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In a semiconductor, collective excitations of spin textures usually decay rather fast due to D’yakonov-Perel’
spin relaxation. The latter arises from spin-orbit coupling, which induces wave-vector (k) -dependent spin
rotations that, in conjunction with random disorder scattering, generate spin decoherence. However, symmetries
occurring under certain conditions can prevent the relaxation of particular homogeneous and inhomogeneous
spin textures. The inhomogeneous spin texture, referred to as a persistent spin helix, is especially appealing as it
enables us to manipulate the spin orientation while retaining a long spin lifetime. Recently, it was predicted that
such symmetries can be realized in zinc-blende two-dimensional electron gases if at least two growth-direction
Miller indices agree in modulus, and the coefficients of the Rashba and k-linear Dresselhaus spin-orbit couplings
are suitably matched [Kammermeier et al., Phys. Rev. Lett. 117, 236801 (2016)]. In the present paper, we
systematically analyze the impact of the symmetry-breaking k-cubic Dresselhaus spin-orbit coupling, which
generically coexists in these systems, on the stability of the emerging spin helices with respect to the growth
direction. We find that, as an interplay between orientation and strength of the effective magnetic field induced
by the k-cubic Dresselhaus terms, the spin relaxation is weakest for a low-symmetry growth direction that
can be well approximated by a [225] lattice vector. These quantum wells yield a 30% spin-helix lifetime
enhancement compared to [001]-oriented electron gases and, remarkably, require a negligible Rashba coefficient.
The rotation axis of the corresponding spin helix is only slightly tilted out of the quantum-well plane. This makes
the experimental study of the spin-helix dynamics readily accessible for conventional optical spin orientation
measurements where spins are excited and detected along the quantum-well growth direction.

DOI: 10.1103/PhysRevB.101.245417

I. INTRODUCTION

The quest to control electron spin in a solid has continued
to date to advance progress in modern information technology
[1–3]. A series of potential future spintronic devices have been
established, including spin transistors [4,5], all-spin logic
gates [6–8], spin memories [9,10], and spin lasers [11–15].
Especially for spin transistors, one usual fundamental re-
quirement is the precise and reliable manipulation of spin
orientation and lifetime. In semiconductors, the spin-orbit
(SO) coupling generates an effective magnetic field �, called
SO field, which enables coherent control of the electron spin.
At the same time, the SO coupling induces the detrimental
effect of spin decoherence via an efficient process known as
D’yakonov-Perel’ (DP) spin relaxation [16]. The origin of this
effect lies in the wave-vector (k) dependence of the SO field
together with the presence of disorder. Collisions of the spin
carriers with impurities, phonons, or other carriers change the
wave vector and thereby the spin precession axis uncontrol-
lably, which leads to randomization of the spins. A way to
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overcome this problem is the realization of special symmetries
that allow the emergence of persistent spin textures, as was
found in electron and hole gases for appropriately tuned
Rashba [17,18] and Dresselhaus [19] SO strengths, strain, or
curvature radius in tubular systems [20–28]. In general, this
symmetry becomes manifest in a SO field that is collinear
in k-space and in spin-split circular Fermi contours ε± that
are related to each other by a shift of a constant wave vector
±Q, i.e., ε−(k) = ε+(k + Q) [21]. The collinearity of the SO
field preserves any parallel-oriented homogeneous spin tex-
ture. The second characteristic is associated with a new type
of exact SU(2) spin-rotation symmetry of the Hamiltonian
that allows for a full representation of the Lie algebra su(2)
[21,29]. It is fulfilled when the SO field consists of first an-
gular harmonics in the wave vector and ensures that the spins
undergo a well-defined spin precession that is independent of
the propagated path and, thus, robust against k-randomizing
disorder scattering [20,25]. This property allows the existence
of an additional inhomogeneous spin texture, which due to
their spiral structure is known as a persistent spin helix
(PSH) [21]. As a decisive advantage over a homogeneous
texture, the PSH facilitates a controllable spin precession over
long distances. It also entails numerous distinctive features
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in quantum transport that support experimental investigations
[29–37].

In planar two-dimensional electron gases (2DEGs) with
a zinc-blende structure, the existence of a PSH is well-
established in quantum wells grown along the [001], [110],
and [111] high-symmetry crystal axes [29,36,38]. As illus-
trated in Fig. 1(e), the respective collinear SO field �PSH

for effectively k-linear SO couplings is either purely aligned
with the 2DEG plane, out-of-plane, or vanishes completely.
Recently, it was predicted that a PSH can also be realized
in low-symmetry growth directions provided that at least two
Miller indices agree in modulus, and the ratio of Rashba and
effective k-linear Dresselhaus SO coefficients fulfills a certain
relation [26]. Thereby, the angle between the growth direction
and the collinear SO field can be configured arbitrarily, giving
rise to new formations of a PSH [cf. Fig. 1(e) for the exem-
plary SO field of [225]- and [221]-oriented 2DEGs].

The stability of the PSH is, however, limited by an ad-
ditional SO field arising from the k-cubic Dresselhaus SO
coupling that is generically present in these systems. While
its inclusion may not destroy the collinearity of the SO field,
the presence of higher angular harmonics in the wave vector
generally breaks the exact SU(2) spin-rotation symmetry of
the Hamiltonian and causes a decay of the PSH. Apart from
this, it gives rise to new characteristic (in)homogeneous spin
textures with an extraordinary long lifetime, which for the
sake of distinction we call long-lived, and the superior one
among them is called longest-lived spin textures. In reciprocal
space, the k-cubic Dresselhaus SO field holds threefold ro-
tational symmetry, and its orientation and magnitude depend
strongly on the growth direction as shown in Figs. 1(c) and
1(f). As a consequence, the geometrical relations between the
collinear and the symmetry-breaking part of the total SO field
are complicated, and the induced relaxation effect is sensitive
to the orientation of the quantum well. Previous studies on the
impact of the k-cubic Dresselhaus SO field on the stability of
the PSH were restricted to the well-established cases of [001]
[34,39–47], [110] [48–50], and [111] [51] quantum wells.

