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Enhancement of transparency in a double-barrier structure by the Fano antiresonance

J. Klier,1 I. V. Krainov,2,3 A. P. Dmitriev,2 and I. V. Gornyi 4,2

1Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
2Ioffe Physico-Technical Institute of the Russian Academy of Sciences, 194021 St. Petersburg, Russia

3Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta, Finland
4Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

(Received 26 July 2019; revised manuscript received 17 April 2020; accepted 29 May 2020;
published 18 June 2020)

We show that the presence of a side-attached state strongly modifies the transmission through a one-
dimensional double-barrier system in the window of wave vectors around the Fano antiresonance. Specifically,
the interplay between the Fano interference and the size quantization inside the structure gives rise to narrow
resonant peaks in the transmission coefficient. The height of the peaks may become close to unity (perfect
transmission) even for an asymmetric setup with strong barriers, where the transmission coefficient in the
absence of the Fano state is strongly suppressed at all other wave vectors. Thus, the two types of interference
phenomena, each by itself leading to the suppression of the transmission, conspire in a peculiar way to produce
the transparency enhancement.
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I. INTRODUCTION

Fano resonant suppression [1] of the wave transmission in
the presence of a localized discrete state is one of the most
famous interference phenomena in atomic physics, optics, and
electronics (for reviews, see Refs. [2,3]). It is well known
that the amplitude A of the electron transition to the states
of a continuum through a localized quasistationary level ε0 is
described by the Breit-Wigner formula

A = iA0
�

ε − ε0 + i�
, (1)

where ε is an electron’s energy, � is the width of the level,
and the magnitude A0 does not vary with energy on the scale
of the order of �. The probability of transition demonstrates
the symmetrical resonance of the usual Lorentz form. If, in ad-
dition to the resonant transition through the intermediate level,
a direct transition with an amplitude B that weakly depends on
energy is also allowed, the total transition amplitude is equal
to the sum of the amplitudes A and B. Then an interference
term 2Re(AB∗) appears in the expression for the transition
probability

W = |A + B|2 = |B|2 |ε − ε0 + i�(A0/B + 1)|2
(ε − ε0)2 + �2

, (2)

which leads to an asymmetric resonance, first described by
Fano [1] for the case of photoionization of the atom. When
A0/B + 1 = iq is purely imaginary, the asymmetry of the
Fano resonance is governed by q,

W = |B|2 (ε − ε0 − q�)2

(ε − ε0)2 + �2
, (3)

which interpolates between the Breit-Wigner resonance for
large q and the symmetric Fano antiresonance at q = 0. In the
latter case, the transition probability is strictly zero at ε = ε0.

Since then, a wide variety of physical systems, from me-
chanical to nuclear, have been studied experimentally and
theoretically, in which one of the two interfering amplitudes
for transitions into the continuum is resonant. In particular,
such a situation is realized for electrons passing through a
one-dimensional (1D) system, next to which a tunnel-coupled
“atom” is located [2,4]. An electron trapped on the atom’s
level has the energy ε0 and the lifetime h̄/� corresponding
to the tunneling coupling between the atom and the wire. The
transmission coefficient is then proportional to the ratio (ε −
ε0)2/[(ε − ε0)2 + �2], which corresponds to q = 0 in Eq. (3).
This means that at ε = ε0, the wave corresponding to the
capture of an electron on the atom completely “extinguishes”
the directly transmitted wave, so that there is full reflection
(Fano antiresonance in transmission).

Physics related to the Fano antiresonance is relevant, for
example, to complex quantum-dot structures [5], such as
tunnel-coupled carbon nanotubes (CNTs) with side-attached
single-molecule magnets [6–9]. These structures received
much attention because of the giant magnetoresistance which
is caused by a spin-dependent scattering of the conducting
electrons on the localized state of a single-molecule magnet
[6,10] (see also Ref. [11] for a related discussion of spin filter
with Fano states). The calculations in the present paper are
motivated by our recent work [10] that proposed an explana-
tion of the giant magnetoresistance observed in the Coulomb
blockade regime in CNTs with organic molecules attached to
them. The molecules create a quasistationary discrete level
for electrons of the CNT, leading to the Fano resonance in
the transmission coefficient. In Ref. [10], in accordance with
the conditions of the experiments, a rather fast phase breaking
was assumed, so that the electron motion between two tunnel
barriers was not quantized (the Fano state on the molecule
is tunnel-coupled to the continuous spectrum in the CNT).
However, of independent interest is the problem of the effect
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of level quantization on the Fano antiresonance in a coherent
quantum dot. This paper is dedicated to solving this problem.

In a 1D system with two strong barriers without a resonant
impurity, the transmission coefficient as a function of the elec-
tron energy is a “comb” of narrow peaks centered at energies
that coincide with the energies of the size quantization levels.
We show that the presence of a side-attached state strongly
modifies the transmission through a double-barrier system in
the window of wave vectors around the Fano antiresonance.
Specifically, the interplay between the Fano interference and
the size quantization inside the structure gives rise to narrow
resonant peaks in the transmission coefficient. Remarkably,
the height of the peaks may become close to unity (perfect
transmission) even for an asymmetric setup with strong barri-
ers, where the transmission coefficient is strongly suppressed
at all other wave vectors.

Thus, the two types of interference phenomena, each by
itself leading to the suppression of the transmission, conspire
in a peculiar way to produce the transparency enhancement.
This striking phenomenon can be potentially used as a narrow-
band filter in nanoelectronic and photonic devices. While
engineering Fano resonances in complex structures has been
a subject of a number of works (see, e.g., Ref. [12] and
reviews [2,3]), to the best of our knowledge, the emergence
of a Fano-state-induced narrow resonance with almost perfect
transmission in a double-barrier structure has not been previ-
ously appreciated in the literature.

