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Subgap spectrum for an interacting hybrid superconducting quantum dot
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We examine the formation of Andreev bound states in a metal-quantum-dot-BCS superconductor system in
the Coulomb blockade regime and the Kondo regime. We propose to use the so-called Hubbard-I decoupling
scheme in the context of the equation-of-motion technique to provide a proper physical description for
the Coulomb blockade regime. Here, we find the appearance of anticrossings in the subgap spectrum due
to the prevalence of even parity states independently on the dot gate position. On the contrary, for the Kondo
regime the subgap structure exhibits parity crossings between the alternance of singlet and doublet states.
Besides, we show how the nature of the ground state in this regime can be distinguished from evolution of
the Andreev states in the presence of a magnetic field.
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I. INTRODUCTION

An unpaired electron residing in a quantum dot (QD)
which is in close proximity with a superconductor offers a
plethora of nontrivial phenomena [1,2]. The richness of its
physical behavior has been probed in a great variety of setups
such as magnetic adatoms [3], carbon nanotube QDs [4–11],
nanowire QDs [12–15], self-assembled QDs [16–18], and
graphene QDs [19].

In the system under consideration, a QD is tunnel cou-
pled to a superconductor (S) and a normal (N) reservoir.
Here, the interplay among on-site Coulomb interaction U ,
superconducting gap �, and hybridization �S/N with the
superconducting/normal contact determines the nature of the
ground state (GS). When � → ∞ and �N = 0, there are
no quasiparticles, so only subgap excitations are possible. A
superconducting pair correlation then enters into the effective
Hamiltonian as an on-site term whose strength is proportional
to �S . Then the Hamiltonian can be easily diagonalized
[20–22]. Singlet |S〉 and doublet |D〉 GSs are possible depend-
ing on the relative strengths of U and �S . When

EA ≡
√

(εd + U/2)2 + �2
S > U/2, (1)

where εd denotes the dot’s energy level, a singlet GS is
preferred as being the lowest energy state, which is a BCS-
type combination of empty and doubly occupied dot states.
On the other hand, for the opposite case EA < U/2, the GS
becomes a doublet (singly occupied dot) state. The phase
boundary between singlet and doublet states is determined by
the equation EA = U/2 and even-odd parity crossing happens
along this boundary [23–26]. For a finite �, but till with
�N = 0, the previous picture is altered due to the presence
of available quasiparticles in S contact. When U � � but
� > kBTK (here TK represents the Kondo binding energy, and
kB is the Boltzmann constant), the dot is singly occupied
and the localized spin is poorly screened by the lack of the
quasiparticles. Here, the GS is the |D〉. Excitations on top
of this GS are termed Yu-Shiba-Rusinov (YSR) bound states

[27] and consist of a singlet state formed by a quasiparticle
in the superconductor that is bounded to the dot spin. On the
opposite regime, � < kBTK but still U � � (by enhancing,
for example, �S) the GS is a Kondo singlet state, that must
be distinguished from the BCS-type singlet mentioned above
[24,28]. Importantly, the GS parity has changed from doublet
to singlet as �S enhances. On the other hand, for the weak
interacting case when U � �, the superconducting proximity
effect on the dot leads to a BCS-type GS in which subgap ex-
citations appear as pairs of YSR states, i.e., superconducting
quasiparticles bound antiferromagnetically to the local spin
[29–34]. It is worth mentioning that YSR states are regarded
as precursors of Majorana states as demonstrated in atomic
chains deposited on a superconducting surface [35–45]. A
sequence of YSR bound states hybridize along the chain and
a band is formed that exhibits a localized density of states just
at the ends of the chain. When a normal contact is introduced
(i.e., �N �= 0) [5,17,18,23,29,46–49] in the superconducting
QD, YSR excitations can coexist with the Kondo resonance
formed by the dot electron and normal conduction electrons.
As a consequence, the sharp phase boundary between singlet
and doublet states is replaced by a smooth crossover between
them even if the normal contact is weakly coupled [48].

