
PHYSICAL REVIEW B 101, 245421 (2020)

Fluorescence quenching by plasmonic nanoantennas
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Generalizing a previously developed analytical model of metal-enhanced fluorescence to the case of the strong
coupling between a quantum emitter and a plasmonic nanoantenna, we study the fluorescence quenching in the
strong coupling regime. When the nanoantenna is a simple Ag sphere and the quantum emitter approaches to
its surface the fluorescence turns suppressed (both dipole and quadrupole moments of the system vanish) in the
whole spectral range. However, if the nanoantenna is a plasmonic dimer with a tiny gap between two plasmonic
nanoparticles, and the coupling grows due to the increase of the emitter dipole moment, the fluorescence
quenching never occurs. This unexpected result explains why the nanolaser regime can be achieved with these
nanoantennas, whereas a simple nanosphere coupled to quantum emitters can be a spaser.
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I. INTRODUCTION

Fluorescence quenching (see, e.g., in Ref. [1]) is an im-
portant destructive factor in a powerful technique of optical
nanosensing called metal-enhanced fluorescence, sometimes
also called plasmon-controlled fluorescence [2–5]. The dy-
namic fluorescence quenching arises when the near-field cou-
pling between a plasmonic nanoantenna (PNA) and quantum
emitters (QEs) exceeds a certain critical value [2–7]. Enhance-
ment of the fluorescence of such QEs as organic molecules
and quantum dots in the presence of a PNA is referred as
the Purcell effect and described by the radiative Purcell factor
larger than unity [2,8]. The maximal enhancement is granted
when the coupling is sufficient but still rather weak [2,9–
11]. A gradual increase of the coupling of a QE and a PNA
reshapes the fluorescence spectrum, decreases the radiative
Purcell factor compared to its resonant value evaluated for
the optimal coupling and, finally, results in a decrease of
the fluorescence due to the PNA presence [3,4]. Then the
radiative Purcell factor turns smaller than unity in the whole
fluorescence spectrum [5,13]. This decrease as a function of
the coupling parameter (proportional to the Rabi frequency
shift in the regime of the strong coupling) occurs very fast and,
therefore, can be considered as a threshold effect [3–5,12,13].
This is the reason why this suppression of fluorescence is
called quenching.

This quenching is a prerequisite for generation of a coher-
ent localized surface plasmon in a PNA [14–16]. The system
in which the plasmon is generated is called spaser [17–19]. In
accordance to [14–16], the spaser regime corresponds not only
to a sufficiently high emission level but also to nonradiative
transfer of the emitted power into PNA. This is possible if the
total polarization of the system is negligibly small and the sys-
tem does not radiate into ambient. In this linear regime, before
the nonlinearity arises in the system, the emitted power accu-
mulates in the PNA in the form a growing plasmon oscillation.
Further, in the generation regime, this plasmon is restricted

by the nonlinearity and becomes coherent. Simultaneously,
a weak, almost isotropic and coherent emission arises and
a very narrow emission line substitutes the usual Lorentzian
line of the spontaneous fluorescence [17–19]. Spasers form
an interesting and practically important [14,19,20] direction
of nanophotonics. Therefore it is also important to understand
which types of PNAs are suitable for spasers and which types
are not.

In 2009, an experimental demonstrator of a spaser was
claimed for a primitive PNA performed as a plasmonic
nanosphere (PNS) covered with a shell of fluorescent
molecules separated a nanometer dielectric gap from the
PNS [19]. Here it is worth to notice that one fluorescent
molecule cannot grant a spaser – its fluorescence capacity
turns saturated when the pumping level grows (a fluorescent
QE is basically a two-level system that cannot simultaneously
radiate more than one photon). A sufficient amount N � 1 of
fluorescent molecules or quantum dots coupled to a PNS so
that their fluorescence quenches together with a sufficiently
strong pumping grant the spaser regime. Several examples of
spasers have been reported after it [19,20], and in all of them
the PNA was a PNS. Some scientists do not recognize these
these structures were spasers and attribute the observed effect
to amplified spontaneous emission. We do not aim to intervene
into this discussion and will simply show that with such a
PNA as a simple PNS the suppression of the fluorescence
is possible. Meanwhile, no one work is known where the
spaser operation would be claimed, at least theoretically, for
a good PNA such as a plasmonic bowtie, a plasmonic split-
ring resonator or a plasmonic oligomer. Here the term good
PNA refers to an antenna with very high radiative Purcell
factor (FP > 100) offered to an emitter located at the optimal
distance from the metal surface. This also means the very high
local intensity enhancement at the same distance (the math-
ematical identity of these two parameters of a PNA for the
unpolarized case was recently proved in Ref. [21]). Next, in all
available works about the dynamic fluorescence quenching,
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PNAs were similarly poor—simple nanospheres, nanodisks
or nanorods which grant a modest local field enhancement
(maximal FP is of the order of 10). So, for good PNAs both
the dynamic fluorescence quenching and the spaser operation
were, to our knowledge, never claimed. It is reasonable to
assume that there is some physics which prohibits the fluo-
rescence quenching for good PNAs and this is the reason why
they cannot operate as spasers.