In this paper, we systematically explore the robustness
of the PSH against the spin decoherence caused by the k-
cubic Dresselhaus SO field in zinc-blende 2DEGs of general
crystal orientations. The lifetime of the PSH is juxtaposed
with that of the long-lived spin textures. We complement a
numerical Monte Carlo simulation of the random walk of
collectively excited spins with an analysis of the spin diffusion
equation to determine the PSH-lifetime dependence on the
growth direction. The Monte Carlo approach resembles the
experimental situation of a time-resolved magneto-optical
Kerr-rotation microscopy that has been shown for some
growth directions to be more suitable for the PSH-lifetime
extraction than magnetoconductance measurements of weak
antilocalization. The reason is that the latter characteristics are
predominantly determined by the longest-lived spin textures.
These often correspond to homogeneous spin textures whose
extraordinarily long lifetimes prevent the emergence of the
weak-antilocalization features necessary for reliable param-
eter fitting, as is the case, for instance, in [110] and [111]
quantum wells [26,50,52]. The supplementing analysis of
the spin diffusion equation grants insight into the underlying
physical mechanisms and allows us to derive an analytic

expression for the general PSH lifetime and the special growth
directions.

Our results reveal that the most robust PSH can be formed
in quantum wells grown along a low-symmetry growth di-
rection that is well approximated by a [225] lattice vector.
These systems yield a 30% PSH lifetime enhancement com-
pared to conventional [001]-oriented 2DEGs and require a
negligible Rashba coefficient, allowing the realization of the
most stable PSH in nearly symmetric quantum wells. The
origin of the suppressed spin relaxation along this direction
is traced back to the strength and orientation of the k-cubic
Dresselhaus SO field. For the strength, a growth direction is
favorable where the magnitude of the k-cubic Dresselhaus SO
coupling is reduced. For the orientation, it is shown that, in
an optimal configuration, the k-cubic Dresselhaus SO field
is perpendicular to the collinear SO field, and therewith lies
in the rotation plane of the PSH. In this case, the k-cubic
Dresselhaus SO field has globally the largest parallel compo-
nent to the spin orientation of the PSH, which minimizes the
relaxation. Uniting both properties renders a growth direction
ideal that is close to the [225] axis. Since the PSH rotation axis
for the [225] quantum wells is only weakly tilted out of the
2DEG plane, the PSH can be observed in conventional optical
spin orientation measurements where spins are excited and
detected along the growth direction. As a further advantage,
we find that the lifetime of the long-lived homogeneous spin
textures is particularly short in these systems, which supports
the likelihood of observing weak antilocalization characteris-
tics in magnetotransport measurements. Our findings provide
a complete and comprehensive picture of the stability of
the PSH and the lifetime of the long-lived spin textures in
general growth directions. We identify the longest achievable
lifetime for a PSH in the presence of k-cubic Dresselhaus SO
couplings in 2DEGs.

This paper is organized as follows. In Sec. II, we introduce
the general SO field for PSH hosting quantum wells. In
Sec. III A, we first discuss the impact of the k-cubic SO field,
and then we investigate its effect on the robustness of the PSH
using Monte Carlo simulation and the spin diffusion equation
in Secs. III B and III C, respectively. In Sec. III D, we derive
analytical expressions for the relaxation rate of the PSH as
well as the homogeneous spin texture, and we discuss the
critical origin of the suppressed PSH decay for [225] quantum
wells. Lastly, we explore the experimental accessibility of the
PSH in Sec. III E, and we close with a conclusion in Sec. IV.

II. PERSISTENT SPIN HELIX IN GENERIC
2D ELECTRON GASES

A. Spin-orbit fields for general growth directions

The PSH emerges under the precondition that at least
two growth-direction Miller indices agree in modulus
[26]. Without loss of generality, we focus on a general
growth direction given by the unit vector n̂ lying in the
first quadrant of the [110]-[001] crystal plane, i.e., n̂ =
(sin θ/

√
2, sin θ/

√
2, cos θ ). Here, the underlying basis vec-

tors point along the high-symmetry crystal directions [100],
[010], and [001], and θ ∈ [0, π/2] denotes the polar angle
measured from the [001] axis as shown in Fig. 1(a). For

245417-2



ENHANCED LONGEVITY OF THE SPIN HELIX IN … PHYSICAL REVIEW B 101, 245417 (2020)

FIG. 1. (a) Illustration of the 2DEG-inherent coordinate system with respect to the crystal axes. The general growth direction n̂, which
permits spin conservation, is characterized by the polar angle θ ∈ [0, π/2] in the [110]-[001] plane measured from the [001] axis. The basis is
defined as x̂ = (nz, nz, −2η)/

√
2, ŷ = (−1, 1, 0)/

√
2, and ẑ = n̂ = (η, η, nz ), where η = sin θ/

√
2 and nz = √

1 − 2η2. Both the collinear SO
field �PSH, Eq. (4), for appropriately tuned Rashba and k-linear Dresselhaus SO coefficients, and the k-cubic Dresselhaus SO field �3, Eq. (3),
are depicted in k-space for specific growth directions in (e) and (f), respectively. The mean squares 〈�2

PSH〉 and 〈�2
3〉, averaged over all angles

ϕ of the in-plane wave vector k, are shown in (b) and (c), respectively. The orientation ûPSH of the PSH field, Eq. (5), is emphasized by the
blue arrow in (e), which encloses the angle ξ = arccos(η/

√
2 − 3η2) with the surface normal n̂. The angle ξ changes continuously from π/2

(in-plane) for [001] to 0 (out-of-plane) for [110]-oriented quantum wells. The θ -dependent PSH wave vectors Q = Q ŷ, Eq. (7), which define
the pitch of the PSH, Eq. (6), are displayed as bold black arrows in (e). The real-space structure of the PSH sPSH, Eq. (6), determined by �PSH

is illustrated in (d). The spin precession direction is reversed between [111] and [110] since (�PSH)x switches sign.

convenience and to adopt the notation of Ref. [26], we
introduce the parameter η = sin θ/

√
2, which implies that

nz =
√

1 − 2η2, and we define new Cartesian basis vec-
tors x̂ = (nz, nz,−2η)/

√
2, ŷ = (−1, 1, 0)/

√
2, and ẑ ≡ n̂ =

(η, η, nz ). In this representation, the x̂ and ŷ axes span the
conduction plane of the 2DEG, while the ẑ axis corresponds
to the quantum-well growth direction.