We address the subgap transport properties for a N-QD-S
device in two regimes, namely, the Coulomb blockade
(CB) regime and the Kondo regime. The subgap spectrum is
accessible through the nonlinear conductance as demonstrated
experimentally: G = dI/dVdc [13–15]. We first investigate
the Coulomb blockade regime and analyze the validity of the
Hartree-Fock (HF) approximation that fails to describe this
transport regime. We propose a more elaborated decoupling
procedure, the so-called Hubbard-I approximation that
reproduces the Coulomb blockade in the absence of supercon-
ductivity. We generalize such approach to the superconducting
case. We report the appearance of anticrossings around the
degenerate mean field points, i.e., εdσ = −U, 0 in the subgap
spectrum for the superconducting case. The Andreev bound
states (ABS) never touch the particle-hole symmetry point and
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their distance enhances with �S . We explain such observation
based on the parity conservation with the dot gate position.
Second, we address the Kondo regime. Here the |S〉 ←→ |D〉
transitions occur at the particle-hole symmetry points as parity
crossings in the subgap spectrum. Some works have employed
the mean-field decoupling to describe such a transition and
the occurrence of parity crossings [14,21,26] in hybrid
setups. However, such an approach is unable to describe
dynamical spin fluctuations that build the many-body Kondo
state. As an alternative, we propose to employ the numerical
renormalization group (NRG) approach. We compare our
results with those reported in the experiment in Ref. [14],
showing an excellent agreement. Additionally, in this regime,
we show how to characterize the nature of the GS in the
Kondo regime when a Zeeman field is applied to the QD.

II. THEORETICAL DESCRIPTION
AND CURRENT EXPRESSION

We investigate a normal metal-QD-BCS superconductor
hybrid setup. The system consists of four terms H = HN +
HS + HD + HT , where

HN =
∑
k,σ

εNkc†
Nkσ

cNkσ (2)

describes the normal contact with c†
Nkσ

(cNkσ ) creating (anni-
hilating) an electron of energy εNk with wave number k and
spin σ =↑ / ↓. The BCS-contact Hamiltonian reads

HS =
∑
k,σ

ξSkc†
Skσ

cSkσ +
∑

k

(�c†
Sk↑c†

Sk̄↓ + H.c.), (3)

with c†
Skσ

(cSkσ ) as the creation (annihilation) operator and
k̄ = −k. The single-particle energy and gap strength in the
S contact are denoted by ξSk = εSk − μS and �, respectively.
Since the number of electrons is not conserved due to pair
creation (and annihilation) processes in a superconductor, we
introduce the chemical potential μS in HS to fix the electron
density. Hereafter, we set μS = 0 and only change the chem-
ical potential μN of the normal contact, thus the applied bias
being eVdc = μN (the Fermi energy EF = 0). The single-level
dot Hamitonian reads

HD =
∑

σ

εdσ d†
σ dσ + Und↑nd↓, (4)

where εdσ is the dot energy level that in the presence of a
magnetic field B reads εdσ = εd + σEZ/2 with EZ = μBgB
as the Zeeman energy. d†

σ (dσ ) creates (annihilates) electrons
at the dot site and ndσ = d†

σ dσ is the occupation operator.
Finally, the tunneling processes between dot and contacts are
represented by

HT =
∑

α=N/S,k,σ

(Vαc†
αkσ

dσ + H.c.) . (5)

The hybridization strength is characterized by �α =
πρα (0)V 2

α , where ρα (0) is the density of states at the Fermi
energy of contact α in the normal phase. We focus on the
regime �S � �N and consider the normal contact acting as
a probe.

We are interested in solving H to obtain the energy spec-
trum. For that purpose, we obtain the poles of the Green’s

function as

�(ωI − H + i0+) = 0 (6)

that give the ABS. Besides, such subgap spectrum is obtained
experimentally by measuring the differential conductance
G = dI/dVdc where I is the electrical current when a Vdc bias
voltage is applied between the contacts. Then, we compute
the electrical current in this setup but discarding the current
originated from the superconducting quasiparticle density of
states. Therefore, we calculate the charge current generated
solely by the Andreev reflection,

I = 8e

h

∫
dε �2

N |Gr
d,d;12(ε)|2[ f (ε − μN ) − f (ε + μN )] ,

(7)
where Gr

d,d;12(ε) is the retarded anomalous Green’s function
that describes the conversion of an electron into a hole caused
by the scattering on the Bose-Einstein condensed Cooper
pairs, i.e., the Andreev-type scattering. Hereafter, the bold
symbols denote matrices so the subscripts denote their matrix
components. f (ε) = 1/(eβε + 1) is the Fermi-Dirac distri-
bution function with β = 1/kBT . To grasp the underlying
physics, we calculate the nonequilibrium Keldysh Green’s
functions and then Gr

d,d;12(ε). For such a purpose, we intro-
duce the Nambu spinor representation defining d̂ = (d†