In work [22], a semiclassical theory of a bowtie nanolaser
was developed. Let us stress that a nanolaser is not a spaser. It
is an analog of a usual laser whose resonator is a nanocavity—
nanogap of a bowtie nanoantenna. This was explained in [23]
where the possibility of generating the induced emission in
a bowtie PNA with quantum emitters in its gap had been
predicted prior to Ref. [22]. In the transition regime of a
nanolaser, the total polarization of the system grows in time
due to the plasmon-stimulated emission. In the steady regime,
the induced radiation of the nanolaser is dipole radiation. On
the contrary, in the transition regime of a spaser, a near-field
mode of the localized surface plasmon grows whereas the ra-
diation is fully suppressed. This is so because the polarization
of the plasmon generated in the PNA cancels out with the
polarization generated in the QEs. The induced radiation of
the spaser in the steady regime is nonzero, as well as that of
the nanolaser, but it is much weaker, not directive and refers
to a nonlinear regime, whereas the suppression of radiation
in a spaser refers to the linear, transient regime. In work
[24], the difference between the nanolaser and a spaser is
discussed in details. In an experimental implementation of a
nanocavity-based laser from work [25] the operation principle
is the same as in works [22–24]. Notice, that the regime of a
nanolaser demands a higher pumping than the regime of the
spaser [24] because the pumping should overcompensate the
radiation loss. Perhaps, this is the reason why the nanolaser
based on a single bowtie PNA has not been experimentally
demonstrated, yet. Meanwhile, nanolasers based on periodic
arrays of bow-tie PNAs and split-ring resonators were demon-
strated in works [26–28]. These radiating systems generate a
coherent light in the regime of the resonant far-field coupling
between PNAs. This regime is favorable for generation be-
cause such the electromagnetic coupling damps the scattering
by individual PNAs. So, differences between a spaser and
a nanolaser are major, and we think, that the name of a
lasing spaser employed in Ref. [27] for nanolasers is very
misleading. Sooner, they refer to a class of photonic-crystal
lasers [29].

In this paper, we present a possible explanation why a
good, efficient PNA cannot grant a spaser operation, whereas
a simple PNS or, generally speaking, a poor PNA can grant
it. We show on a very simple model that the dynamic fluores-
cence quenching does not occur for a good PNA (a plasmonic
dimer in our example), whereas for a simple PNS, it occurs
when the coupling exceeds a certain threshold. Thus, the
common belief that the fluorescence quenching occurs for
all PNA configurations is, in accordance to our model, not
correct. Briefly speaking, the fluorescence may quench only
if the surface plasmon is excited in a broad band, whereas a
good PNA is narrow-band. The details will be clarified below.
Thus the necessary condition of a spaser can be fulfilled
only for a poor PNA. It worth noticing here, in the avail-

able literature one may meet different terms for the dynamic
fluorescence quenching [1,3–5,12]—nonradiative Rabi oscil-
lations [15,16,18], nonradiative decay [7,13], nonradiative
energy transfer [30], and even Förster resonant energy transfer
(FRET) [31]. This variety only reflects a terminological mess,
it does not mean different physical mechanisms.

II. DIPOLE MODEL OF PLASMON-CONTROLLED
FLUORESCENCE

In 1948, T. Förster has considered the dipole interaction of
two molecules. One of them was a two-level QE, another was
a multilevel quantum system in which one of upper excited
states coincided with that of the first molecule. He has shown
that the strong dipole interaction when these molecules are
very close to one another results in the nonradiative decay of
the emitting molecule because the energy of the photon turns
out to be fully transferred to the second molecule where it
dissipates due to relaxation. In this regime, the total dipole
moment of the molecular dimer vanishes since the dipole
moments of two molecules cancel out. Later, this idea was
confirmed by quantum calculations and applied to the case
when the second molecule was replaced by a PNA (see,
e.g., Refs. [30,31]). In the initial model [32], the frequency
dispersion of the emitter dipole moment (d1(ω) in our nota-
tions) keeps unchanged when the gap between tow molecules
reduces. In this simplistic approximation, the FRET (NRET)
regime is identical to resonant wireless power transfer redis-
covered for radio frequencies in work [33]. Though semiclas-
sical models [3–5,12] take the spectral reshaping into account,
still classical models of the fluorescence quenching (see in
Refs. [6,7]) keeps the same d1(ω) when the QE approaches
to the PNS. Though the fluorescence quenching occurs for
a PNS in this simplistic model as well as it occurs in the
accurate semiclassical models and in the experiment, for other
plasmonic structures the applicability of this model is not
evident. In fact, the reshaping of the fluorescence spectrum
and the suppression of the system polarization both hold
when the coupling between the QE and the PNA grows.
These two processes are evidently competing. The dipole mo-
ment suppression is not uniform over the whole fluorescence
spectrum. When the optical transition frequency ω0 and the
plasmon resonance frequency coincide, this suppression is
maximal (complete) at ω0 but at the edges of the plasmon
resonance it is not complete. And the spectral line not simply
reshapes in the strong coupling regime—it experiences the
Rabi splitting and two local maxima of fluorescence move
apart from other another [15,16,18]). Thus, hypothetically,
a situation is possible when one of the frequencies of Rabi
oscillations, or both of them, turns outside the band in which
the FRET regime may hold. To take this hypothetical situation
into account, we either should use an accurate semiclassical
approach or, alternatively may use a simple classical approach
that would take the spectral reshaping into account. We prefer
the second way as simpler and more illustrative.

