotropy, quantified by the amplitude D,
see Eq. (1).

In Fig. 2(a), we present the spin-quadrupole moment
〈Qzz〉 and expectation values of the corresponding spin op-
erators, 〈S2〉 and 〈S2

z 〉, as the coupling strength � is varied.
The general behavior of spin-quadrupole moment (dark-blue
line) is that in the weak-coupling regime (�/U � 10−1), it
acquires the value 〈Qzz〉 = S(2S − 1)/3 = 1, while in the
strong-coupling regime (�/U � 10−1), this value is strongly
reduced to 〈Qzz〉 = SMC(2SMC − 1)/3 = 1/3. The suppres-
sion of the moment in the strong-coupling regime is due to
the presence of the Kondo correlations. The Kondo effect is
exposed in the conductance dependence (yellow line), as it
saturates to unitary value G/G0 = 1 in the strong-coupling
regime. In consequence, the spin of the molecular level is
screened, and the total spin of the molecule is reduced from
S = 3/2 to S = SMC = 1, leading eventually to 〈Qzz〉 = 1/3.
To clearly show how the expectation values of spin operators
influence the value of the spin-quadrupole moment, we also
plot 〈S2〉 and 〈S2

z 〉 as a function of the coupling strength. It is
noteworthy that both quantities in the Kondo regime do not
achieve the value, that would be expected when electron on
the orbital level was fully screened by the Kondo correlations.
The expected values only approach this limit, i.e., 〈S2〉 → 2,
〈S2

z 〉 → 1, however, the resulting value of the spin-quadrupole
moment is indeed 〈Qzz〉 = 1/3.

In Fig. 2(b), we present the spin-quadrupole moment 〈Qzz〉
(solid lines) and the linear-response conductance G (dashed
lines) as a function of � for different values of the exchange
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FIG. 2. (a) The spin-quadrupole moment 〈Qzz〉 expectation val-
ues of the corresponding spin operators, 〈S2〉 and 〈S2

z 〉, and normal-
ized linear-response conductance G, with G0 = 2e2/h, for S = 3/2
spin molecule as a function of the coupling strength �. The param-
eters are U = 1/2, ε/U = −1/2, J/U = 2 × 10−3, in units of band
halfwidth W ≡ 1, p = 0.5, and temperature T/U ∼ 10−18. (b) The
spin-quadrupole moment 〈Qzz〉 (solid lines) and normalized linear-
response conductance G (dashed lines) plotted vs � for different
values of exchange coupling J .

coupling J . As evident, when the magnitude of J is varied,
the spin-quadrupole moment values in the weak and strong-
coupling regimes are conserved, however, the increase of the
exchange coupling extends the transitional range of coupling
strength where the crossover between the weak and Kondo
regimes develops. Although the considered model is an ef-
fective one, we expect that in the case of molecules with
strong exchange couplings between localized spins and those
of itinerant electrons, the quench in the coupling strength
needs to be superior than in the case of systems with small
magnitudes of the exchange couplings. The role of magnitude
of J on the dynamics of the spin-quadrupole moment is
discussed in more detail in Sec. III C.

B. Dynamics of quadrupole moment

The important alteration in the SMM’s magnetic proper-
ties is when the coupling strength � is switched from the
weak-coupling regime, where the spin-quadrupole moment is
saturated acquiring 〈Qzz〉 = S(2S − 1)/3 = 1, to the strong-
coupling regime. In the latter case, the Kondo correlations are
present and the moment is reduced to 〈Qzz〉 = SMC(2SMC −
1)/3 = 1/3.

In order to study the dynamics of this effect, we perform a
quantum quench of the initial Hamiltonian H0 in the coupling
strength from �0/U = 0.002 to various final values of �/U
in the range of strong-coupling where the Kondo effect is
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FIG. 3. The time dependence of the spin-quadrupole moment
Qzz(t ) after quench in the coupling strength from �0/U = 0.002 to
different values of the final coupling strength. (a) presents the density
plot of Qzz(t ), while (b) and (c) show Qzz(t ) as a function of t � and
t �2, respectively. The other parameters are the same as in Fig. 2(a).