↑, d↓),

and ĉαk = (c†
αk↑, cαk̄↓). The Keldysh time-ordered Green’s

function then takes the form

GA,B(t, t ′) ≡ 〈〈Â(t ), B̂†(t ′)〉〉 = −i〈T Â(t ) ⊗ B̂†(t ′)〉, (8)

where Â and B̂ can be any spinor like d̂ or ĉαk and T is
the time-ordering operator. The retarded/advanced and lesser
Green’s functions follow from analytic continuation [50]. In
the next sections, we derive the anomalous Green’s function
for the two regimes of interest, the Coulomb blockade and
Kondo regimes.

III. COULOMB BLOCKADE REGIME

Here we develop the equation-of-motion (EOM) technique
to describe the Coulomb blockade regime. We first analyze the
HF approximation that fails to describe this transport regime.
Then, we propose to employ a more sophisticated decoupling
procedure, the Hubbard-I approximation that reproduces the
Coulomb blockade phenomenon for a N-QD system and
predicts the occurrence of anticrossings around the degenerate
mean-field points, i.e., εdσ = −U, 0 in the subgap spectrum
for the superconducting case. The EOM procedure reads

d〈A(t )〉/dt = (i/h̄)〈[H, A(t )]〉 . (9)

In particular, the time-ordered Green’s functions for the dot
read

Gd,d (t, t ′) = gd (t, t ′) +
∫

dt1
h̄

gd (t, t1)UD(t1, t ′)

+
∫

dt1
h̄

∫
dt2
h̄

gd (t, t1)�0(t1, t2)Gd,d (t2, t ′),

(10)

where U ≡ Uσ3 and Vα ≡ Vασ3 (σi with i = 1, 2, 3 are
the Pauli matrices and σ0 the 2 × 2 identity matrix) U ≡
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diag(U,−U ), and Vα ≡ diag(Vα,−Vα ), and the hopping self-
energy:

�0(t1, t2) =
∑
α,k

Vαgαk (t1, t2)Vα =
∑

α

�0α (t1, t2). (11)

Here gd (t, t ′) and gαk (t, t ′) denote the noninteracting dot and
contact’s isolated Green’s functions, respectively. In the HF
decoupling scheme, the Green’s function D is approximated
as

D ≡
〈〈(

d↑nd↓
d†

↓nd↑

)
, d̂†

〉〉
≈ �Gd,d , (12)

where

� =
(

〈nd↓〉 F
−F† 〈nd↑〉

)
. (13)

Here F† is the anomalous propagator in the Nambu descrip-
tion:

F† = 〈d†
↑d†

↓〉. (14)

In the frequency domain, the retarded HF dot Green’s function
is written as

Gr
d,d (ε) = [

gr,−1
d (ε) − �HF − �r

0(ε)
]−1

. (15)

Here,

gr,−1
d (ε) = diag(ε − εd↑ + i0+, ε + εd↓ + i0+) (16)

is the unperturbed dot Green’s function. The self-energies are,
namely, (i) the HF interacting self-energy

�HF = U�, (17)

and (ii) the hopping self-energy �r
0(ε) = �r

0S (ε) + �r
0N (ε)

composed by the normal

�r
0N (ε) = −i�Nσ0 (18)

and the superconductor contributions,

�r
0S (ε) = −i�S[βd (ε)σ0 + iσ3σ2βo(ε)], (19)

with

βd (ε) = �(|ε| − �)|ε|√
ε2 − �2

− i
�(� − |ε|)ε√

�2 − ε2
(20)

and

βo(ε) = �(|ε| − �)sgn(ε)�√
ε2 − �2

− i
�(� − |ε|)�√

�2 − ε2
. (21)

Here, �(x) is the Heaviside function. Finally, the QD mean
occupations are evaluated from the lesser Green’s function via
the relation(