In the vicinity of the �-point, the 2DEG is described by the
Hamiltonian

H = h̄2k2

2m
+ h̄

2
(�1 + �3) · σ (1)

with effective electron mass m, in-plane wave vector k =
(kx, ky), and the vector of Pauli matrices σ = (σx, σy, σz ).
The SO fields for the 2DEG-inherent coordinate system are
derived from a general expression of the 2D-confined SO

Hamiltonian as shown in Ref. [26] and briefly outlined in
Appendix A. The SO field contributions

�1 = 2k

h̄

⎛
⎜⎝

[
α + β (1)(1 + 3η2)nz

]
sin ϕ[ − α + β (1)(1 − 9η2)nz
]

cos ϕ

−√
2β (1)η(1 − 3η2) sin ϕ

⎞
⎟⎠ (2)

and

�3 = 2k

h̄
β (3)

⎛
⎜⎝

(1 − 3η2)nz sin 3ϕ

−(1 − 3η2)nz cos 3ϕ

3
√

2η(1 − η2) sin 3ϕ

⎞
⎟⎠ (3)

are sorted in terms of first and third angular harmonics in
the in-plane wave vector, which is represented in polar co-
ordinates, i.e., kx = k cos ϕ and ky = k sin ϕ, with in-plane
polar angle ϕ. Here, the first angular harmonic contribution
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�1 involves the Rashba and effective k-linear Dresselhaus
SO coefficients α = γR〈Ez〉 and β (1) = γD(〈k2

z 〉 − k2/4), re-
spectively. Both coefficients scale with the material-specific
bulk parameters γR and γD and constitute an average over the
ground-state wave function determined by a self-consistently
calculated confinement potential. Thus, any inhomogeneities,
e.g., due to local fluctuations of the doping ions at the sides
of the quantum well [53,54], are disregarded. The Rashba
SO coupling is characterized by an electric field E = Ez ẑ
originating from a potential gradient along the growth di-
rection ẑ. The effective k-linear Dresselhaus SO coefficient
is predominantly determined by the width and structure of
the quantum well through the expectation value 〈k2

z 〉. For
instance, an infinite square-well potential of width a yields
〈k2

z 〉 = (π/a)2. Aside from this, the coefficient includes a
small term ∝ k2 resulting from the first angular harmonic part
of the k-cubic Dresselhaus SO field. The third angular har-
monic k-cubic Dresselhaus contribution �3 is distinguished
by the prefactor β (3) = γDk2/4. Due to the proportionality ∝
k2, both Dresselhaus coefficients depend on the carrier sheet
density ns, i.e., at zero temperature k is evaluated at the Fermi
wave vector kF = √

2πns. For comparison, it is practical to
work with the ratios of the SO coefficients where we employ
the definitions �1 = α/β (1) and �3 = β (3)/β (1) hereafter.

B. Collinear spin-orbit field and emergent
persistent spin textures

A vanishing of the k-cubic SO contribution, i.e., �3 = 0,
together with an optimal ratio of the k-linear SO coefficients,
i.e., �1 = �0 := (1 − 9η2)nz, ensures a SO field �PSH :=
�1(α = β (1)�0), in the following denoted as PSH field, that
is collinear in k-space and reads [26]

�PSH = 2k

h̄
β (1)

⎛
⎝ 2(1 − 3η2)nz

0
−√

2η(1 − 3η2)

⎞
⎠ sin ϕ. (4)

As depicted in Figs. 1(b) and 1(e), both the orientation and
magnitude of �PSH alter with the growth direction. The field is
generally oriented perpendicular to the ŷ axis and encloses the
angle ξ = arccos(η/

√
2 − 3η2) with the ẑ(n̂) axis. Thereby, it

allows a continuous modulation from an in-plane configura-
tion for [001] to an out-of-plane configuration for [110] quan-
tum wells. It generally vanishes for k ‖ x̂ and maximizes for
k ‖ ŷ where the corresponding strength ‖�PSH‖max is largest
for η = 0, which corresponds to a [001] growth direction. In
the special situation of a [111] 2DEG, i.e., η = 1/

√
3, �PSH

vanishes completely.
The PSH field leads to an SU(2) spin-rotation symmetry

of the Hamiltonian, Eq. (1), that remains intact in the pres-
ence of spin-independent disorder and interactions [21,29].
Considering a general spin density s(r, t ) in real space with
position vector r and time t , here and in the following locally
and initially normalized as ‖s(r, 0)‖ = 1, the SU(2) symmetry
gives rise to two kinds of persistent spin textures: (i) A
homogeneous spin texture shomo = ±ûPSH that is collinear

with the direction of the PSH field,

ûPSH = sgn(1 − 3η2)√
2 − 3η2

⎛
⎝−√

2nz

0
η

⎞
⎠, (5)

which we define here as the unit vector of �PSH(ky < 0)
[Fig. 1(e)]. (ii) The PSH

sPSH(r) = (ŷ × ûpsh ) cos(Q · r) − ŷ sin(Q · r), (6)

which spatially precesses about the ûPSH orientation and
along the direction of ±ŷ (ϕ = ±π/2) [Fig. 1(d)]. Here, we
neglected an arbitrary phase shift for simplicity. The sign
function in Eq. (5) implies an inversion of the precession
axis of sPSH at [111] due to the sign switching of (�PSH)x

[cf. Figs. 1(e) and 1(d)]. The pitch of the helix is defined by
the PSH wave vector Q = Q ŷ characterized by the maximum
strength ‖�PSH‖max, i.e. [26],

Q(η) = m

h̄k
‖�PSH‖max = Q0

√
1 − 3η2/2|1 − 3η2|, (7)

where Q(0) := Q0 = 4mβ (1)/h̄2 represents the PSH wave-
vector amplitude for a [001] 2DEG. We define the spin
precession length L as the (minimal) spatial length of one pre-
cession cycle, i.e., L(η) = 2π/Q(η), as illustrated in Fig. 1(d)
for L(0) := L0. The PSH wave vector is displayed as black
bold arrows sketched in Fig. 1(e). In accordance with the
dependence of ‖�PSH‖max on η, the magnitude of the PSH
wave vector continuously decreases from the global maximum
at [001] (η = 0) until it vanishes at [111] (η = 1/

√
3), and

then it increases again until a local maximum is recovered at
[110] (η = 1/

√
2).