well-established. In Fig. 3(a), we display the resulting time de-
pendence of the spin-quadrupole moment Qzz(t ). First of all,
independently of �, both initial Qzz(t = 0) and final Qzz(t →
∞) are in agreement with thermal expectation values. As
can be seen, the long-term value is also independent of the
coupling strength � as long as the final coupling strength is
within the strong-coupling regime, here �/U � 0.1, indicated
by the unitary conductance, see Fig. 2. However, the value
of � clearly influences the dynamics of the transition. In the
short-time limit, the initial value of 〈Qzz〉 = 1 holds for at least
time t � ≈ 10−1. The reduction of quadrupole moment takes
place for times t � � 10−1, and the dependence of this process
is influenced by the final coupling strength. In the range of
0.4 � �/U � 0.2, the drop of Qzz(t ) is observable as early
as t � ≈ 2 × 10−1 and at middle rate approaches the long-
time limit for times t � � 101. However, when the quench is
evaluated for higher values of the final coupling strength, the
time dependence is more rapid. On one side, Qzz(t ) starts to
drop at later times, t � ≈ 5 × 101 for �/U = 2, but on the
other side, it achieves long-time limit significantly faster, i.e.,
Qzz(t = 2/�) ≈ Qzz(t → ∞) also for �/U = 2. Therefore,
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FIG. 4. The spin-quadrupole moment Qzz(t ) after the quench
from the weak to the strong-coupling regime (�0/U = 0.002 and
�/U = 0.4) as a function of time and exchange interaction J/U . The
other parameters are the same as in Fig. 2.

by tuning the value of the final coupling strength �, the
timescale of the considered transition can be varied by an
order of magnitude.

To clearly display the above behavior, in Fig. 3(b), we show
the time evolution of quadrupolar moment for different values
of � chosen from the range, where the dynamics is most
interesting. Finally, in Fig. 3(c), we show the same results in
the form of several curves on a rescaled time axis in order to
clearly indicate that the relaxation is universally governed by
t ∝ 1/�2. The long-time limit is achieved at times t ≈ 2/�2,
when one can see that all the curves converge.

C. Role of molecule’s exchange coupling

An important impact on the magnetic and transport proper-
ties of SMM systems has the magnitude of exchange coupling
J between the effective magnetic core spin SMC and the spin s
of electrons occupying the orbital level. In Fig. 4, we show the
time-dependent spin-quadrupole moment, considering simi-
lar quench as in previous section, with �0/U = 0.002 and
�/U = 0.4, as a function of exchange coupling J .

It can be clearly seen that the magnitude of J does not
have a substantial influence on the short time evolution of
spin-quadrupole moment for elapsed time up to t � ≈ 102.
For J/U � 0.002, the long-time limit 〈Qzz〉 = 1/3 is achieved
already around t � ≈ 101 and there is no further dynamics
as the time elapses. However, when the exchange coupling
is increased above J/U ≈ 0.002, further decrease of spin-
quadrupole moment takes place at long times, i.e., for t � �
102. The observed reduction is down to values well below
〈Qzz〉 = 1/3, i.e., Qzz(t → ∞) � 0.3, and the dynamics of
this process is strongly dependent on the magnitude of J .
When the time dependence for larger values of J is evaluated,
the new long-time limit is achieved at earlier times, while
the value of spin-quadrupole moment is accordingly further
suppressed.

t · Γ0.2

0.4

0.6

0.8

1.0

Q z
z
(t

)

(a) Qzz(t)

10−2 10−1 100 101 102 103 104 105 106

t Γ

1.0

1.5

2.0

S
2
(t

),
S

2 z
(t

)/
3

(b) S2
z (t)

S2(t)/3

FIG. 5. The time dependence of the spin-quadrupole moment
Qzz(t ) and the expectation values of S2

z (t ) and S2(t )/3 after quench
in the coupling strength from �0/U = 0.002 to �/U = 0.4. The
exchange coupling is set to J/U = 0.01. The other parameters are
the same as in Fig. 2.

In order to better understand the effect of exchange cou-
pling on the spin-quadrupole moment dynamics, we examine
the time dependence of two spin operators, S2

z (t ) and S2(t )/3,
which are the constituent components of the operator Qzz(t ).
The corresponding plots are shown in Fig. 5. The results were
obtained for exchange coupling set to J/U = 0.01, where
the time dependence reveals two stages of magnetic moment
reduction. In Fig. 5(a), we display the time-dependent spin-
quadrupole moment after the quench in the coupling strength,
while in Fig. 5(b), we present the time-dependent expectation
values of spin operators S2