Such the classical model was suggested in work [34]. The
dipole-dipole interaction in this model is based on two basic

parameters—electromagnetic interaction coefficient A12 (in
the general case dyadic) and dyadic polarizability α2 of the
PNA. The polarizability relates its dipole moment d2 to the
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FIG. 1. Two structures under study: (a) QE 1 interacts with
PNS 2 being polarized normally to it and (b) QE 1 interacts with
plasmonic dimer 2 centering its nanogap.

local field E12 created by the QE at the effective center of the
PNA. This coefficient may take into account the nonunifor-
mity of the local field created by QE 1 in the area of PNA
2. The field nonuniformity can be taken into account by the
displacement of the effective center of the PNA with respect
to its geometrical center. Therefore, the point dipole may be
applicable for both QE and PNA even for quite small distances
between the QE and the metal surface. The most important
polarization case—when the polarization corresponds to the
strongest coupling of QE 1 with PNA 2—is the case when
the polarization of the QE is collinear with that of the PNA.
Figure 1(a) corresponds to a simplest PNA performed as
a PNS (Ag or Au nanosphere), panel (b) corresponds to a
PNA performed as a dimer of PNSs. For both geometries the
strongest coupling arises when the emitter is polarized along

x. Then the azimuthal symmetry yields tensors A12 and α2 to
scalar values A12 and α2, respectively. The polarizability α1

of the quantum emitter is, basically, known—its frequency
dispersion is Lorentzian and expressed through the optical
transition dipole moment d and frequency ω0 as follows [8]:

α1 = (2d2/h̄ω0)

1 − (ω/ω0)2 + jωγ1/ω
2
0

, (1)

where time dependence exp( jωt ) is chosen. For practical
fluorescent emitters, the dissipative losses are very low and
the damping parameter γ1 can be identified with the radiative
loss of the individual QE. This approximation in accordance
to [34,35] gives γ1 = (2d2/h̄ω0)ω2

0k2/6π . Here k = k0ε is the
wave number of the host medium of permittivity ε (for free
space assumed in the present paper as the ambient k = ω/c).
Dipole moment d (0)

1 of the emitter in absence of the PNA
is also a Lorentzian function of frequency whose resonance
frequency is ω0 and damping parameter is γ1 [8], i.e., d (0)

1 =
h̄ω0α1/2d .

In presence of PNA 2, described as a dipole scatterer, the
following solution for the total dipole moment dt of the system
was strictly obtained in Ref. [34] (see also Ref. [36]):

dt = d (0)
1

1 + α2A12

1 − α1α2A2
12

, (2)

where A12 represents the x-polarized electric field E12 pro-
duced by QE 1 at the effective center of PNA 2, divided by
the dipole moment d1 of the QE. Due to the reciprocity of the
structure, the same coefficient A21 = A12 describes the field
E21 produced by PNA 2 at the center of QE 1 to which d2 is

referred. If the PNA represents a PNS, as in Fig. 1(a), we may
use the low-frequency approximation for the dipole near field
and write A12 in the form

A12 = (1 + jkR)/2πε0εR3, (3)

where R is the distance from QE 1 to the effective center
of PNS 2. For PNSs (and spherical nanoshells) this simple
model was validated in by comparison with the numerical
simulations and the experiment for the cases when the when
the gap g exceeded 5 nm for PNSs and 3 nm for nanoshells. In
these cases the effective center of the spherical PNS turns out
to be its geometric center, i.e., R = a + g if the polarization of
1 and 2 is collinear (it is not so for the parallel polarization).

In the case when a = 20–50 nm and g � 5 nm the coupling
is rather weak for typical fluorophores such as PM 546
or rhodamine 123, whose matrix element d of the optical
transition does not exceed 10 D (see, e.g., in Ref. [37]).
Here and below complex permittivities εPNS of Ag and Au
are taken from [38]. As it is clear from (2), the level of
coupling depends on the dimensionless product α1A12. If
|α1α2||A12|2 � 1, the coupling is weak and we have dt =
d (0)

1 (1 + α2A12). In accordance to (1) and (3), for d = 10 D,
a = 30 nm and g = 0.2a = 6 nm at the frequency ω0 we
obtain |α2A12|2 � 1 but |α1α2||A12|2 � 1. This is so for both
Ag and Au nanospheres. The enhancement of fluorescence is
maximal in this regime. This enhancement is described by
the radiative Purcell factor FP ≡ Prad/P0 (here Prad is power
radiated by the system during the emission of one photon
and P0 is that radiated by individual QE 1). It is evident that
FP(ω0) = |dt (ω0)|2/|d (0)

1 (ω0)|2. Adopting d = 8.1 D—that of
rhodamine 123—in (1) and decreasing g we may simulate how
the system with a PNS of radius a = 20 nm and a rhodamine
molecule transfers from the regime of the weak coupling to
the strong coupling regime. During this gradual decrease of
g we may search the effective center of the PNS that in the
case of the strong coupling may shift towards the QE from the
geometric center of the sphere. Moreover, we may generalize
our dipole model, taking into account the quadrupole moment
q2 induced in the PNS (and higher multipoles if it is really
needed). Below we report such the study reducing g from
g = 10 nm up to g = 2 nm (further reduction is useless
because the tunneling effect arises for g, 1.5–2 nm [39] and
disables the model). Using exact numerical calculations we
retrieve the model parameters allowing us to simulate the
fluorescence quenching.