The paper consists of the Introduction, three main sections,
and the Conclusion. In Sec. II, we recapitulate the basics of the
two main ingredients of our analysis separately and introduce
the notations. First, the transmission of electrons through a
1D system with Fano resonance and without tunneling barri-
ers is addressed in Sec. II A. Next, a double-barrier system
is considered in Sec. II B. In Sec. III, the problem of the
transmission of an electron through a 1D system with two
tunnel barriers and Fano resonance between them is solved.
In Sec. IV, the emergent narrow transmission resonance is
analyzed in detail, first for identical barriers and then for
a generic double-barrier structure. Technical details of an
alternative derivation are relegated to the Appendix.

II. BASICS

A. Transmission across a Fano state

We start with a brief reminder of the formalism employed
to describe the influence of a Fano state on transport in an
infinite 1D channel [1,2] (see Fig. 1). Throughout the paper,
we consider a single-particle problem. In the presence of
electron-electron or electron-phonon interactions in a single-
channel wire, the wire conductance in the presence of a side-
attached localized state has been studied in Refs. [13–15].

The Hamiltonian of 1D free electrons which can tunnel to
a side-attached localized state reads

Ĥ =
∑

k

Ek|ψk〉〈ψk|

+
∑

k

(
ε0|ϕ〉〈ϕ| + Vk|ϕ〉〈ψk| + V ∗

k |ψk〉〈ϕ|). (4)

FIG. 1. Schematic illustration of the origin of the Fano resonance
in transmission though an infinite 1D channel tunnel-coupled with
a discrete state (red level). The destructive interference of waves
passing the discrete level without visiting it (path 1) and the waves
visiting the Fano state (path 2) leads to the vanishing of the transmis-
sion coefficient for electrons with the resonant energy (Ek = ε0).

Here, ε0 denotes the energy of the localized state with the
corresponding wave function ϕ, Ek = h̄2k2/(2m) and ψk are
the energy and wave function of state k in the 1D channel, and
Vk = 〈ϕ|V̂ |ψk〉 is the Bardeen tunneling matrix element [16]
of the tunneling operator V̂ . The wave functions ϕ and ψk are
assumed to be orthogonal to each other.

The transmission (tF ) and reflection (rF ) amplitudes for the
localized Fano state are given by [2]

tF = Ek − ε0(k)

Ek − ε0(k) + i�0(k)
, (5)

rF = −i�0(k)

Ek − ε0(k) + i�0(k)
, (6)

where (the dash denotes the principal-value integral)

ε0(k) = ε0 + −−
∫ ∞

0
d p

|Vp|2
Ek − Ep

, (7)

�0(k) = π

∫ ∞

0
d p δ(Ep − Ek )|Vp|2. (8)

For a pointlike tunneling, Vp is momentum independent and,
hence, there is no k-dependent shift of the Fano-state energy
and the suppression of the transmission is symmetric. In the
general case, we introduce k0 =

√
2mε0/h̄2 and �0 = �0(k0)

[for weak tunneling, it is sufficient to take ε0(k) and �0(k) at
the resonance point]. The energy scale �0 describes the broad-
ening of the localized state, which stems from the coupling
between the 1D channel and the localized state. The Fano
state suppresses the transmission in the window of resonant
energies Ek ∼ (ε0 − �0, ε0 + �0). For a confined geometry,
however, the broadening of the Fano resonance is changed by
the properties of the boundaries and may also be momentum
dependent, as we will discuss in the following sections.

A schematic illustration of the processes responsible for
the Fano resonance is presented in Fig. 1. This figure shows
the interference of the electronic wave that passes through
the wire with the continuous spectrum directly, i.e., without
visiting the Fano state, and the wave that passes via scattering
on the discrete state (paths 1 and 2 in Fig. 1, respectively).
Exactly at the resonance, Ek = ε0, path 2 acquires a phase
of π leading to zero transmission, since the sum of the two
waves vanishes, eikx + eikx+iπ = 0. Accordingly, the reflection
coefficient reaches maximum (unity) at resonance.
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B. Double-barrier structure

In this section, we present a description of a double-
barrier structure in the absence of the Fano state. Again,
as in Sec. II A above, we do not consider here effects of
electron-electron interactions in the wire, which would lead
to a peculiar renormalization of the transmission coefficient
through the structure (see Refs. [17–20]).

Without loss of generality, we model the tunnel contacts as
two δ-function barriers located at x = ±L, with the potentials

VL,R(x) = ηL,R
h̄2

2m
δ(x ± L), (9)

characterized by the strengths ηL and ηR for the left and
right barrier, respectively. The transmission and reflection
amplitudes for a single delta barrier are given by

tB = 2ik

2ik − η
, rB = η

2ik − η
. (10)

We introduce the wave functions for the system with
these two barriers and decompose it into the symmetric and
antisymmetric parts as

	k+(x)=
⎧⎨
⎩

cos(kx) + ηR cos(kL)
k sin[k(x − L)], x � L,

cos(kx), |x| � L,

cos(kx) − ηL cos(kL)
k sin[k(x + L)], x � −L,

(11)

	k−(x)=
⎧⎨
⎩

sin(kx) + ηR sin(kL)
k sin[k(x − L)], x � L,

sin(kx), |x| � L,

sin(kx) + ηL sin(kL)
k sin[k(x + L)], x � −L.