z (t ) and S2(t )/3.
To highlight the most important stages of the dynamics,

we marked three time ranges with respective pale colors. The
red background contains short-time dynamics, when a rapid
suppression of all expectation values takes places in a similar
manner like in the case of weaker J coupling. This dynamics
is associated with the change of the ground state and the
reduction of the total spin S from S = 3/2 to S = 1 due to the
Kondo screening of the orbital spin. This stage of time evolu-
tion ends up at times around t � ≈ 101. Consequently, the next
section is marked with purple background and contains the
further dynamics associated with influence of the exchange
interaction J . For times t � � 101, the time dependence of the
spin operators clearly shows that the total spin of the system
S remains intact and has already achieved the long-time limit.
Further ongoing dynamics takes place exclusively for S2

z (t )
in the form of second stage of slow suppression of the total
spin-quadrupole moment to Qzz(t ) � 1/3. The total time of
this stage evolution greatly depends on the strength of J , as
shown in Fig. 4, i.e., the system faster reaches equilibrium for
higher values of the exchange coupling J .
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FIG. 6. (a) The spin-quadrupole moment Qzz(t ) after a quench
from the weak to the strong-coupling regime as a function of time
and spin polarization p. (b) The spin-quadrupole moment Qzz(t )
and (c) square of the molecular level’s magnetization s2

z (t ) after the
quench as a function of t � shown for several values of p. The other
parameters are the same as in Fig. 5.

D. Influence of lead spin polarization

The ferromagnetism of the leads is of great importance
for the considered molecular system. In general, when a
finite spin polarization of electrodes is assumed (p > 0) and
their magnetic moments are aligned, the effective dipolar
and quadrupolar exchange fields are generated [53,62]. The
strengths of these fields and their occurrence strongly depend
on the degree of spin polarization p. In our analysis, we
focus on the quadrupolar term by tuning the molecular level
to the particle-hole symmetry point ε = −U/2. In such a
configuration, the charge fluctuations for both spin directions
are equal and independently of the magnitude of p the dipolar
field is canceled. Moreover, it was shown that for large-spin
molecules, a very small spin polarization (p = 0.01) of the
leads can give rise to 〈Qzz〉 = S(2S − 1)/3 = 1. In equilib-
rium, a similar dependence to that shown in Fig. 2 is predicted
for wide range of p, with finite temperature suppressing the
spin-quadrupole moment in the regime of very weak-coupling
strengths [65]. Therefore, let us now discuss the influence
of leads spin polarization p on the dynamics of the spin-
quadrupole moment after the quench from the weak to the
strong-coupling regime (�0/U = 0.002 and �/U = 0.4). The
results presenting Qzz(t ) for a wide range of spin polarizations
p are shown in Fig. 6(a).

In the range of small and moderate spin polarizations
(p � 0.4), the time evolution of spin quadrupole moment has

both qualitatively and quantitatively similar dependence, with
two stages of Qzz(t ) = 1 reduction present, as discussed in
previous section for the case of significant exchange coupling
J/U = 0.01. However, when the spin polarization is increased
further (p � 0.4), a new step emerges right before the time
t � ≈ 1, when Qzz(t ) ≈ 3/4. This step is elongated as p is
increased, reaching times up to t � ≈ 101 for p = 0.9 and
eventually not fully relaxing to Qzz(t ) = 1/3, when p → 1.
This behavior might seem to be counter-intuitive, as one could
expect that with increased spin polarization of the leads, the
dynamics of the quench should be faster along with rapid
suppression of the spin-quadrupole moment. Here, we predict
quite opposite dependence, as the dynamics is faster and more
straightforward when the spin polarization of the leads has
low-to-moderate values.

The mechanism responsible for the emergence of an addi-
tional step in Qzz(t ) in the case of highly spin-polarized elec-
trodes is closely related to an enhanced difference between
spin-dependent couplings �↑ = �(1 + p) and �↓ = �(1 − p)
whilst p is increased. The bottleneck of the associated dynam-
ics is governed by the coupling to the minority band, which
in result slows down the dynamics of the spin-quadrupole
moment. To clearly analyze the discussed effect, we show the
spin-quadrupole moment Qzz(t ) in Fig. 6(b) and the square of
molecular-level magnetization s2

z (t ) in Fig. 6(c) as a function
of t �. Here, we recall that molecular-level magnetization is
defined as sz(t ) = (n↑(t ) − n↓(t ))/2. The discussed dynamics
revealed for highly spin-polarized lead takes place at times
t � � 1. The effect is evident for p = 0.9, where the depen-
dence of Qzz(t ) exposes a short plateau with Qzz(t ) ≈ 3/4.
The time dependence of the local operator s2