〈nd↑〉 F
F† 1 − 〈nd↓〉

)
= 1

2π i

∫
dεG<

d,d (ε) , (22)

where G<
d,d (ε) corresponds to the lesser HF dot Green’s

function,

G<
d,d (ε) = Gr

d,d (ε)�<
0 (ε)Ga

d,d (ε) , (23)

with �<
0 (ε) = �<

0N (ε) + �<
0S (ε) being lesser hopping self-

energy. This self-energy contains the contribution due to the
normal lead,

�<
0N (ε) = 2i�N diag( f (ε − μN ), f (ε + μN )), (24)

and the superconducting one,

�<
0S (ε) = 2i�S f (ε)�(|ε| − �)|ε|√

ε2 − �2
diag(1, 1)

+ �

ε
diag(−1,−1), (25)

where diag(, ) denotes the antidiagonal of a matrix. The
advanced Green’s function is obtained from the relation
Ga

d,d (ε) = [Gr
d,d (ε)]†. Equation (22) now has to be solved

self-consistently since in both sides of the equality the dot’s
average occupations appear.

In the following, we analyze the weakness of the HF
approximation to treat both the Coulomb blockade and Kondo
regime. Such an approach has been proposed to deal with
Kondo physics since it reproduces some of the features of the
Kondo-like ABS spectrum. However, as we indicate below,
such characteristics are related to symmetry-broken states that
in the end should be averaged. In that respect, HF fails to
explain properly the underlying physics in the Kondo regime.
Besides, we show how the HF approach fails in describing
the Coulomb blockade regime for which a suitable approach
within the EOM scheme is proposed.

To gain a better understanding of the HF approximation,
we analyze why such an approach has been proposed to
explain Kondo physics. We first consider �N = 0 and � = 0.
The solution for 〈nd↑〉, 〈nd↓〉 from Eq. (22) can be encountered
in terms of

n = 〈nd↑〉 + 〈nd↓〉, (26)

the total occupation, and

m = 〈nd↑〉 − 〈nd↓〉, (27)

the magnetization. According to Anderson’s idea [51], in the
HF approximation there are two possible solutions for n and
m: a nonmagnetic solution with m = 0 and a magnetic m �= 0
solution. A simple analysis at zero temperature shows that

n = 1

π

∑
σ

cot−1

(
εd + U (n − σm)/2

�S

)
, (28a)

m = 1

π

∑
σ

σ cot−1

(
εd + U (n − σm)/2

�S

)
. (28b)

To find the phase boundary between magnetic and nonmag-
netic regions, we set m → 0+ and expand Eqs. (28) to get

n ≈ 2

π
cot−1

(
εd + Un/2

�S

)
, (29a)

m ≈ Um

π�S
sin2(πn/2). (29b)

For m �= 0, Eq. (29b) allows a solution only when
U/π�S > 1 so it is a necessary condition to obtain a magnetic
solution. In our HF calculations with � �= 0, we consider
U = 2.5� and �S = 0.2� and thus U/π�S > 1 is fulfilled. In
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FIG. 1. (a) Dot’s average occupation 〈ndσ 〉 for m �= 0 and (b) for
m = 0. (c) Andreev bound states (ABS) for m �= 0 and (d) for
m = 0. The differential conductance dI/dVdc as a function of the
gate εd in (e) for m �= 0 and (f) for m0. Dark areas in (e) and (f)
indicate high dI/dVdc. Calculations for m = 0 are performed by the
restricted Hartree-Fock method whereas for m �= 0 the unrestricted
Hartree-Fock approach was employed. Parameters: � = 1, EZ/� =
0, U/� = 2.5, �S/� = 0.2, �N/�S = 1/3, β/� = 500.

the literature, the case with m �= 0 is denominated unrestricted
Hartree-Fock (UHF) while the restricted Hartree-Fock (RHF)
means the solution with m = 0. The peculiarity of the UHF is
that it breaks spin-reversal symmetry, although the Hamilto-
nian H is invariant under such symmetry. Besides, whenever it
is possible, a m > 0 solution, there is always a corresponding
degenerate negative −m solution. The breakdown of the spin-
reversal symmetry of the UHF can be cured by averaging two-
degenerate solutions at the very end [52]. To emphasize the
effect of the magnetic solution, we do not average and show
in Fig. 1(a) the spin ↑ and spin ↓ occupations, namely, 〈nd↑〉,
and 〈nd↓〉 versus εdσ = εd (we set EZ = 0 unless otherwise
stated). The popularity of such an approach resides in its use
to describe the Kondo physics in the ABS spectrum. We recall
that ABS are found by examining the poles of the retarded
Green’s function:[�(

gr,−1
d (ε) − �HF − �r

0(ε)
)] = 0. (30)