(12)

The right-moving wave is described by

φ+k (x) = ar+(k)	k+(x) + ar−(k)	k−(x), (13)

and the left-moving wave is given by

φ−k (x) = al+(k)	k+(x) − al−(k)	k−(x). (14)

Here, the coefficients are given by

ar+,l+(k) = 2ik

D(k)

[
k + ηR,L sin(kL) exp(ikL)

]
, (15)

ar−,l−(k) = 2ik

D(k)

[
ik − ηR,L cos(kL) exp(ikL)

]
, (16)

with

D(k) = [ik − ηL cos(kL)eikL][k + ηR sin(kL)eikL]

+ [k + ηL sin(kL)eikL][ik − ηR cos(kL)eikL]. (17)

For the case of symmetric setup with ηR = ηL = η, we get
ar+ = al+ = a+ and ar− = al− = a−, where

a+(k) = ik

ik − η cos(kL) exp(ikL)
, (18)

a−(k) = ik

k + η sin(kL) exp(ikL)
. (19)

Using these equations, we express the transmission and
reflection coefficients of the symmetric double-barrier

structure as

tBB(k) = 1

2

[
a+(k)

a∗+(k)
− a−(k)

a∗−(k)

]
, (20)

rBB(k) = 1

2

[
a+(k)

a∗+(k)
+ a−(k)

a∗−(k)

]
. (21)

These formulas describe resonances at energies corresponding
to the size quantization levels. For the symmetric setup, the
transmission coefficient

TBB(k) = |tBB|2 = 1

2
+ 1

2
Re

a+(k)a∗
−(k)

a∗+(k)a−(k)
(22)

is equal to unity at resonances at k = kn, where kn are de-
termined from the equation tan(2kL) = −2k/η. For strong
barriers η � k, 1/L, one finds

kn � πn

2L

(
1 − 1

ηL

)
. (23)

The transmission coefficient is then described by a standard
Breit-Wigner formula.

For an asymmetric setup with ηR 	= ηL, the transmission
amplitude can still be written through D(k) from Eq. (17) as

tBB(k) = 2ik2/D(k). (24)

The transmission coefficient,

[TBB(k)]−1 = 1 + η2
Lη2

R

8k4
+ η2

L + η2
R

4k2

+ ηLηR

2k2

[(
1 − ηLηR

4k2

)
cos(4kL)

+ ηL + ηR

2k
sin(4kL)

]
, (25)

then also shows resonances at kn close to πn/2L [in Eq. (23),
η is replaced with 2ηRηL/(ηR + ηL )]. For strong barriers, TBB

is again described by the Breit-Wigner formula,

TBB(k ∼ kn) � 4TLTR

64(k − kn)2L2 + (TL + TR)2
, (26)

where

TR,L = 4k2

4k2 + η2
R,L

(27)

are the transmission coefficients of the individual barriers. The
height of the resonance is now always smaller than unity; for
a strongly asymmetric setup,

Tmax ≡ max[TR, TL] � Tmin ≡ min[TR, TL], (28)

one gets

TBB(k = kn) � 4Tmin

Tmax
� 1. (29)

We will use the notation introduced in this section in Sec. III,
where a Fano state inside the double-barrier structure is con-
sidered.

C. System with a Fano state and a tunnel barrier

Another example of an effectively two-barrier structure
is a quantum wire with a single tunnel barrier and a side-
attached Fano state at some distance from it (see Ref. [12] for
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FIG. 2. Scattering off a Fano state in a system of two equal δ

barriers located at ±L. The coefficients of the wave functions are
indicated. The strength of the barriers is quantified by η. The Fano
state has the energy ε0 and is located at position d .

similar engineered Fano systems). In such a structure, there
is a peculiar effect of transmission enhancement by the Fano
antiresonance, even for a very strong tunnel barrier. Indeed,
one sees from Eq. (6) that in the energy band of width �0

around the value of Ek = ε0, the reflection from the Fano
state is almost perfect, rF � −1. This implies that there is an
energy at which the effective strength of the emerging Fano
barrier is exactly equal to the strength of an arbitrarily strong
tunnel barrier. For such energy, we obtain a perfectly symmet-
ric double-barrier structure. When this energy coincides with
the level quantization energy in this double-barrier structure,
the transmission coefficient for the whole system is unity. The
energy dependence of the transmission amplitude tBF for the
barrier-Fano structure is presented in the Appendix.

The perfect resonance in TBF can be adjusted, e.g., by
changing ε0 with the external gate voltage, which is expected
to be a much more precise way of fine-tuning compared to
the creation of two perfectly equal strong barriers. Notably,
the “transparency window” of energies around the fine-tuned
value emerges in a system consisting of two scatterers—the
tunnel barrier and the Fano level—each of which individually
suppresses the transmission. A natural question is whether
this phenomenon of transparency enhancement by the Fano
antiresonance persists in more complex structures with low
transmission, like an asymmetric double-barrier setup (28),
that cannot be directly mapped to the known systems char-
acterized by a perfect transmission. As we will show in the
remaining part of the paper, the answer to this question is
positive.

III. DOUBLE-BARRIER STRUCTURE WITH A FANO
STATE

In this section, we consider the structure with two tunnel
barriers and the Fano state between them (Fig. 2), where the
localized level lies on top of a quasidiscrete spectrum of size
quantization. It will be demonstrated that for strong barriers, a
Fano state may lead to a strong transmission enhancement in a

narrow energy window, similarly to the case of a single-barrier
structure described in Sec. II C. However, in contrast to that
case, the effect of transparency enhancement for a two-barrier
structure is far from being obvious, since the spectrum of the
system is quasidiscrete from the outset, which can be expected
to pose restrictions on the possibility of the fine-tuning of
resonances.