z (t ) plays an
important role here. As can be seen in the figure, s2

z (t ) is a
monotonically decreasing function of time for p � 0.7 in this
time regime. Interestingly, further enhancement of spin polar-
ization generates a subtle oscillation in the time dependence of
s2

z (t ). In that time range, �↑ = �(1 + p) is responsible for a
rapid drop of s2

z (t ) due to decrease of the spin-up component.
However, the time evolution is not balanced by the spin-down
component due to a significantly slower dynamics governed
by �↓ = �(1 − p). As a result, the molecular level has a
minimum in s2

z (t ), which is below the long-time limit thermal
value, at time t � ≈ 6 × 10−1, see Fig. 6(c). Subsequently,
a small increase takes places leading to eventual relaxation.
This nonmonotonic dependence of s2

z (t ) is observed as a result
of the interplay between the spin-dependent couplings and, in
consequence, temporarily pauses the reduction of Qzz(t ). A
similar dynamical behavior was predicted for the magnetiza-
tion of a single quantum dot system coupled to ferromagnetic
lead [79].

E. Influence of magnitude of molecular spin

In order to generalize our analysis for magnetic molecules
of arbitrarily given total spin S, we examine the results of
tNRG calculations for models with different values of mag-
netic core spin SMC. First of all, we would like to note that in
equilibrium, qualitatively a very similar dependence of 〈Qzz〉
on the coupling strength � is expected independently of the
value of SMC, see Fig. 7(a). As the spin of magnetic core is
increased, the maximal value of the spin-quadrupole moment
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FIG. 7. (a) The static value of spin-quadrupole moment Qzz for
different values of SMC as a function of coupling � and (b) Qzz(t ) for
several values of SMC as a function of time elapsed after the quench
in the coupling �. The parameters are the same as in Fig. 2(a).

in the weak-coupling regime is increasing accordingly with
〈Qzz〉 = S2

z − S(S + 1)/3. Furthermore, the transition range
of coupling strengths preceding the strong-coupling regime
is similar for all cases, i.e., 5 × 10−2 � �/U � 2 × 10−1.
Eventually, the important change influenced by the total spin
of the molecule is in the value, by which the spin-quadrupole
moment is reduced, when the coupling regime is switched
from the weak to the strong one. This difference is enhanced,
when the total spin number is increased.

The time-dependent spin-quadrupole moment after the
quench as a function of time for several values of SMC is
shown in Fig. 7(b). Here, one can see that the dynamics is
still governed by the strength of coupling to electrodes, as
the reduction of spin-quadrupolar moment starts and achieves
long-time limit at similar moments on the time axis rescaled
with �. For all considered values of SMC, time-evolutions
behave in a similar fashion with the main distinction of initial
and final values of 〈Qzz〉 and the rate of reduction. Similar
effects and dependencies due to the exchange interaction or
spin polarization of the leads as discussed in previous sections
are predicted also for molecules with even higher total spin
number (not shown here). Therefore, our dynamical studies
presented in this work have a general character and are valid

×
×
×
×
×
×
×

FIG. 8. (a) The spin-quadrupole moment Qzz(t ), (b) S2
z (t ) and

(c) S2(t ) for several values of temperature T plotted as a function
of time elapsed after the quench in �. The inset in (a) shows the
influence of temperature on the static value of the spin-quadrupole
moment in the weak-coupling regime. Dashed vertical line indicates
the initial value of the coupling strength. The parameters are the same
as in Fig. 5.

for broad range of SMM systems, in which the quadrupolar
exchange field emerges from ferromagnetic proximity effect.

F. Finite temperature effects

Lastly, we examine the influence of finite temperature T on
the spin-quadrupole moment and its time evolution following
the quench in the coupling. In Fig. 8, we show the time-
dependent expectation value of the spin-quadrupole moment
as well as the corresponding spin operators for several values
of temperatures.