It worth noticing here that this study has shown nothing
qualitatively new. It has confirmed the known results of
the simplistic classical studies, accurate quantum modeling
and experiemnts. Namely, a simple PNS offers the fluo-
rescence suppression in the whole spectral rage when the
gap g decreases sufficiently—in our example it holds when
g < 2.5 nm.

However, another scenario of the transition from the weak
coupling to the strong one is also possible. It corresponds to
the gradual increase of d in the structure depicted in Fig. 1(b).
Here we adopt the same parameters as in Refs. [34,40]: Two
Ag nanospheres of radius a = 7 nm a nanogap 2g = 8 nm
between them centered by a QE. In work [34], where formula
(2) was first derived, both these PNSs were modelled by point
dipoles located at their centers. This model was validated by
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comparison with [40] for the case when QE 1 is a quantum dot
with d increasing from d = 3 D to d = 35 D. When d > 5 D
the fluorescence spectrum of this system noticeably reshapes
compared with the Lorentzian line. For d = 5–10 D the Fano
resonance arises, for d = 14–35 D, the Rabi oscillations are
seen in the simulated spectrum. The agreement of the simple
dipole model [34] with the results of [40] was very good.
However, fluorescence quenching at frequencies ω+ and ω−
of Rabi oscillations was not achieved in works [34,40], where
the values of d were restricted by d � 35 D. Frequencies ω+
and ω− are symmetrically distant by the Rabi frequency shift
� from the central frequency ω0. When we increase d [in
reality, it is the same as the increase of the amount of QEs
located in the nanogap of the PNA shown in Fig. 1(b)] we
increase ω+ − ω0 = ω0 − ω−. There is no guarantee that for
d � 35 D we must obtain the suppression of the fluorescence
at both these frequencies.

III. STRONG COUPLING OF AN EMITTER
WITH A PLASMONIC NANOSPHERE

In this section, we consider the first scenario of the strong
coupling—that corresponding to Fig. 1(a) with g gradually
reducing from 10 to 2 nm, whereas a = 20 nm. Unlike the
second scenario, brings nothing physically new, and we report
it as a reference case for better illustration of the claimed
result. Let us discuss the approximation adopted in this model.

A fluorescent molecule is smaller than 1–1.5 nm and for
the distance g > 2, we may consider it as a point dipole. As
to PNA 2, the local field E12(r) produced by QE 1 in its
area (local field is calculated in absence of PNS 2) is dis-
tributed nonuniformly over this area. However, it is possible
to integrate the polarization response caused by this local
field numerically—either via the known Green’s function of
the sphere or using the commercial simulator which both
allows us to find the true internal field of the sphere created
by the primary dipole d1 which is in this auxiliary study is
a fixed Hertzian dipole. Integrating the internal field with
corresponding weight functions we find a set of Cartesian
multipoles excited in the PNS at different frequencies by a
dispersion-free dipole d1. In the range of the dipole plasmon
resonance (820–850 THz) only the xx component of the
quadrupole moment is noticeable (see below), though the
quadrupole contribution into total polarization of the PNS is
much smaller than the dipole one.

Finding the dipole moment d2 and dividing it by A12(R)
given by (3) we find the polarizability α2 of the PNA for
an arbitrary located effective center xeff ≡ R of the dipole
d2. Initially, we locate it in the geometric center of the PNS.
Further, we find the local field E21 = A12(R)d2—that created
by the secondary dipole d2 at the point x = 0 (where dipole 1
is located) and compare it with the accurate result obtained by
the integration of the elemental fields created by the elemental
volumes of polarized PNS at the same point x = 0. This
comparison has shown no practical difference for g � 3 nm.
In other words, for the gaps larger than 2.5 nm the geometric
center of the PNS can be treated as its the effective center
and the impact of the quadrupole moment can be neglected.
However, for g = 2 nm we saw a significant difference, and
the change of R compared to R = a + g did not reduce it. This

is so because in this case the field E21 should comprise the
quadrupole component.