A. Formalism

If the 1D channel hosting the Fano state is tunnel-coupled
to external leads, the resonant interference of electron waves
scattered of the tunnel barriers becomes important. With the
Fano state side-attached to the region of the wire inside
the double-barrier structure (Fig. 2), the Hamiltonian of the
system,

Ĥ = Ĥ0 + ε0|ϕ〉〈ϕ|

+
∫ ∞

0
dk(V−k|ψ−k〉〈ϕ| + V ∗

−k|ϕ〉〈ψ−k|)

+
∫ ∞

0
dk(V+k|ψ+k〉〈ϕ| + V ∗

+k|ϕ〉〈ψ+k|) (30)

is modified compared to Eq. (4) by accounting for a quasidis-
crete spectrum. In Eq. (30), Ĥ0 is the Hamiltonian of the 1D
wire with the two barriers. The corresponding eigenfunctions
are given by

ψ±k (x, r⊥) = φ±k (x)ξ (r⊥)

with φ±k (x) given by Eqs. (13) and (14). The matrix elements
V±k of the tunneling operator V̂ are defined with respect
to these eigenfunctions. The function ξ (r⊥) depends on the
coordinate transverse to the wire. The energy ε0 is the energy
of the discrete level located at position x = d with the cor-
responding wave function ϕ(x, r⊥). The functions ψ±k (x, r⊥)
and ϕ(x, r⊥) are orthogonal to each other because of a zero
overlap in the transverse direction.

Let us first analyze the case of symmetric setup with
equal barriers characterized by η. For a symmetric pointlike
tunneling operator V̂ and the Fano state located at position
x = d , the coupling to left- and right-moving waves is given
by

V+k = V [a+(k) cos(kd ) + a−(k) sin(kd )], (31)

V−k = V [a+(k) cos(kd ) − a−(k) sin(kd )]. (32)

Here, a+(k) and a−(k) are given by Eqs. (18) and (19) and V
is a constant characterizing the strength of tunneling.

The equation for the eigenfunctions �+k of the full Hamil-
tonian, corresponding to electrons moving through the system
from left to right, can be written as

�+k (x, r⊥) = ψ+k (x, r⊥)

+
∫

Gk (x, r⊥; x′, r′
⊥)V̂ �+k (x′, r′

⊥)dx′dr′
⊥.

(33)

Here, Gk (x, r⊥; x′, r′
⊥) is the Green’s function of the operator

H0 + ε0|ϕ〉〈ϕ|.
To solve the self-consistent equation for the right-moving

function Eq. (33), we expand the full function of the system in
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terms of the eigenfunctions of the Hamiltonian without cou-
pling. With the orthogonality of the functions ψ−k,+k (x, r⊥)
and ϕ(x, r⊥), we obtain (for brevity, we suppress the argu-
ments x, r⊥ in all eigenfuctions)

�+k = ψ+k + V−k

Ek − ε0 − (k)
ϕ

+ V ∗
+k

Ek − ε0 − (k)

∫ ∞

0
dk′ V+k′ψ+k′ + V−k′ψ−k′

Ek − Ek′ + i0
(34)

with the self-energy

(k) =
∫ ∞

0
dk′ |V+k′ |2 + |V−k′ |2

Ek − Ek′ + i0
. (35)

The real part of the self-energy, which is given by the
principal-value integral, determines the position of the shifted
resonance, ε′

0(k) = ε0 + δε0(k), where

δε0(k) = −−
∫ ∞

0
dk′ |V+k′ |2 + |V−k′ |2

Ek − Ek′ + i0
. (36)

The imaginary part, as usual, describes the broadening of the
Fano state,

�(k) = πm

k
(|V+k|2 + |V−k|2). (37)

We are now prepared to calculate the transmission amplitude
tBFB for the barrier-Fano-barrier (BFB) structure (Fig. 2),
which is done in the following section.

B. Transmission coefficient

We evaluate the integrals in Eq. (34) at the pole of the
denominator, since the other contributions decrease strongly
with x. The amplitude of the outgoing wave for x � L defines
the transmission amplitude for the whole BFB structure:

tBFB(k)= tBB(k)− 2iπm

k

|V+k|2tBB(k) − V−kV ∗
+krBB(k)

Ek − ε′
0(k) + i�(k)

.

(38)

Here tBB [coming from ψ+k and ψ+k′ in Eq. (34)] and rBB

(coming from ψ−k′ ) are the transmission and reflection coef-
ficients of the double-barrier structure given by Eqs. (20) and
(21), respectively.

Using Eqs. (31) and (32), we express the tunneling matrix
elements in Eqs. (37) and (38) explicitly through the functions
a±(k) from Eqs. (18) and (19). Next, combining the terms
proportional to tBB, we use the identity that follows from
Eqs. (20) and (21),

tBB(k)Re{a+(k)a∗
−(k)} = irBB(k)Im{a+(k)a∗

−(k)}, (39)

to rewrite Eq. (38), leading to

tBFB(k) = [Ek − ε0 − δε0(k)]tBB(k) − i�0(k)[|a+(k)|2 cos2(kd ) − |a−(k)|2 sin2(kd )]rBB

Ek − ε0 − δε0(k) + i�0(k)[|a+(k)|2 cos2(kd ) + |a−(k)|2 sin2(kd )]
, (40)

where we have introduced �0(k) = 2πm|V |2/k. Expressing the shifted resonance energy as

δε0(k) = |V |2−−
∫ ∞

0
dk′ |a+(k′)|2 cos2(k′d ) + |a−(k′)|2 sin2(k′d )

Ek − Ek′
, (41)

we use the following exact relations for the real and imaginary
parts of the fractions of a+(k) and a−(k):

Re
a+(k)

a−(k)
= −i|a+(k)|2 rBB

tBB
, Im

a+(k)

a−(k)
= −|a+(k)|2,

(42)

Re
a−(k)

a+(k)
= −i|a−(k)|2 rBB

tBB
, Im

a−(k)

a+(k)
= |a−(k)|2.