III. STABILITY OF THE SPIN HELIX

A. Impact of the cubic Dresselhaus field

Taking into account the k-cubic Dresselhaus SO field �3

that involves the third angular harmonics in the wave vector,
the PSH sPSH acquires a relaxation factor exp(−t/τPSH) due
to the violation of the exact SU(2) spin-rotation symmetry of
the Hamiltonian. The consequential finite PSH lifetime τPSH

depends on the strength and structure of �3 and its nontriv-
ial geometric relations to the PSH field �PSH. Notably, the
breaking of SU(2) symmetry is not necessarily accompanied
by a destruction of the collinearity of the SO field but can
be solely due to the presence of third angular harmonics in
the wave vector. Thus, the inclusion of �3 may continue to
allow for a homogeneous spin texture with infinite lifetime
but perhaps distinct orientation. As will be discussed in more
detail in Sec. III D, the underlying reason is that, in general,
neither the PSH nor the homogeneous persistent spin texture,
as defined in the previous section, are eigenstates of the
spin diffusion equation any longer. The eigenstates of the
spin diffusion equation with the total SO field �PSH + �3

give rise to new characteristic spin textures with particularly
long spin lifetimes, which can have a different real-space
structure. These spin textures are, in the following, referred to
as long-lived homogeneous and long-lived helical spin textures
depending on whether their spin orientation modulates in real
space.
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As highlighted in Fig. 1(f), the SO field �3 holds three-
fold rotational symmetry, and its orientation and magnitude
exhibit rich variations with the growth direction. For a clearer
understanding, we display in Fig. 1(c) the θ -dependence of
the components of �3 together with the squared magnitude
averaged over the directions of the in-plane wave vector, i.e.,
〈�2

3〉 = ∫ 2π

0 �2
3 dϕ/(2π ). While for small angles of θ the

in-plane components dominate, they become insignificant for
large angles. The SO field is oriented purely in-plane for [001]
and purely out-of-plane for [111] and [110] growth directions.
The latter two directions are special since �3 and therewith
the total SO field is collinear, and hence a homogeneously
ẑ-polarized spin texture does not decay. The mean square
〈�2

3〉 shows only weak modulations with θ where a global
minimum (maximum) is obtained for [001] ([111]) quantum
wells.

Hence, the individual modulations of the PSH field �PSH

and the k-cubic Dresselhaus SO field �3 yield an intricate
dependence of the robustness of the persistent spin textures
on the growth direction, which will be elaborated on in detail
below.

B. Numerical Monte Carlo simulation

To explore the relaxation of the PSH, we first conduct a
numerical Monte Carlo simulation of the spin-random walk in
a disordered system [55]. Considering zero temperature and
electronic states centered at the Fermi energy, an ensemble
of 5 × 104 spins (S) is aligned perpendicular to �PSH at the
initial time t = 0. The states are uniformly distributed over the
Fermi circle with approximately isotropic Fermi wave vector
kF = √

2πns, where we select a carrier sheet density of ns =
1.7 × 1015 m−2. The carriers undergo a quasiclassical ran-
dom walk with a ballistic motion between scattering events,
which are considered elastic, isotropic, uncorrelated, and spin-
independent. The time evolution is characterized by a mean
elastic scattering time τ = 2Ds/v

2
F = 1.88 ps with Fermi ve-

locity vF = h̄kF/m corresponding to a 2D diffusion constant
Ds = 0.03 m2/s and an effective mass of GaAs m = 0.067m0,
where m0 denotes the bare electron mass. In each time interval
of the ballistic motion, the spins propagate with Fermi ve-
locity vF while precessing about the SO field following the
differential equation (∂/∂t )S = (�PSH + �3) × S. After time
t 	 τ , we locally detect spin projections perpendicular to
�PSH and thereby extract the spin density component s⊥(r, t ).
In accordance with the typical experimental scenario of an
optical spin excitation, we assume an initialized Gaussian
spin distribution in real space centered at r = 0 with sigma
width w = 0.5 μm defining the laser spot size. We fix the ef-
fective k-linear Dresselhaus SO coefficient β (1) = 5.0 meVÅ
throughout all simulations while the Rashba SO parameter
α varies with η (θ ) according to the relation �0. Among
all crystal orientations, this gives a minimal pitch of L0 =
3.58 μm, obtained for [001] quantum wells, which is much
larger than the mean free path τvF = 0.339 μm, ensuring the
DP regime of all Monte Carlo simulated spin dynamics. To
clarify the impact of the symmetry-breaking SO field �3, we
modify the k-cubic Dresselhaus parameter β (3) independently
of β (1), although this is difficult to achieve in experiment due
to the mutual dependence on the carrier density.

The first row of Fig. 2(a) collects the Monte-Carlo-
simulated time evolution of s⊥ along the ŷ axis for several
growth directions distinguished by θ with the influence of the
k-cubic SO field �3 of relative strength �3 = 0.08 (β (3) =
0.4 meVÅ). The initialized Gaussian spin polarization evolves
into a helical texture with distinct precession lengths L, which
reflects the θ -dependence of the wave vector Q, Eq. (7).
To highlight the continuous changes of the spin precession
length, we plot the spatial evolution of s⊥ at time t = 1 ns
in dependence on θ in Fig. 2(b). For the [111] orientation,
the helical structure disappears, which is consistent with the
vanishing of �PSH and Q.