A. Dipole-and-quadrupole model of the strong coupling

Local field E12—that created by QE 1 at the effective center
of PNS 2 in absence of the last one—is equal E12 = A12d1,
where A12 is given by (3). Vice versa, local field E21—that
created by PNS 2 at the center of QE 1 in absence of the
last one—is equal E21 = A12d2 + B21q2, where q2 is the xx
component of the quadrupole moment referred to the effective
center of the sphere. That the effective center of PNS 2
practically does not shift from the geometric one even for
g = 2 nm, and both dipole and quadrupole moments can be
referred to the point xeff = a + g. B21 is the near field of a unit
quadrupole:

B21 = (3 + jkR)/8πε0εR4, (4)

where R = a + g as it is shown in Fig. 1(a). We calculated
the quadrupole tensor whose Cartesian components q(mn)

2 are
expressed via the mth and nth components of the bulk polar-
ization Px,y,z(r′) = ε0(εPNS − ε)Ex,y,z(r) as follows:

q(mn)
2 = 1

2

∫
V

(r′
mP2n + r′

nP2m) dV. (5)

Dipole 1 induces both dipole moment d2 and quadrupole
moment q2 by the same local field E12. Denoting the ratio of
the quadrupole polarizability β2 to the dipole polarizability α2

as κ , we may write

E21 = A12d2 + B21q2 = A21d2, A21 ≡ A12 + κB21. (6)

Thus, extension of the dipole model of Refs. [34,36] to the
present case yields to the seeming nonreciprocity in two
interaction factors—that describing the action of QE 1 to PNS
2 and that describing the backward action. Performing the
same steps as [34,36], we obtain

dt = d (0)
1

1 + α2A12

1 − α1α2A12A21
, (7)

q2 = d (0)
1

κα2A12

1 − α1α2A12A21
. (8)

Formula (8) represents the self-consistent solution for the
quadrupole of the sphere, and can be rewritten in a form
q2 = ξ (R)Rdt , where ξ (R) is a dimensionless coefficient

ξ (R) = κα2A12/R(1 + α2A12). (9)

Notice, however, that q2 is not total quadrupole moment of
the system which additionally to the quadrupole of the PNS
comprises two dipoles with the gap R between them. Let us
refer both dipole and quadrupole of the sphere to the center
of the QE. Dipole moment of a particle is covariant to the
origin. Quadrupole moment (Carteasin one) is not covariant
and changes after this shift [41]:

qnew
2 = q2 + Rd2 ≡ ξ (0)Rdt , (10)

where coefficient ξ (0) relates the total quadrupole moment
of the system to the total dipole moment, which in its turn
is proportional to the individual dipole moment of the emitter.
Really, total quadrupole moment qt of the system is equivalent
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FIG. 2. (a) Frequency dependence of A12 and A21 corresponding to the choice R = a + g for g = 2 nm. A12 is calculated using (3) and A21

is calculated either using (6) (thick red curves) or integrating the elemental dipole fields (thin red curves). (b) Dipole polarizabilities of the
PNS versus frequency for different g.

to qnew
2 because dipole d1 is referred to the same origin as qnew

2
and does not contribute into it. To calculate the quadrupole
moment of the system in this way is easier than to extract
d1 and d2 from the total dipole moment dt and calculate the
quadrupole moment resulting from the gap R between these
dipoles. Therefore ξ (0) shows the relative contribution of the
system quadrupole moment into radiation.

B. Retrieval of the model parameters

In Fig. 2(a), we show the frequency dispersion of the
coupling factors A12 and A21 corresponding to the choice
R = a + g for g = 2 nm. The coincidence of A21 calculated
using (6) with that calculated by integration of the ele-
mental dipole fields is not exact but the relative difference
between these two values is small and its mean value is
minimal for R = a + g. It means that even for g = 2 nm the
quadrupole moment of the PNS can be referred to its geo-
metric center as well as the dipole moment. The action of the
quadrupole is noticeable around at frequencies 850–880 THz
because the resonance frequency of q2 is equal 871 THz and
the resonance band is quite broad. In Fig. 2(b), we depict the
frequency dependencies of α2 for g = 2, 5, and 10 nm. The
case g = 10 nm correspond to the weak coupling (resonant FP

is nearly equal 30), whereas the case g = 2 nm corresponds
to the strong coupling (where FP � 1 in the whole spectrum).
However, the polarizabilities of the PNS in all cases are almost
the same as if the PNS was excited by a plane wave.

Then we find dimensionless quadrupole parameter ξ (R) =
κ/R, corresponding to the location of the system quadrupole
at the sphere center x = R and the similar parameter ξ (R),
corresponding to the location of the system quadrupole qnew

2
at x = 0. In Fig. 3, we see that at 834 THz—the frequency
of the dipole resonance of the localized plasmon—parameter
ξ (0) exactly nullifies. It accordance to (10) it means that at
the frequency of the dipole resonance the total quadrupole
moment of the system vanishes. Physically it means that the
quadrupole of the sphere cancels out with the quadrupole
corresponding to two dipole moments d1 and d2 separated by
the gap R.

C. Fluorescence in the case of overcritical coupling

Substituting parameters α2, A12 and A21 into formulas (7),
(10) and using (1), we calculate the frequency spectrum of
the total dipole moment dt of our system—rhodamine 123
molecule emitting at frequency 834 THz and PNS having the
dipole plasmon resonance at the same frequency (parameters
of Ag were taken from [38]). Next, using dt we calculate the
radiated power versus frequency using formula [41]

Prad = ηc2k4|dt |2
12π

(
1 + |qt |2

120|dt |2
)

= ηc2k4|dt |2
12π

(
1 + |ξ (x = 0)kR|2

120

)
, (11)

where η is wave impedance of the ambient. Formula (11)
does not contain the interference term and implies that our
quadrupole and dipole are mutually coherent and refer to
the same point. Using (11), we calculate also the frequency
dependent radiative Purcell factor FP ≡ Prad/P0 (here P0 =
ηc2k4|d (0)

1 |2/12π is the radiation power corresponding to the

FIG. 3. Frequency dependence of the quadrupole parameter ξ for
two choices of the quadrupole origin: Center of the sphere (x = R)
and center of dipole 1 (x = 0).
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FIG. 4. Radiative Purcell factor calculated at the maximum of the
spectral line as a function of the distance g between the emitter and
the nanosphere.

single photon emission by an individual molecule of rho-
damine. The gap for which the fluorescence enhancement
disappears, i.e., FP � 1 in the whole fluorescence spectrum
is g = 5 nm.