(43)

We can now directly evaluate the principal-value integral (41)
via the Kramers-Kronig relation,

Re F (x)
K.K.= 2

π
−−
∫ ∞

0

t ImF (t )

t2 − x2
dt . (44)

Applying this to Eq. (41) results in

−−
∫ ∞

0
dk′ |a+(k′)|2

Ek − E ′
k

= −−−
∫ ∞

0
dk′ k′

Ek − E ′
k

Im
a+(k′)

k′a−(k′)

K.K.= − πm Re
a+(k)

ka−(k)
= i

πm

k
|a+(k)|2 rBB

tBB
, (45)

and, similarly,

−−
∫ ∞

0
dk′ |a−(k′)|2

Ek − E ′
k

= −i
πm

k
|a−(k)|2 rBB

tBB
. (46)

The transmission amplitude can then be expressed in a very
compact form, reading

tBFB(k) = Ek − ε0

Ek − ε0 − (k)
tBB(k) (47)

with

(k) = �0

[
a+(k)

a−(k)
cos2(kd ) − a−(k)

a+(k)
sin2(kd )

]
. (48)

The transmission coefficient TBFB(k) = |tBFB(k)|2 thus reads

TBFB(k) = (Ek − ε0)2TBB(k)

[Ek − ε0 − Re(k)]2 + [Im(k)]2 . (49)

Note that, somewhat surprisingly, the transmission coef-
ficient TBFB is exactly zero at the original energy ε0 of the
Fano state, despite the fact that the matrix elements of the tun-
neling coupling between the localized state and the wire are
now momentum dependent. In a continuum spectrum, such a
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FIG. 3. Upper panel: Schematic illustration of the setup with
a 1D channel coupled to the leads by tunneling barriers in the
presence of a Fano state. Lower panel: Transmission coefficient for
this setup as a function of the carrier energy Ek for a nanowire
(NW) with symmetric barriers and strong coupling to the Fano state
(located at d/L = 0.6). The red curve shows the transmission TBFB

for the structure with barriers and a Fano state; the black one is for
two barriers without the Fano state (TBB). The chosen parameters
roughly correspond to those in the experimental setup of Ref. [10].
The energy of the localized state is ε0 = 50 meV; the transmission
coefficients across the contacts to the leads are characterized by the
broadening of size-quantized levels at the Fermi energy, ηR = ηL =
3.16 meV; the hybridization of conducting electrons with the Fano
state is characterized by �0 = 30 meV.

momentum dependence leads to the shift of the energy where
the transmission coefficient vanishes [see Eqs. (5) and (7)].
At the same time, the resonance energy in the denominator
is shifted from the value ε0, similarly to Eqs. (5) and (7) for
the momentum-dependent coupling. This asymmetry between
the numerator and denominator in Eq. (49), introduced by the
combination of the Fano destructive interference and the level
quantization, is a distinct feature of the double-barrier Fano
setup.

The result (49) is illustrated in Figs. 3 and 4. For a strong
coupling of the Fano state to the wire, when the Fano-state
broadening exceeds the level spacing in the double-barrier
setup, �0 � � = En − En−1 (where En, En−1 are the levels
around ε0), the transmission is suppressed in the region of
energies (ε0 − �0, ε0 + �0), similarly to the case without
barriers (Sec. II A). For sufficiently weak barriers, TR,L ∼ 1,
the only difference compared with the continuum case is in
the modulation of the transmission coefficient by the double-
barrier resonances. These resonances for equal barriers are
now not perfect, in contrast to the case without the Fano state
(Sec. II B).

Remarkably, for strong barriers, TR,L � 1, narrow reso-
nances appear through an interplay of the Fano interference
and the size quantization of the spectrum in the double-barrier
structure (see Fig. 4). In the following section, we will analyze
this phenomenon in detail.

FIG. 4. Transmission coefficient of the double-barrier setup as
a function of the carrier energy Ek for symmetric barriers and the
energy of Fano state located in the region of low energies, where the
barriers are strong. The green curve shows the transmission TBFB for
the structure with barriers and the Fano state; the black one shows the
transmission for two barriers without the side-attached state (TBB).
The hybridization of conducting electrons with the Fano state located
at d/L = 0.2 is characterized by �0 = 1 meV; the energy of the
localized state is ε0 = 5 meV; the transmission coefficients across
the contacts to the leads are the same as in Fig. 3.

IV. EMERGENT RESONANCE

A. Equal barriers

We start with the case of equal barriers considered in the
previous section. We assume that TR = TL � 1, otherwise the
transmission coefficient TBFB is similar to that without barriers
(continuum spectrum). In Fig. 4, we show the transmission
coefficient of the barrier-Fano-barrier structure with the same
parameters of the barriers as in Fig. 3, but with the energy of
Fano state located in the region of low energies where barriers
are sufficiently strong (ε0 = 5 meV instead of 50 meV). As
we see from Fig. 4, in the wire with quasidiscrete levels, a
narrow resonance emerges in the vicinity of the energy ε0

of the localized state where the transmission is strictly zero.
Below we will determine the conditions for the emergence of
a resonance and analyze its properties.