To extract the wave vector Q and the relaxation rate of
the remnant helical spin density 1/τhel, we fit the data of the
Monte Carlo simulation using the function [44]

s⊥ = w2

w2 + 2Dst
exp

[
−y2 + 2w2Q2Dst

2(w2 + 2Dst )

]

× exp

(
− t

τhel

)
cos

(
2Dst

w2 + 2Dst
Q y

)
. (8)

Setting 1/τhel and Q as free parameters, we fit the data by
Eq. (8) and obtain good agreement with Monte Carlo simula-
tion, as shown in the second row of Fig. 2(a). It is noteworthy
that we also carried out marginal adjustments of Ds in the
fitting procedure to compensate for minor deviations arising
from the input value (≈3%) due to slight fluctuations of τ in
the numerical simulation.

In the subsequent sections, we discuss the θ -dependence
of the extracted parameters and show explicitly that low-
symmetry quantum wells near a [225] orientation constitute
the ideal system to maximize the PSH lifetime and explain
the physical origin.

C. Spin diffusion equation

To take a closer look at the impact of the k-cubic SO field
on the PSH dynamics obtained by the Monte Carlo simula-
tion and to elucidate the underlying physical mechanism, we
study the spin decoherence using the spin diffusion equation.
Numerous papers were devoted to tracking the spatiotemporal
evolution of a spin density in different parameter regimes
using semiclassical [41,56–58] or diagrammatic [39,46,59–
61] approaches.

In this paper, we concentrate on the low-energy regime
with weak SO coupling and disorder at zero temperature.
Selecting the Fourier representation with small frequencies ω

and in-plane wave vectors q, k, the dynamics of the Fourier-
transformed spin density s̃(q, ω) = ∫

dr2
∫

dt ei(ωt−q·r)s(r, t )
is governed by the diffusion equation [26,61,62]

0 = (
Dsq2 − iω + 1/τ̂DP

)
s̃(q, ω) − 2h̄τ

im
〈(k · q)�〉 × s̃(q, ω)

(9)
with the DP spin relaxation tensor (1/τ̂DP)i j = τ (〈�2〉δi j −
〈�i� j〉). The average 〈·〉 is performed over all polar angles ϕ

of the wave vector k. Notably, if we account for anisotropic
scattering, the first and third angular harmonic SO fields
involve distinct scattering times τ1 and τ3, respectively [63].
The above equation is still valid in this case, though, if one
replaces τ → τ1 and β (3) → β (3)√τ3/τ1. It is practical to
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FIG. 2. (a) Monte-Carlo-simulated spatiotemporal evolution of the spin polarization s⊥ along the ŷ axis is shown in the first row for selected
growth directions and a relative strength �3 = 0.08 of the k-cubic field. Reconstructions of the simulated s⊥ by using the fit function Eq. (8) are
depicted in the second row. (b) Snapshot of s⊥ along ŷ at time t = 1 ns for continuous variations of the growth angle θ . (c) Map of the minima of
the eigenvalues λn(q) of the spin diffusion operator �̃sd in dependence on q = (qx = 0, qy ) and θ for �3 = 0.16 in terms of the spin precession
rate 1/τ0 = DsQ2

0/(4π 2) for [001] quantum wells. Black solid and dashed lines indicate the slices of q = Q and q = 0, respectively. Extracted
values of Q from Monte Carlo simulations for �3 = 0.16 using Eq. (8) are displayed as light blue diamonds. (d) Computed eigenvalues (black
solids) gathered along q = Q in comparison with the extracted spin relaxation rate from Monte Carlo simulation (colored circles) for several
�3 values. The eigenvalue for q = 0 is shown only at �3 = 0.16 as a black dashed line. (e) PSH condition α/β (1) = �0 as a function of θ .

rewrite Eq. (9) in terms of a diffusion operator �̃sd, which
comprises all dynamical properties and yields

0 = [
�̃sd(q) − iω

]
s̃(q, ω). (10)

The eigenvalues λn(q) (n = 1, 2, 3) of �̃sd(q) describe spin
relaxation rates of a system with arbitrary Rashba and Dres-
selhaus SO fields according to Eqs. (2) and (3). The explicit
expression of �̃sd is presented in Appendix B.

Figure 2(c) shows the smallest of the three eigenvalues
λ(q)min as a function of the wave vector qy (qx = 0) and the
growth angle θ under the PSH condition �1 = �0 and for
�3 = 0.16. As emphasized by the black dotted and solid lines
in Fig. 2(c), the eigenvalues exhibit generally three minima,
where one occurs at q = 0 and the other two at finite q = ±Q,
whose magnitude, despite the k-cubic SO terms, is perfectly
described by Eq. (7). The local minima refer to the long-lived
spin textures whereas the global minimum defines the longest-
lived or superior spin texture, which, depending on q, can be
either homogeneous (q = 0) or helical (q = 0). We also show
that the values of Q extracted by Monte Carlo simulation in
terms of Q0, the light blue diamonds in Fig. 2(c), agree well
with the ideal functional behavior in Eq. (7).

We first focus on the helical texture and plot the spin re-
laxation rate λ(Q)min = 1/τhel in dependence on θ for several
values of �3 (black solid lines) together with the respective re-
sults obtained by the Monte Carlo simulation (colored circles)
in Fig. 2(d). To emphasize that the parameters are selected in
the desired regime where the spin lifetime exceeds the spin
precession time, the spin relaxation rate is displayed in units
of 1/τ0 = DsQ2

0/(4π2) corresponding to the maximal spin
precession rate, which is obtained for the [001] quantum well.
We find excellent agreement for all �3 values between the two
different approaches and see a rich dependence of 1/τhel on θ .

First, the [110] direction shows a less robust spin texture
compared to [001], being consistent with previous calculation
[50]. Second, the salient vanishing of 1/τhel at [111] results
from the existence of a homogeneous persistent spin texture as
�PSH = 0 and �3 is collinear with the [111] axis. Since both
excited and detected spin textures contain a finite component
parallel to [111], the extracted spin relaxation rate corresponds
to the homogeneous texture and not to a helical one. A similar
argument holds in the vicinity of [111], where the wave
vector Q is negligible and the long-lived texture is basically
homogeneous. As a homogeneous texture lacks the ability for
manipulable spin orientation, we shall not be interested in
these growth directions. Thirdly and most remarkably, another
local minimum occurs near the [225] low-symmetry growth
direction as emphasized by the colored grid line in Fig. 2(d).
Compared to conventional [001]-oriented 2DEGs, we find
here a spin lifetime enhancement of 30% while a helical spin
texture is retained. Further attractiveness of [225] is that the
Rashba coefficient α almost vanishes for the PSH condition
�0 as calculated in Fig. 2(e). It implies that a symmetric
quantum well already exhibits a PSH without the need to
tune α electrically [64]. This reduces complications arising
from the possible inhomogeneity of α, which causes local
imbalances of the ratio of α/β (1) and constitutes an additional
source of spin relaxation [53,54,65–67]. The actual vanishing
point of α is at η = 1/3 corresponding to an irrational Miller
index, but it is well approximated by a [225] direction [26].