When g = 5 nm the fluorescence spectrum is not yet
reshaped, however, we already can refer this case as the
strong coupling. This result is the same as that of Ref. [42],
where the similar problem was solved for the same PNS using
the semicalssical model [43]. The difference of the problem
formulation was the coherent pumping adopted in Ref. [43]
which resulted in the Mollow triplet even for a single QE.
However, the bound of critical coupling when the effect of
enhanced total polarization of the system turns substituted by
the effect of reduced total polarization does not depend on
the pumping. It is a purely linear effect and the transition
from the Purcell effect to the quenching occurs smoothly.
For g < 5 nm (this case was not calculated in Ref. [42]), the
spectral line starts to reshape that can be treated as the feature
of the strong coupling. In this range of g, the radiative Purcell
factor decreases when the emitter approaches to the PNS.

The value F max
P , maximal over the spectral line, calculated

as the function of g is presented in Fig. 4. The absolute
maximum is achieved when the gap is equal 8 nm that corre-
sponds to the regime of the weak coupling. For 3 < g < 5 nm,

we have FP(ω0) < 5 whereas at the frequencies of the spec-
tral maxima 5 < FP(ω±) < 15. For g = 3 nm, two spectral
maxima which can be identified as the frequencies of Rabi
oscillations ω± = ω0 ± � arise in the emission spectrum. The
regime of Rabi oscillations when F max

P is still larger than unity
can be referred as that of the critical coupling. The interval
2.5 < g < 3 nm corresponds to 1 < F max

P < 5 and FP(ω−) ≈
FP(ω+) ≈ F max

P . When g = 2–2.5 nm the fluorescence is sup-
pressed, i.e., FP < 1 in the range covering both frequencies
of Rabi oscillations. This case can be referred as overcritical
coupling. In this regime, dipole moments d1 and d2 of the
emitter and the PNS compensate one another. Moreover,
the quadrupole of the PNS cancels out with the quadrupole
composed by two dipoles d1 and d2 = −d1 separated by the
gap R + g. No polarization in the system implies no radiation

FIG. 5. Frequency dispersion of the radiated power and Purcell
factor in the regime of fluorescence quenching.

from it in the whole fluorescence band. The value of the gap
g = 2.5 nm can be considered as a threshold of this regime.

In Fig. 5, we depict the radiative Purcell factor for g =
2 nm. Both dipole and quadrupole moments of the system
practically vanish at the same frequency ω0 [in our model
FP(ω0) ≈ 10−5 in this case]. The system very weakly radiates
not only at ω0, but also at both frequencies of Rabi oscillations
ω+ = 2π882 × 1012 rad/s and ω− = 2π808 × 1012 rad/s. In
our model, FP(ω+) ≈ 3.9 × 10−3 and FP(ω−) ≈ 3.2 × 10−3.
The fluorescence spectrum Prad(ω) results from the multipli-
cation of P0(ω) having the maximum at ω0 by FP(ω) having
the minimum at ω0. The curve Prad(ω) is shown in Fig. 5 in
arbitrary units so that to combine it with FP on the same plot.

Two local maxima of the fluorescence we observe in Fig. 5
at frequencies ω± are also the maxima of the system polariza-
tion. In our approximate model, it is not completely damped
but reduced drastically. Meanwhile, inside the system the Rabi
oscillations of the dipole moments d1 and d2 taken separately
are strong. These dipoles moments have the same magnitude
(which is much larger than |d (0)

1 (ω0)| because the nonradiative
Purcell factor at these frequencies is very high [44]) and
nearly opposite phases. This is the principal difference of the
Rabi oscillations in the strong coupling regime from usual
normal modes of two inductively (elastically) coupled circuits
(oscillators) where the higher normal mode is the opposite-
phase one and the lower mode is the in-phase one.