For the hybrid setup, the presence of the N contact not only
broadens the ABS as they acquire a finite lifetime but it
could enhance the spin exchange interactions and induced
the subgap Kondo effect upon approaching to the quantum
phase transition which indeed replaced by a crossover [48,53].
Since we are interested in the ABS positions and �N � �S we
discard in the next calculations normal contact. In Fig. 1(c),
we see that the positions of the ABS are probed by the
the nonlinear conductance plotted in Fig. 1(e). In Figs. 1(c)
and 1(e), we see that the positions of the ABS are closely
related with the dot’s average occupations. When the dot’s
occupation changes sharply then the ABS localize near the
Fermi level, while they move near the gap edges ±� when
the dot occupation is kept fixed. As we see in Fig. 1(c) and
1(e) the ABS display a loop structure that indeed represents
the quantum phase transition from a singlet to a doublet GS
as reported experimentally [13,14] for the Kondo regime.
This is because the UHF approach implies a local magnetic
moment solution (m �= 0). The exchange interaction between

conduction electrons and a local magnetic moment gives rise
to the YSR subgap excitations inside the superconducting gap
[27]. The remaining question is what is the strength of the
local exchange energy Eex with the UHF. In the presence
of a local moment, HD can be replaced by a noninteracting
single site Hamiltonian with εd↑ = εd + Eex and εd↓ = εd −
Eex where Eex = U (〈nd↓〉 − 〈nd↑〉)/2 [21].

The UHF solution well describes the physics which results
from the existence of a local magnetic moment and for such
reason it reproduces the spectrum in the Kondo regime. How-
ever, the magnetic moment which is found in the UHF scheme
is a static moment, but not a dynamic one. This indicates
that the moment in the UHF is not dynamically screened by
the conduction electrons and therefore it cannot explain the
Kondo physics.

In the next section, we show that HF approximation also
fails in describing the Coulomb blockade regime. To illustrate
this, we have plotted in Figs. 1(b), 1(d) and 1(f) our results for
the occupations, ABS, and G, respectively, when the m and
−m solutions are averaged (the RHF approach). We observe
that now 〈nd↑〉 = 〈nd↓〉 whereas the ABS and G do not display
the looplike structure obtained in the UHF approximation.
Indeed, it is known that the RHF approach leads to a single
resonance peak centered at an effective dot-level position
renormalized by U , which is contradictory with the physics
in the Coulomb blockade regime where two resonance peaks
are observed due to the quantization of the dot’s average
occupancy at low enough temperatures. Therefore, to describe
the CB regime properly, we implement a different truncation
scheme in the EOM procedure. We consider the equation of
motion for D together with Eq. (10) and get

D(t, t ′) = gdU (t, t ′)nd

+
∑
α,k

∫
dt1
h̄

gdU (t, t1)nd VαGαk,d (t1, t ′), (31)

where nd = diag(〈nd↓〉, 〈nd↑〉) and

gr,−1
dU (ε) =

(
ε − εd↑ − U + i0+

ε + εd↓ + U + i0+

)
.

(32)
In obtaining Eq. (31), we made the following decoupling:

〈〈cαk↑nd↓, d†
↑/d↓〉〉 ≈ 〈nd↓〉〈〈cαk↑, d†

↑/d↓〉〉 (33)

and

〈〈c†
αk↓nd↑, d†

↑/d↓〉〉 ≈ 〈nd↑〉〈〈c†
αk↓, d†

↑/d↓〉〉, (34)

and neglected the other generated higher-order Green’s func-
tions. Substituting Eq. (31) into Eq. (10) and doing little
algebra, we find

Gr
d,d (ε) = [

gr,−1
d (ε) − �r

0(ε) − Ugr
dU (ε)nd�

r
0(ε)

]−1

× [
1 + Ugr

dU (ε)nd
]
. (35)