We now turn to the spin relaxation rate λ(0)min of the
homogeneous texture, which is displayed in Fig. 2(d) as a
black dotted line for �3 = 0.16. The rate vanishes at [111]
and [110] because the total SO field remains collinear. If
we compare with the pertaining helical rate, the lifetime of
the helical texture is only clearly superior to that of the
homogeneous texture in the vicinity of the [225] direction.
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At [225] we generally find λ(0)min ≈ 2λ(Q)min for arbitrary
reasonable values of �3. This implies that a [225]-oriented
2DEG is also suitable for an experimental spin lifetime extrac-
tion using magnetoconductance measurements of the weak
antilocalization, as further discussed in Sec. III E.

In the following, we analyze the growth-direction depen-
dence of the long-lived spin textures in detail and elucidate
the origin of the θ -dependent robustness of the PSH.

D. Analytic discussion

After including the k-cubic SO field �3, the formerly
persistent spin textures sPSH and shomo, as defined in Sec. II B,
are no longer eigenstates of the system. For this reason, the
decay of these textures is in general not described by a single
exponential function. However, since �3 usually constitutes a
small correction to �1, it is a good approximation to assume
a single effective relaxation factor exp(−t/τPSH,homo) whose
relaxation rate is given by projecting the diffusion operator
�̃sd on these textures, i.e., 1/τPSH ≡ 〈s̃PSH|�̃sd(Q)|s̃PSH〉 and
1/τhomo ≡ 〈s̃homo|�̃sd(0)|s̃homo〉. Comparing these relaxation
rates with those of the long-lived spin textures provides a
deeper insight into the impact of the k-cubic SO field.

1. Relaxation of the spin helix

To reveal the underlying physical picture for the reduced
relaxation in [225] quantum wells, however, it is more instruc-
tive to note that the contributions of �3 in the diffusion opera-
tor are decoupled from q and �PSH. This happens because the
mixing of first and third angular harmonics in the wave vector
averages to zero. Thus, the relaxation is purely determined by
the �3 terms in the DP tensor 1/τ̂DP in Eq. (9). Recalling that
in the DP formalism only perpendicular components of the
SO field to the given spin orientation lead to a relaxation, we
can apply this to the texture of the PSH and obtain

1

τPSH
= τ

∫ L

0

dy

L
〈(�3 × sPSH)2〉. (11)

The integral represents the spatial average over a full spin
precession of the PSH, e.g., y ∈ [0, L]. This means that the
component of the k-cubic SO field parallel to sPSH does
not contribute to relaxation. According to this scenario, it is
now practical to decompose �3 as �3 = �‖ + �⊥, where �‖
and �⊥ are parallel and perpendicular to �PSH, respectively.
Further decomposing �⊥ = �⊥,1 + �⊥,2 with �⊥,1 ‖ ŷ and
�⊥,2 ‖ (ŷ × ûPSH) simplifies Eq. (11) and produces the ana-
lytical solution of the growth-dependent PSH relaxation rate,
that is,

1

τPSH
= 〈�2

‖〉τ + 〈�2
⊥〉τ
2

, (12)

which gives explicitly

1

τPSH
= 4π2

τ0

3 − 17η2 + 85η4 − 171η6 + 108η8

8 − 12η2
�2

3, (13)

as a consequence of the relaxation contributions

〈�2
‖〉τ = 4π2

τ0

(1 − 8η2 + 9η4)2

4 − 6η2
�2

3, (14)

〈�2
⊥〉τ
2

= 4π2

τ0

(1 − η2)(1 + 18η2 − 27η4)n2
z

8 − 12η2
�2

3 . (15)

As it becomes apparent from Eq. (12), the parallel (�‖) and
perpendicular (�⊥) components of �3 to �PSH affect the PSH
relaxation with different weighting, 1 and 1/2. This results
from the fact that �‖ generates relaxation of the local spin
orientation of the PSH over the full precession cycle as it is
generally perpendicular to sPSH, whereas �⊥ is locally parallel
to sPSH, which partially protects the PSH from relaxation.

Figure 3(a) compares the PSH relaxation rate 1/τPSH us-
ing the analytical expression Eq. (13) with the rate of the
long-lived helical textures 1/τhel = λ(Q)min calculated with
Eq. (10) for several �3 values. Aside from a narrow region
in the vicinity of [111], the PSH relaxation rate matches
well the long-lived helical rate for all selected �3. The close
agreement indicates that the structure of the long-lived heli-
cal spin textures does not deviate much from the PSH. We
find that the local minimum of 1/τPSH ≈ 0.78/τPSH,0, where
1/τPSH,0 = 3π2�2

3/(2τ0) is the PSH relaxation rate for [001]

quantum wells, emerges at η =
√

5 − √
13/

√
12 ≈ 0.341 [cf.

the triangle at the curve for �3 = 0.16 in Fig. 3(a)], which
is indeed close to [225], where η = 2/

√
33 ≈ 0.348 (red grid

lines in Fig. 3). From the different weighting in Eq. (12), it is
reasonable to assume that this local minimum coincides with a
minimum of the relaxation term 〈�2