IV. STRONG COUPLING OF AN EMITTER
WITH A PLASMONIC DIMER

In the second scenario, corresponding to Fig. 1(b) the
coupling increases because d of QE 1 grows. In this case
(a = 7 nm, g = 4 nm), we did not need to search the effective
centers of the spheres—they are definitely located at their ge-
ometric centers. Instead, we performed two CST simulations
(CST meaning Computer Simulation Technology is a popular
commercial electromagnetic solver) of a plasmonic dimer of
spheres: (1) illuminated by a plane wave incident along y
with electric field polarized along x and (2) excited by a unit
Hertzian dipole centering the gap. From the first simulation,
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FIG. 6. (a) Frequency dependence of Aa
12 corresponding to formula (3) and An

21 corresponding to the CST simulations. (b) Dipole
polarizabilities of the PNA and QE (the latter one is multiplied by 10).

we found α2 as the ratio of d2 (doubled dipole moment of
one PNS) to the incident wave field in the plane y = 0. This
polarizability is strongly influenced by the mutual coupling of
two halves of our PNA and is different from that of a single
nanosphere (much larger resonance magnitude and large red
shift of the resonance). Then we found the field E21 produced
by the PNA at the origin subtracting the incident field from the
total one, and dividing this E21 by d2 we found the interaction
factor A21. From reciprocity, we have A21 = A12 because the
quadrupole moment of the PNSs is negligibly small. Thus we
may denote this retrieved A21 as An

12 and call it numerical
interaction factor.

From the simulation with the Hertzian dipole d1 = 1, we
found d2 and using An

12 calculated the polarizability of the
PNA corresponding to its excitation by a Hertzian dipole
α2 = d2/An

12. This polarizability turned out to be equal to that
corresponding to the plane-wave incidence with very high
accuracy. Notice, that the point dipole model of two PNSs
allows us to find A12 using formula (3) with R = a + g. This
value is denoted below Aa

12 and called analytical interaction
factor.

A. Retrieval of the model parameters

In Fig. 6(a), we depict the frequency dispersion of the
interaction factor A12, analytically calculated using (3) and
numerically simulated using the data of the plane-wave in-
cidence problem. These values match very well except a peak
of Im(An

21) having the maximum at the plasmon resonance
frequency 666 THz. However, this peak plays no important
role. In Fig. 6(b), we present the polarizability of the PNA
versus frequency retrieved from simulations with a Hertzian
dipole using An

21 extracted from simulations with a plane
wave. Its real part is affected by a numerical noise, that,
however, is not significant and keeps it numerically close to
the real part of Aa

21.
If we retrieve α2 from simulations with a Hertzian dipole

using Aa
12, the resonant dispersion of α2 becomes more smooth

compared to that depicted in Fig. 6(a), however, the maxima of
the real and imaginary parts do not change and the resonance

band keeps the same. For comparison, in Fig. 6(b), we also
show the polarizability of the QE for the case d = 80 D
calculated using (1) (physically this value of d corresponds
to a quantum dot whose transition dipole moment for the
same fluorescence frequency ω0 is proportional to its radius
[40]). In accordance to [36], this choice of d corresponds to
the slightly overcritical coupling. In this case, the condition
of the strong coupling |α1α2A2

12| > 1 holds over the whole
fluorescence spectrum of an individual QE. However, it is
enough to strongly damp the radiation at the frequencies of
Rabi oscillations.

B. Fluorescence at the frequencies of Rabi oscillations

Calculating the radiated power of the system, we used
formula (11) taking into account the quadrupole component
of the polarization corresponding to the distance 2a + 2g =
22 nm between the dipoles of the PNA. This quadrupole
radiation gives a very minor contribution, the dipole radiation
dominates. This radiation is not suppressed

In Fig. 7, we depict the Purcell factor and the fluorescence
spectrum (in arbitrary units) for d = 80 D. We can see that
the dip in the frequency dependence of the Purcell factor is
narrower than the interval between the frequencies of Rabi
oscillations ω+ and ω−. The fluorescence does not quench:
At ω+ = 2π676 × 1012 rad/s FP(ω+) ≈ 0.33 and at ω− =
2π657 × 1012 rad/s FP(ω−) ≈ 0.49. Why these values are so
large, if the relative interval between the frequencies of the
fluorescence (19/666 ≈ 3%) is triply smaller than that in the
previous scenario (74/834 ≈ 9%)?

The dimer PNA is fivefold more narrow-band than the PNS
(compare the polarizabilities in Figs. 2 and 6). Therefore, for
it this Rabi splitting though lower than that in the case of
a PNS corresponds to a stronger coupling. As a result, the
frequencies of the fluorescence for d = 80 D are located near
the edges of the plasmon resonance band. The fluorescence
is suppressed very well [FP(ω0) ∼ 10−7] in the center of the
spectral range, but near the edges of the spectral band it
is reduced weakly compared to that of the same quantum
dot in free space. This decrease holds only in the interval
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FIG. 7. Frequency dispersion of the radiated power and Purcell
factor in the regime of slightly overcritical coupling.

75 < d < 80 D. The dependence of F max
P on d—parameter

determining the level of coupling—is presented in Fig. 8. It
is done in the logarithmic scale because the PNA is much
more efficient than a simple PNS and grants, as we can see
on this figure, a very high radiative Purcell factor in the case
of the optimal coupling. For d > 80 D the Purcell factor at
the frequency ω− starts to grow again. In other words, the
PNA again enhances the fluorescence of a quantum dot, bit
the enhancement occurs at a red-shifted frequency, and this
frequency shift (�) grows versus d . For d = 100 D, we obtain
FP(ω−) ≈ 2—the same result as for d = 50 D.