It is instructive to compare the structure of the obtained
transmission coefficient TBFB, Eq. (49), with that of the con-
ventional Fano resonance, Eq. (3). Both expressions describe
an asymmetric line shape, with both a zero and a maximum
present. However, as already emphasized above, TBFB is ex-
actly zero at the original position of the resonant level ε0. At
the same time, at any finite q in Eq. (3), the zero is shifted from
ε0 in the conventional case. Thus, the combined effect of the
Fano interference and the size quantization of the spectrum
substantially modifies the conventional result (3).

From Eq. (49), we see that the position of the resonance is
given by the condition

Ek = ε0 + Re(k), (50)

as in the conventional Breit-Wigner formula, and the width of
the resonance is determined by Im(k). Thus, both the posi-
tion and the width of the resonance depend on the momentum.
For small �0 � �, the value of the momentum in (k) can
be approximated by the momentum corresponding to that of
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FIG. 5. Transmission coefficient for a symmetric double-barrier
structure (red curve) and the height of the Breit-Wigner resonances,
Eq. (54), for the position of the Fano state at d/L = 0.2 (dark-blue
curve) and the barrier strength ηL = 40π .

the Fano state k0. This further implies that the height of the
resonance is given by (see Fig. 5)

TBFB,res = TBB
[Re(k)]2

[Im(k)]2

∣∣∣∣
k=k0

. (51)

For equal barriers, this formula takes the form

TBFB,res =RBB

×
[ |a+(k)|2 cos2(kd ) − |a−(k)|2 sin2(kd )

|a+(k)|2 cos2(kd ) + |a−(k)|2 sin2(kd )

]2
∣∣∣∣∣
k=k0

.

(52)

This shows that in the fully symmetric setup, when the Fano
state is coupled to the middle of the segment between the
barriers, d = 0, the height of the peak is given by the reflection
coefficient of the double-barrier system:

TBFB,res = RBB, d = 0. (53)

It is clearly seen that for strong barriers, η � k, the trans-
mission coefficient can be very close to unity in the energy
window where the transmission through the double-barrier
system is suppressed by the destructive interference of waves
reflected from the barriers.

The height of the resonant peak for an arbitrary position
of the side-attached state can be approximated for strong
barriers, η � k (and keeping |a+|, |a−| � 1), as

TBFB,res = RBB

[
cos(2kL) − cos(2kd )

cos(2kL) cos(2kd ) − 1

]2
∣∣∣∣∣
k=k0

, (54)

defining the momenta where only the antiresonances can
appear. Thus, for equal strong barriers, the transmission coef-
ficient at the resonance can reach unity (perfect transmission).
The corresponding width of the resonance is given by

�res = −Im(k0)

= �0
k2

η2

[
cos2(k0d )

cos2(k0L)
+ sin2(k0d )

sin2(k0L)

]
∼ �0

√
TBB, (55)

and can be much smaller than the width of the Breit-Wigner
peaks in the transmission coefficient TBB (Fig. 5).

B. General case

Importantly, a narrow resonant peak with an almost perfect
transmission also emerges for an asymmetric double-barrier
setup. In this case, the transmission coefficient TBB for the
system without a Fano state is governed by the asymmetry of
the structure and thus can be arbitrarily small for all energies
[see Eqs. (26) and (29)]. However, even in this case, the
presence of the Fano state can lead to a strong resonance with
the transmission coefficient that can be again of the order of
unity.

The expression for the transmission amplitude is given by
Eq. (47), with tBB(k) from Eq. (24) and (k) defined as

asym(k) = 2�0

al+ar− + al−ar+
[ar+al+ cos2(kd ) − ar−al−

sin2(kd )+(al+ar−− al−ar+) cos(kd ) sin(kd )].

(56)

Here, ar± and al± are defined in Eqs. (15) and (16). In the limit
of the equal barriers, the result for the self-energy for the equal
barriers, Eq. (48), is recovered. The result for the transmission
amplitude tBFB can be cast in a compact form through the
reflection and transmission amplitudes of individual barriers
(here the transmission from left to right is assumed):

tBFB = (Ek − ε0) tBB

Ek − ε0 + i�0
[1+rLe2ik(L+d )][1+rRe2ik(L−d )]

1−rLrRe4ikL

. (57)

For an alternative derivation (based on the scattering-matrix
approach) of the general formula for TBFB, see Ref. [21]. It
follows directly from Eq. (57) that the emergence of the Fano-
induced resonance requires that at least one of the barriers
is strong (Tmin � 1). When the second barrier is weak, the
situation is similar to that described in Sec. II C (see also the
Appendix). When both barriers are strong, the spectrum of
the structure is quasidiscrete. In what follows, we analyze the
transmission through the whole structure under this condition.

The emergent resonances for an asymmetric strong-barrier
setup are shown in Fig. 6 for weak and strong coupling
between the wire and the Fano state. We observe that strong
narrow resonances emerge for an arbitrary tunneling coupling
between the Fano state. For weak coupling [Fig. 6(a)], the
emergent resonance is located close to the Fano-state energy
ε0, while away from ε0 the transmission through the structure
is almost not affected by the Fano state. In the opposite limit
[Fig. 6(b)], several new peaks emerge within the energy win-
dow (ε0 − �0, ε0 + �0), while the peaks in TBB in this window
are suppressed by the presence of the side-attached state.
Indeed, as we demonstrate in the Appendix, the emergent
resonances correspond to energies Ek obeying the relation
Ek � ε0 − �0 cos(2kd ). For �0 � �, there is only one solu-
tion for Ek that satisfies Eq. (A6), whereas for �0 � � there
are many emergent resonances.