‖〉τ , Eq. (14), which means
that �3 is perpendicular to �PSH. In Fig. 3(b), we display the
individual relaxation contributions in terms of 1/τ0, Eqs. (14)
and (15). The blue dashed line represents the contribution

by �‖, which drops to zero at η =
√

4 − √
7/3 ≈ 0.388 as

indicated by a black circle. Hence, the vanishing point of the
parallel contribution at η ≈ 0.388 does not perfectly agree
with the suppressed relaxation rate as shown in Fig. 3(a). The
reason is that the magnitude of the perpendicular contribution
varies simultaneously, as shown by the blue solid line in
Fig. 3(b), and it holds a large magnitude at η ≈ 0.388 (black
circle). After normalizing the k-cubic field �3 → �3/〈‖�3‖〉,
we find that the minimum occurs precisely at the expected
value of η ≈ 0.341, which confirms the previous assumption.
Consequently, the local suppression of the PSH relaxation rate
is a combined effect of the interplay between the magnitude
and orientation of �3. Furthermore, the PSH relaxation rate
becomes largest at [110] where 〈�2

‖〉τ has a global maximum
even though the perpendicular contribution vanishes since �3

is parallel to �PSH.
We address now the role of the magnitude of �3 in the

vicinity of growth directions where the spin relaxation rates
of PSH and long-lived helical textures deviate, i.e., near
[111]. Figure 3(c) compares both relaxation rates, in units of
1/τPSH,0, for different values of �3 ranging from 0.017 to 0.16
[cf. Fig. 3(a)]. The former magnitude was experimentally ob-
tained in Ref. [68]. We see that the growth-angle range where
the line shapes of the relaxation rates of both texture types
deviate becomes narrower as �3 decreases. The origin of the
deviation is explained by the magnitude ratio between �PSH

and �3. Figure 3(d) shows the average SO field magnitudes
〈�2

PSH〉 and 〈�2
3〉 in units of 1/(ττ0), where the plot colors

are chosen in accordance with Fig. 3(c). Since 〈�2
PSH〉 rapidly

drops down toward zero near [111], 〈�2
3〉 exceeds 〈�2

PSH〉
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FIG. 3. (a) Spin relaxation rate of the long-lived helical spin texture λ(Q)min = 1/τhel (colored solid lines) in comparison with the PSH
relaxation rate 1/τPSH [Eq. (13)] (black solid lines) for several �3 values in units of the spin precession rate in [001] quantum wells 1/τ0.
The differences between the eigenvalue λ(Q)min and 1/τPSH in the vicinity of [111] imply that the long-lived helical spin texture deviates
from the PSH. A local minimum is found at η ≈ 0.341, which is close to [225], where η ≈ 0.348 (red grid line). (b) Relaxation contributions
parallel (〈�2

‖〉τ ) [Eq. (14)] and perpendicular (〈�2
⊥〉τ/2) [Eq. (15)] to �PSH are plotted for �3 = 0.16 as dashed and solid lines, respectively.

The parallel contribution vanishes at η ≈ 0.388. In (a) and (b), the respective points η ≈ 0.341 and η ≈ 0.388 are highlighted as triangles
and circles. (c) Line shapes of λ(Q)min and 1/τPSH are compared for several �3 values in units of the PSH relaxation rate 1/τPSH,0 for [001]
quantum wells. The smallest selected value �3 = 0.017 corresponds to the experimentally extracted ratio in Ref. [68]. The range of growth
angles where both rates deviate gets narrower as �3 decreases. (d) Mean squares of the SO strengths 〈�2

PSH〉 and 〈�2
3〉 for different �3 values

with colors according to (c). The range of growth directions where 〈�2
3〉 exceeds 〈�2

PSH〉 increases with �3 yielding large deviations of the
long-lived helical spin texture from the PSH and thus distinct relaxation rates.

and the SO field is dominated by �3. Here, the PSH field is
negligible compared to the k-cubic SO field, implying that the
eigenstate of diffusion operator strongly differs from the PSH.
The range of growth angles where �3 is dominant enlarges as
�3 increases.

Since for practical applications spin functionalities must
be implemented within the spin lifetime, it is desirable that
�3 is small enough that the spin precession length L is much
larger than the spin relaxation length of the long-lived helical
spin texture ls = √

Dsτhel = √
Ds/

√
λ(Q)min, i.e., ls/L 	 1.

The ratio ls/L is plotted in Fig. 4, which shows that for most
growth directions a reasonable magnitude of �3 is of the order
of 10−2 or smaller. As a concrete example for typical exper-
imental values, we list τPSH along other relevant quantities
for several quantum wells with different growth directions in
Table I. Consequently, for parameters of interest the growth-
angle range where the rates of the PSH and the long-lived
helical texture deviate is quite narrow [cf. Fig. 3(c)], and
Eq. (13) is a good solution for general growth directions. Also,
low-angle growth directions from [001] to approximately
[225] are less sensitive to the relaxation due to k-cubic terms
and, therefore, suitable candidates for applications. Finally,
it should be mentioned that comparing the spin precession
lengths of the PSH in [225] and [001] quantum wells, the
former is larger by approximately 50%.

2. Relaxation of the homogeneous spin texture

While the PSH plays a prominent role for the function-
ality of spin transistors, the dynamics of homogeneous spin
textures is more relevant in other devices such as spin lasers
[11–15]. For instance, a homogeneous spin texture is typically
generated by optical spin orientation due to interband absorp-

tion of circularly polarized light when the illumination spot
size exceeds the sample size [69,70].

Thus, for a comprehensive understanding we investigate
now the relaxation of the long-lived spin texture shomo =
±ûPSH, which is homogeneously aligned parallel to the direc-
tion of the PSH field. Following the above arguments, its re-
laxation rate can be computed as 1/τhomo = τ 〈(�3 × ûPSH)2〉,
which gives

1

τhomo
= 4π2

τ0

n2
z (1 + 17η2 − 45η4 + 27η6)

4 − 6η2
�2

3 . (16)

TABLE I. Realistic values in GaAs quantum wells for the re-
laxation times of the PSH τPSH and the long-lived homogeneous
spin texture τhomo using Eqs. (13) and (16), respectively. We em-
ploy an effective mass m = 0.067m0, a carrier sheet density ns =
1.7 × 1015 m−2, and spin diffusion constant Ds = 0.03 m2/s. Ac-
cordingly, for a bulk Dresselhaus parameter γD = 8.0 eVÅ3 [36],
the effective cubic Dresselhaus coefficient becomes β (3) = γDk2