The isolated dot Green’s functions gr
d (ε) and gr

dU (ε) have
poles close to ≈ εdσ and ≈ εdσ + U , and hence we expect that
Eq. (35) will show two resonance peaks. Again we employ
Eq. (23) to obtain the QD average occupations. In Fig. 2(a),
we show 〈ndσ 〉 versus εd . It displays the well-defined plateaus
of width U . The ABS are obtained from the poles of the
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FIG. 2. (a) Dot’s average occupation 〈ndσ 〉, (b) Andreev bound
states (ABS), and (c) differential conductance dI/dVdc as a function
of the gate εd in the Coulomb-blockade regime. Parameters: � = 1,
U/� = 2.5, �S/� = 0.2, �N/�S = 1/3, β/� = 500.

determinant:[�(
gr,−1

d (ε) − �r
0(ε) − Ugr

dU (ε)nd�
r
0(ε)

)]−1 = 0. (36)

The loop structure is observed in the singly occupied region
as shown in Fig. 2(b). Importantly, the ABS never cross at the
degenerate points due to the absence of spin fluctuations in
the CB regime. The evolution of the loop structure with �S

is shown in Fig. 3. The loop height becomes smaller when
we increase �S and completely disappears when �S ∼ U .
Besides, ABS never touches the particle-hole symmetry point
even if �S increases. In the CB regime, the singly occupied dot
is not screened by conduction electrons, so we cannot expect
the transition from doublet to Kondo screened singlet. Instead,
as �S is increased, a possible scenario is the appearance of
the BCS-type singlet which consists of |0〉 (empty) and | ↑↓〉
(doubly occupied) dot states. Hence, the crossing of the ABS
at the particle-hole symmetric point is not expected even when
�S increases. Note that a further increase of �S would induce
the appearance of Kondo correlations that are not included
in the present description. For that purpose, we analyze in
the next section the Kondo regime by employing the NRG

FIG. 3. Andreev bound states (ABS) as a function of the gate εd

in the Coulomb-blockade regime for various �S . Parameters: � = 1,
EZ/� = 0, U/� = 2.5, �S/� = 0.2, �N/�S = 1/3, β/� = 500.

FIG. 4. NRG Subgap spectrum for different �S values at zero
and finite magnetic field. EZ = 0 (a) shows the ABS as a function of
εd for �S/� = 0.2, (c) for �S/� = 0.7, and (e) for �S/� = 0.9. In
the presence of magnetic field EZ/� = 0.1935, the Andreev subgap
spectrum is shown in (b) for �S/� = 0.2, (d) for �S/� = 0.7, and
(f) for �S/� = 0.9. Other parameters: D = 1 (half bandwidth), � =
0.04, U/� = 2.5, �N/�S = 0.

calculation which is a sophisticated numerical technique that
produces quite accurate results.

IV. KONDO REGIME

We investigate the regime in which the Kondo singlet
becomes relevant. Experimentally, this situation has been
explored in hybrid QDs in Ref. [14]. There, the subgap
spectrum was measured using the nonlinear conductance G.
The experiment reported the observation of the |S〉 ←→ |D〉
transition and parity crossings from the Andreev spectrum.
Here, we reproduce those results by employing the standard
NRG method [54]. For the ABS analysis, we consider the QD
connected to the superconducting contact (�N = 0). We are
aware of the role of the normal contact by enhancing the spin-
exchange interactions and then inducing the subgap Kondo
formation that replaces the quantum phase transition by a
crossover [48,53]. However, for the considered parameters,
�N acts as a probe and our calcualtions for the S-QD system
reproduce the experimental findings [14]. The underlying
physics is determined by the interplay between singlet and
doublet states. Here, we consider the experimental situation
of Ref. [14]: U/� = 2.5, D = 1 (half bandwidth) and � =
0.04D at zero temperature. For different �S , we observe a loop
structure with crossings at the degenerate mean-field points.
As discussed before such loop structure is also observed in
Fig. 1(c) when the UHF approach was used. However, we
pointed out that indeed the UHF approach fails to describe a
dynamical spin flip for the Kondo-like impurity and instead it
offers a static spin screening. Besides, whereas the UHF spec-
trum presents a divergent behavior at the degenerate points,
the NRG calculation gives true crossing points. Furthermore,
the NRG spectrum exhibits two subgap excitations around the
doublet-singlet or singlet-doublet transition points due to the
existence of two BCS-like singlet excited states that are not
predicted by the HF approximation. As �S is increased, our
findings for Figs. 4(c)–4(e) display the gradual disappearance
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FIG. 5. (a) Subgap spectrum as a function of EZ for εd/� =
−2.5. Here, the ground state is a singlet when EZ = 0. (b) ABS
for εd/� = −2.25. In this case, the ground state is a doublet when
EZ = 0. The insets display magnified plots of Fig. 4 around the
singlet-doublet transition. Parameters: D = 1 (half-bandwidth), � =
0.04, U/� = 2.5, �S/� = 0.2, �N/�S = 0.

of the loop structure, which means that the GS changes from
doublet to singlet states in the singly occupied region (closed
at εd = −U/2 when the Kondo singlet prevails).