So, for a dimer PNA in our model, there is no overcritical
coupling regime—no fluorescence quenching. A very strong
coupling either slightly decreases the fluorescence or even
increases it. Of course if an emitter approaches to one of two
nanoparticles forming our PNA it will experience the quench-
ing at a certain distance. However, in this geometry a cluster of
many QEs is located in the dimer antenna gap symmetrically.
For example, fluorescent molecules may completely fill in

FIG. 8. Radiative Purcell factor calculated at the maximum of
the spectral line as a function of the quantum dot transition dipole
moment d in Debyes.

the nanogap. Fluorescence quenching of the emitting cluster
centering the gap of a dimer PNA never happens (if our model
is correct). Notice that the transition dipole moments as high
as d = 80–100 D used in our numerical example, are not
feasible in a single quantum dot. Above, we have considered
these values conceptually, having in mind namely an array
of QEs that for simplicity of the model can be replaced by
a single emitter with huge d .

V. DISCUSSION AND CONCLUSIONS

If Rabi oscillations in our system keep radiative for what-
ever level of coupling it means that the prerequisite of the
spaser is not fulfilled [15,16]. Photons are emitted to ambient
instead of being fully converted into the localized plasmon,
and the generation of the last one is impossible. Two questions
should be discussed before we conclude this paper. Is our
result reliable enough? Is it a specific property of our PNA
or it should be a property of any good PNA?

Many scientists believe that the dynamic fluorescence
quenching is a fundamental property of any plasmonic con-
figuration, and it is difficult for them to accept our claims.
Really, in all known studies of the strong coupling between
a PNA and a QE the quenching was observed. However, as
it was already mentioned, all these studies referred to poor
PNAs—those which may grant the maximal value of FP of the
order of 5–20. An ultimate case of a poor PNA is a flat surface
of a plasmonic metal (maximal value of FP is 2) for which the
fluorescence quenching was shown in [45]. Though a metal
plane can hardly grant the spaser operation, this prerequisite
of the spaser is fulfilled for it. And it is not surprising be-
cause poor PNAs are broadband. The spread of their plasmon
resonance over the frequency axis is the condition of the
fluorescence quenching. Only if the resonance band is broad
both ω− = ω0 − � and ω+ = ω0 + � are located in this band
for whatever feasible coupling. A good PNA grants not only
narrowband plasmon resonance, it is narrowband as such, and
the band in which it grants the resonant energy transfer regime
is also narrow. This intrinsic narrow-band property means that
the fluorescence cannot be suppressed at both frequencies
ω− and ω+ whose difference is determined by the level of
the coupling and is not dependent on the plasmon resonance
bandwidth. For a good PNA, both these frequencies in the
regime of the strong coupling are located outside the band
of the localized surface plasmon and the emission turns out
to be weakly coupled to the plasmon. Instead of pumping
the plasmon, photons transferred to the PNA produce the
enhanced system polarization and the nanolaser becomes
possible.

Our result explains why a spaser can be experimentally re-
alized with a simple nanosphere, whereas a plasmonic bowtie
or a split-ring resonator granted rather efficient nanolasers.
Here it worth to repeat that a nanolaser and a spaser are
two very different generators of coherent oscillations. Spaser
generates the near field of a localized surface plasmon. In
the linear regime (precedent to the generation), its emitter
experiences the nonradiative decay. Nanolaser generates the
polarization which radiates also in the transition time. The
excitation of a plasmon in a PNA is not necessary for it.
The role of the plasmon resonance for a nanolaser is only
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formation of an effective cavity resonator in the gap of the
PNA [23]. The nanolaser can be implemented with an all-
dielectric nanoantenna as well.

Now, about reliability of our results. Within the frame-
work of classical electrodynamics our method is fully strict
if the dipole model is generalized to a full set of elec-
tric multipoles (magnetic multipoles are not excited in the
symmetric configurations of Fig. 1. For a set of multipoles,
formulas (7) and (8) are continued by the similar expression
for the octupole, etc., the interaction of a QE and a PNA
is described exactly—this is the same as to use the Green
function of the PNA. Then the difference of our model from
[6,7,32] is purely positive because we take the PNA feedback
into account, and these simplistic classical models do not.
This generalization of our dipole-and-quadrupole model is
easy. We have done it aiming to study substantially larger
PNSs. However, this study brings nothing scientifically new,
since PNSs with a � 20 are even more poor PNAs than the
PNS with a = 20 nm. So, we can consider our study above

as accurate enough within the framework of the classical
electrodynamics.

As to the validation of the classical model by a quantum
one, in Ref. [34], this has been already done. Namely for
this dimer PNA our model gave basically the same results
as the solution of the Maxwell-Bloch equations in Ref. [40].
The only difference is the dipole moment of the optical
transition in the quantum dot that is enlarged in the present
work from 35 D to 80–100 D. However, the regime under
discussion is linear. The increase of the initial dipole moment
of the QE can hardly disable a linear model if it is correct.
Perhaps, it is worthy to additionally check our result using
another quantum model—solving the Heisenberg-Langevin
equations of quantum motion. However, it is not so easy for a
plasmonic dimer. We hope, that the presented explanation of
the effect predicted by an accurate classical model justifies the
publication of this work as it is, and hope that the ideas of this
paper will be useful for the future development of nanolasers
and spasers.
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