The analysis presented in the Appendix yields Eq. (A7)
away from the quantization levels of the double-barrier system
without the Fano state. This formula shows that the resonance
width (defined as the width of the peak at the half of the
height) is given by

�res ∼ min[�0,�]Tmin. (58)
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FIG. 6. Transmission coefficient for asymmetric double-barrier
structures without (blue dashed line) and with (red line) a Fano
state for weak [�0 � �, panel (a)] and strong [�0 � �, panel
(b)] coupling between the wire and the Fano state. In both panels,
k0L = 5.4, ηLL = 30, and ηRL = 250. Panel (a): �0mL2/h̄2 = 0.1
and d = 0.45L. Panel (b): �0mL2/h̄2 = 100 and d = 0.3L.

Here Tmin and Tmax are the transmission coefficients of the
individual barriers [see Eq. (28)]. For equal barriers, Eq. (58)
can be written through TBB, as in Eq. (55).

Using TBB ≈ TLTR/[4 sin2(2kL)] away from the reso-
nances in TBB and Eq. (A8) from the Appendix, we express the
transmission coefficient at the emergent resonance as follows:

TBFB,res ≈ TLTR

×
{

2 sin[kres(L−d )] sin[kres(L+d )]

TL sin2[kres(L−d )] + TR sin2[kres(L+d )]

}2

.

(59)

Here kres is found from the minimum of the denominator of
Eq. (A7).

Let us now focus on the case of weak coupling (�0 �
�), where, according to Eq. (A6), one can set kres → k0. A
resonance with the height of order of unity can be then found
around the lines

k0(L ± d ) � πn. (60)

Note that exactly on those lines the height of the emergent
resonance vanishes, but quickly becomes of the order of unity
in close vicinity of the lines (the resonant region is determined
by TR,L). Specifically, the position of the Fano center should

FIG. 7. The contour plot displaying the height of the resonance
in terms of the position of the Fano state d/L and the momentum of
the Fano state k0 evaluated numerically (a) with the exact formula
and (b) with the approximation (51). The barriers are characterized
by ηLL = 10, ηRL = 50, and the coupling strength for tunneling
between the Fano state and the wire is �0 = h̄2/mL2.

be adjusted with the accuracy

δd ∼ (1/k0)
√
Tmin/Tmax (61)

to obtain the height of the order of unity.
Both the height and width of the emergent resonance

oscillate with varying k, k0, d , and L. This is demonstrated
in Fig. 7 where the height of the resonance is displayed in
a contour plot in terms of the position of the Fano state d
and the momentum of the Fano state k0. Specifically, Fig. 7(a)
shows the numerically obtained height of the resonance and
Fig. 7(b) illustrates the validity of approximation (51). In these
plots, we clearly see the zeros of TBFB along the positions
of resonances in TBB, as well as along the curves defined
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FIG. 8. Transmission coefficient for the asymmetric double-
barrier structure at intermediate coupling (�0 ∼ �) without (blue
dashed curve) and with (red curve) a Fano state located at d = 0.4L
with the level at k0L = 5. The barriers are characterized by ηLL =
10, ηRL = 50 and the coupling strength for tunneling between the
Fano state and the wire is �0 = h̄2/2mL2 (same barriers and coupling
as in Fig. 7).

by Eq. (60), where the real part of the self-energy vanishes.
The regions of maxima in TBFB (dark-red regions), where the
strongest transparency enhancement occurs, are located in the
vicinity of these curves. An example of the TBFB profile at
the point in this plane corresponding to a strong emergent
resonance (d = 0.49L, k0L = 5.6) is shown in Fig. 8.

For the parameters chosen in Fig. 7 and the presented range
of k, the maximum values of the transmission coefficient
without the Fano state, TBB, range from 0.16 to 0.4. The height
of the emergent resonance in TBFB exceeds the peaks in TBB in
approximately a half of the area of the shown parameter plane.
In general, the region where the height of emergent resonance
is not smaller than the height of resonances in TBB is always
comparable to the total area in the parameter plane. Indeed,
for a fixed value of k0L, Eq. (59) yields a magnitude of the
resonance of the order of TBB multiplied by a function of d
constructed out of trigonometric functions.

The probability of finding a strong resonance of order
unity (the area of red areas in Fig. 7) can be estimated as
follows. There is a periodic dependence on k0L in Eq. (59).
The width of each red area is δk0L ∼ 1 and the height is δd/L ∼
(1/k0L)

√
Tmin/Tmax [see Eq. (61)]. Thus, the probability of

having a strong resonance is given by
√
Tmin/Tmax. With

increasing asymmetry between the barriers, this area shrinks,
but the height of the resonances in TBB also decreases. As a
result, the height of the emergent resonances in TBFB typically
competes with the height of resonances in TBB, and exceeds
the latter in roughly half of the parameter range, as discussed
above.

Given that the transmission at all other energies is sup-
pressed by the asymmetry of the setup, the resonances shown
in Fig. 6 can be employed for the narrow-band filtering of the
electronic waves. Since the position of the resonance is deter-
mined by the Fano-state energy, such a transport filter is tun-
able by electrostatic gates. In contrast to the tunneling through
the localized state, almost perfect transmission through the
structure does not require fine-tuning the symmetry of the

setup. The height of the transmission peak can be additionally
controlled by changing the location of the side-attached state.