Now we consider the presence of a magnetic field B with
an associated Zeeman energy EZ = gμBB. The application of
a Zeeman field, EZ �= 0, unambiguously identifies the GS for
the dot [14]. Our results are shown in Figs. 4(b), 4(d) and
4(f). For EZ �= 0, we also observe four ABS in the doubly and
empty occupied regions when εd/� < −U/2 and εd/� > 0.
In this region, the ground sate is a BCS singlet, while the
excited state is a doublet. For EZ �= 0, the doublet state is
Zeeman split so two transitions are possible from ground
to excited states. The transition from a lower-energy singlet
state to a higher-energy singlet state is not allowed because
this process conserves the fermion parity. In this respect, the
magnetic field drives a quantum phase transition as shown in
Figs. 4(c) and 4(d). Thus, the four subgap states shown in
Figs. 4(d) are excitations from the GS, a BCS singlet state,
to the Zeeman-split doublet state.

All the previous features are nicely collected in Fig. 5.
Here, the ABS as a function of Zeeman energy EZ are plotted.
We focus on the region near the singlet-doublet transition
point when EZ = 0 [see Fig. 4(a) and also insets of Fig. 5]. In
the absence of an applied magnetic field, for εd/� = −2.5 the
GS is a singlet so possible excitations are transitions to dou-
blet states. When we apply a magnetic field, the degenerate
doublet state splits into two distinct states due to the Zeeman
effect, but the singlet GS remains unchanged. Therefore, there
are two possible transitions from singlet to doublet states and

we get four ABS [see Fig. 5(a)]. At EZ/� > 0.115, the GS
changes from singlet to doublet states and only two ABS are
possible. The transition from the lower-energy doublet state
to the higher-energy doublet state is not allowed since the
fermion parity has to be changed during the transition and
hence we get only two ABS. On the other hand, if we look at
εd/� = −2.25 and EZ = 0, the GS is a doublet. For EZ �= 0
[see Fig. 5(b)], the doublet GS splits, but the transitions be-
tween doublet states is not permitted and we obtain two ABS.
As a matter of fact, in the presence of the normal contact,
the single singlet-doublet phase transition point is replaced by
the broad crossover region [48]. Therefore, the presence of a
magnetic field allows us to identify unambiguously the nature
of the dot GS.

V. CONCLUSIONS

In summary, we have calculated the subgap spectrum
for two different transport regimes, namely, the Coulomb
blockade regime and the Kondo regime. For the Coulomb
blockade regime, we have used the equation-of-motion tech-
nique and propose a generalization of the the Hubard-I de-
coupling scheme to deal with superconducting contacts. We
have shown that a mean-field approach as the HF approach
is unable to describe nor the charge blockade regime neither
the Kondo regime. We have found that the subgap Andreev
spectrum in the Coulomb blockade regime exhibits anticross-
ing points around the degenerate mean-field points εd = −U
and εd = 0. The occurrence of anticrossings signals the con-
servation of the parity GS against the tuning of the dot-
level position. For εd < −U , the GS corresponds to a doubly
occupied state whereas for εd > 0 the state corresponds to
an empty configuration. For −U � εd � 0, the GS is a BCS
singlet state with a superposition of empty and doubly dot
states. In all the cases, the parity is even.

For the Kondo regime, we have employed the NRG cal-
culation and reproduce the experimental results reported in
Ref. [14]. Finally, we have shown that under the application
of a magnetic field it is possible to identify the nature of
the GS in the subgap spectrum by counting the number of
possible excitations. These results match with those found
experimentally for the B-field case [14]. We hope that our
findings push forward experimental research in the Coulomb
blockade transport regime for hybrid NS-QD systems and can
confirm the reported subgap features as anticrossings at the
degenerate points.
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