For the regime of very low temperatures, T/U � 10−8,
both the initial and final values, as well as the quench dy-
namics of the spin-quadrupole moment remain similar to the
case of zero temperature. Further increase of temperature,
however, has a significant impact on the system’s behavior.
First of all, the initial value of the spin quadrupole moment
in the weak-coupling regime is significantly suppressed as the
temperature is increased. The inset in Fig. 8(a) shows how
the increase of temperature reduces the static spin-quadrupole
moment in the weak-coupling regime. The vertical dashed line
represents the initial coupling strength �0/U = 0.002 that we
have used in the evaluation of the quench dynamics. From the
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KACPER WRZEŚNIEWSKI AND IRENEUSZ WEYMANN PHYSICAL REVIEW B 101, 245434 (2020)

above considerations, it is evident that the fine tuning of the
coupling strength for the initial state is critical, in particular
when the suppression of the maximal value of the moment is
expected. Furthermore, the long-time limit value of the time-
dependent spin-quadrupole moment is also reduced by the
temperature, however, not as strongly as the initial value. In
consequence, as the temperature is increased, the whole tran-
sient dynamics is exposing more moderate dependence, with
almost completely flat one for temperatures T/U � 10−6. It
is also important to note, that all the characteristic timescales
discussed in earlier analysis for T = 0 are conserved for
the finite temperatures, where a considerable suppression of
spin-quadrupole moment is predicted. In particular, the rapid
reduction associated with the change of the ground state
that dominates the dynamics for times t � � 101 and further
slower dynamics influenced by the exchange coupling taking
place for times up to t � ≈ 103 are all still noticeable for
temperatures up to T/U ≈ 10−7.

The inspection of the spin operators S2
z (t ) and S2(t ), see

Figs. 8(b) and 8(c), brings the conclusion that the temperature
influences spin-quadrupole moment only by reduction of the
z-th component of the SMM’s spin. Meanwhile the square
value of the total spin remains unaffected, as it corresponds
to the change of the molecule’s ground state. This fact clearly
indicates the reduction of the molecule’s magnetic anisotropy
due to thermal fluctuations.

IV. CONCLUSIONS

We have analyzed the quench dynamics of large-spin
magnetic molecules attached to spin-polarized ferromagnetic
leads. The study was performed by using the time-dependent
numerical renormalization group method. We focused on

the dynamics of the spin-quadrupole moment and a quench
associated with switching the system from the weak-coupling
regime to the strong-coupling one, in which the Kondo cor-
relations are present and the screening of the molecular level
spin develops.

In general, we have shown that the time necessary to
achieve the new thermal value in the strong-coupling regime
is inversely proportional to squared coupling strength, i.e., t ∝
1/�2. Furthermore, we examined the role of ferromagnetic
exchange coupling J and showed that when the magnitude
of this interaction is considerable, additional step in the
time dependence emerges, corresponding to slower dynamics
mediated by J , which is an interesting case of interplay
between the Kondo correlations and ferromagnetism exposed
in our dynamical studies. The influence of electrodes spin
polarization was also discussed, strongly indicating that the
quench dynamics is faster and more straightforward for low-
to-average values. We also generalized our studies to systems
with higher total spin numbers to show that observations and
conclusions are valid for a wide class of SMM systems with
arbitrary total spin number.

Finally, we studied the influence of finite temperature on
the spin-quadrupole moment. A strong suppression of the
time-dependent value is predicted in certain range of temper-
atures, due to reduction of the moleculular anisotropy. The
important role of the coupling strength fine tuning is also
indicated, which may have relevance for the experiments.
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[18] M. Misiorny and J. Barnaś, Quantum tunneling of magneti-
zation in single molecular magnets coupled to ferromagnetic
reservoirs, EPL 78, 27003 (2007).

[19] M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, Ph.
Sainctavit, M.-A. Arrio, E. Otero, L. Joly, J. C. Cezar, A.
Cornia, and R. Sessoli, Quantum tunneling of the magnetization
in a monolayer of oriented single-molecule magnets, Nature
(London) 468, 417 (2010).

[20] G.-H. Kim and T.-S. Kim, Electronic Transport in Single-
Molecule Magnets on Metallic Surfaces, Phys. Rev. Lett. 92,
137203 (2004).

[21] C. Timm and F. Elste, Spin amplification, reading, and writing
in transport through anisotropic magnetic molecules, Phys. Rev.
B 73, 235304 (2006).

[22] M. Misiorny, I. Weymann, and J. Barnaś, Spin effects in
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dence of electronic transport through molecular magnets in the
Kondo regime, Phys. Rev. B 86, 035417 (2012).

[25] M. Misiorny, E. Burzurí, R. Gaudenzi, K. Park, M. Leijnse,
M. R. Wegewijs, J. Paaske, A. Cornia, and H. S. J. van der Zant,
Probing transverse magnetic anisotropy by electronic transport
through a single-molecule magnet, Phys. Rev. B 91, 035442
(2015).
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