V. CONCLUSION

In this paper, we have shown that the conventional pic-
ture of resonant tunneling across a double-barrier structure
is strongly modified by a Fano state side-attached between
the barriers. When at least one of the barriers is strong, the
presence of the Fano state may lead to the emergence of
narrow strong resonances. The width and height of emergent
resonances depend on the energy and position of the Fano
state, the strength of the coupling between the wire and the
Fano center, the strength of the barriers, and the distance
between them. For the tunnel barriers inducing a quasidis-
crete spectrum, in the case of weak coupling to the Fano
state there is a single emergent resonance located near the
Fano-state energy. For strong coupling, there may emerge
several resonances with the heights of the order of unity.
For an asymmetric setup with strong nonequal barriers, the
transmission coefficient of the double-barrier structure is sup-
pressed even at quantization levels of the double-barrier struc-
ture, but an almost perfect transmission may occur through
the structure with a side-attached state. This phenomenon of
the transmission enhancement by the Fano antiresonance can
be employed for the “transport filtering” of monochromatic
waves in electronic, optical, or microwave applications.

ACKNOWLEDGMENTS

We are grateful to N. S. Averkiev, S. Klyatskaya, M.
Ruben, and W. Wernsdorfer for useful discussions. We ac-
knowledge collaboration with P. Shmakov at the early stage
of this work. The research was supported by the Russian
Science Foundation (Grant No. 17-12-01182 c; analytical cal-
culations), the Russian Foundation for Basic Research (Grant
No. 18-02-01016), and by the Foundation for the advancement
of theoretical physics and mathematics “BASIS” (I.V.K.).

APPENDIX: SCATTERING-MATRIX APPROACH

In this Appendix, we calculate the transmission amplitude
across a double-barrier structure with a Fano center using
a scattering-matrix approach. The transmission amplitude is
obtained by a direct summation of the plain waves reflected
inside the structure. The barriers are located at x = ±L and
the Fano center is side-attached at x = d . Consider first a
combined scatterer formed by the left barrier and the Fano
state. For this scatterer, we obtain the transmission amplitude
tLF and the reflection amplitude rFL describing the plane wave
to the right of the Fano center:

tLF = tLtF eik(L+d )

1 − rLrF ei2k(L+d )
, (A1)

rFL = rF − rLr2
F ei2k(L+d ) + rLt2

F ei2k(L+d )

1 − rLrF ei2k(L+d )
. (A2)

Now, we can obtain the transmission amplitude across the
whole (left barrier–Fano–right barrier) structure by replacing
the left barrier and the Fano center with the effective complex
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scatterer characterized by the scattering amplitudes (A1) and (A2):

tLFR = tLFtReik(L−d )

1 − rLrFLei2k(L−d )
= tLtF tRei2kL

1 − rRrF ei2k(L+d ) − rRrF ei2k(L−d ) − rRrL
(
t2
F − r2

F

)
ei4kL

. (A3)

Using the relation between the transmission and reflection amplitudes for the pointlike scatterer, tF − rF = 1, we write

tLFR = tLtF tRei2kL

1 − rLrF ei2k(L+d ) − rRrF ei2k(L−d ) − rLrRei4kL − 2rLrRrF ei4kL
. (A4)

After straightforward algebra, we arrive at Eq. (57) of the main text.
We can simplify Eq. (57) for strong barriers, TL, TR � 1, and far from the quantization level of the double-barrier structure

|k − kn|L � TL + TR [see Eq. (26)]. To gain intuition about the structure of tLFR, we replace ei4kL → −1 in Eq. (57), assume
|tR,L| � 1, and use the relation rR,L = 1 − tR,L valid for δ barriers. This results in a simplified expression (we do not give the
explicit expression for the broadening γ here, as it is not important for finding the position of the resonance):

tLFR � (Ek − ε0)tBB

Ek − ε0 + �0 cos(2kd ) + iγ
, γ � �0. (A5)

This yields the relation

Ek � ε0 − �0 cos(2kd ) (A6)

for the energy of the emergent resonances. Depending on the relation between �0 and the level spacing of the double-barrier
structure �, this relation yields one (small �0) or many solutions.

Returning to Eq. (57) away from the resonances in TBB, we write

TBFB ≈ (Ek − ε0)2TBB{
Ek − ε0 − �0

2 sin[k(L−d )] sin[k(L+d )]
sin(2kL)

}2
+ �2

0

{
TL sin2[k(L−d )]+TR sin2[k(L+d )]

2 sin2(2kL)

}2 . (A7)

Here we have neglected, for simplicity, the phases of the reflection amplitudes of the barriers (they can be incorporated into the
redefinition of L and d), assuming the delta barriers. The transmission coefficient at the emergent resonance reads

TBFB,res ≈ TBB

{
4 sin[k(L − d )] sin[k(L + d )] sin(2kL)

TL sin2[k(L − d )] + TR sin2[k(L + d )]

}2
∣∣∣∣∣
k=kres

, (A8)

where kres corresponds to a maximum of TBFB in Eq. (A7). This representation of TBFB,res leads to Eq. (59), and allows us to
estimate the conditions (60) and (61) for the emergence of the resonance presented in Sec. IV of the main text.

Finally, returning to Eq. (A3), we set rR = 0, tR = 1, rL = rB, and tL = tB to get the transmission amplitude for the single-
barrier setup discussed in Sec. II C:

tBF = tBtF ei2kL

1 − rBrF ei2k(L+d )
. (A9)

With tF and rF from Eqs. (5) and (6), this becomes

tBF = Ek − ε0

Ek − ε0 − 2π im
k |V |2(1 + rBe4ikL )

tB. (A10)
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