F/4 =
γDπns/2 = 0.21 meVÅ. Using a typical linear Dresselhaus coef-
ficient β (1) = 5.0 meVÅ [68] yields �3 = β (3)/β (1) = 0.042. The
Rashba coefficient α and the spin precession length L follow from the
growth-direction-dependent relations α(η) = �0(η)β (1) and L(η) =
2π/Q(η) (cf. Sec. II B).

n̂ τPSH (ns) τhomo (ns) α (meVÅ) L (μm)

[001] 15.8 23.7 5.0 3.58
[115] 18.0 15.4 3.2 4.14
[225] 20.3 10.5 −0.4 6.22
[111] ∞ −5.8 ∞
[221] 11.0 34.9 −5.0 18.6
[110] 10.5 ∞ 0 14.3
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FIG. 4. The ratio between spin precession length L = 2π/Q and
spin relaxation length of the long-lived helical spin texture ls =√

Ds/
√

λ(Q)min is summarized for several �3 values.

In Fig. 5(a), the spin relaxation rate 1/τhomo (black dashed
lines) is displayed together with the rate of the long-lived
homogeneous spin texture λ(0)min (colored solid lines) for
different values of �3 in units of the spin precession rate in
[001] quantum wells 1/τ0. Similarly to the PSH and the long-
lived helical spin texture, we find good agreement between
both relaxation rates, apart from a narrow region near [111].
The range of growth angles where both rates deviate becomes
smaller as �3 is reduced, which is depicted in Fig. 5(b).
Typical values of τhomo for realistic parameter configurations
are listed in Table I for several quantum wells with distinct
orientations. For better comparison, the rates are rescaled
in units of the relaxation rate 1/τhomo,0 = π2�2

3/τ0 of shomo

for [001] quantum wells. In both figures, we notice that the
relaxation rates have a pronounced global maximum, which
we generically find to occur at η ≈ 0.431 and which yields
an increase by a factor of 2.4 compared with the rate for
[001] quantum wells 1/τhomo,0. For the [225] quantum wells,
we find that the relaxation rate of the homogeneous mode is
larger by a factor of 1.94 compared to the PSH relaxation rate
1/τPSH, Eq. (13), at [225]. On the contrary, quantum wells
with growth direction ranging from the vicinity of [111] to
[110] facilitate very long spin lifetimes, with [111] and [110]
offering persistent solutions. Lastly, we plot in Fig. 5(c), for
the analogous values of �3 as in Fig. 5(b), the angle between
the quantum-well growth direction and the spin orientation
of the long-lived homogeneous spin texture (colored solid
lines) and the homogeneous texture shomo (black dashed line),
respectively. The latter angle is given by the expression ξ =
arccos(η/

√
2 − 3η2). In the small region in the vicinity of

[111], the spin orientation of the long-lived homogeneous
spin texture becomes nearly parallel to the growth direction
and strongly differs from shomo, which explains the large
discrepancy of the corresponding spin relaxation rates 1/τhomo

and λ(0)min.
As an implication for spintronic devices where long-lived

homogeneous spin textures are desirable, e.g., for threshold
reduction in spin lasers [11–13], the [111] and [110] quantum
wells are most appealing. Aside from the diverging spin
lifetime, the corresponding spin polarization is perpendicular
to the quantum-well plane (ξ = 0), which often corresponds
to the favorable excitation direction.

E. Experimental accessibility

Finally, we discuss the accessibility of the PSH by optical
experiments such as time-resolved Kerr-rotation microscopy,

FIG. 5. (a) Spin relaxation rates of the long-lived homogeneous
texture λ(0)min (colored solid lines) in comparison with the relaxation
rate 1/τhomo [Eq. (16)] of the homogeneous spin texture shomo =
±ûPSH (black dashed line) for different values of �3 in units of the
spin precession rate in [001] quantum wells 1/τ0. The latter texture
is collinear with the PSH field orientation ±ûPSH and thus persistent
for �3 = 0 (cf. Sec. II). (b) Line shapes of λ(0)min (colored solid
lines) and 1/τhomo (black dashed line) are shown for several �3 values
in units of the relaxation rate 1/τhomo,0 for [001] quantum wells.
Analogously to the comparison of the long-lived helical texture with
the PSH, Fig. 3(c), the range of growth angles where both relaxation
rates deviate gets narrower as �3 decreases. The smallest selected
value �3 = 0.017 corresponds to the experimentally extracted ratio
in Ref. [68]. (c) Angle between the quantum-well growth direction
and the spin orientation of the long-lived homogeneous spin texture
(colored solid lines), or the homogeneous texture shomo (black dashed
line), which is ξ = arccos(η/

√
2 − 3η2), for the analogous values of

�3 as in (b).

in which spins are typically excited and measured perpendic-
ular to the quantum-well plane. To obey this experimental
restriction, we simulate the spatiotemporal evolution of the
initial spin texture s(t = 0) ‖ ẑ using the Monte Carlo simula-
tion as described in Sec. III B. We employ the same parameter
settings as before, where we restrict ourselves to the case
of �3 = 0.12. In this new configuration, the spin excitation
direction is tilted with respect to the direction of �PSH and
therefore simultaneously polarizes long-lived homogeneous
and helical spin textures even for �3 = 0. The respective tilt
angle depends on the quantum-well growth direction. For the
specific growth direction [001], the homogeneous texture is
not excited as �PSH is completely in-plane [44] whereas we
polarize only the homogeneous texture at [111] and [110] due
to the configurations �PSH = 0, �3 ‖ ẑ and �PSH ‖ ẑ, �3 ‖ ẑ,
respectively.

Figure 6(a) shows the spatial distribution of sz along the
ŷ axis collected for various θ values at the slice of time
t = 1 ns. The appearance of a helical texture for growth angles
θ from 0 to approximately π/4 is obvious. We attribute
this to the large angle ξ between �PSH and the ẑ axis [cf.
Fig. 6(b)], which allows to excite the helical texture. Using the
fit function Eq. (8), we extract the wave vector Q and the spin
relaxation rate, which are displayed in Figs. 6(b) and 6(c). For
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FIG. 6. (a) Monte-Carlo simulated component sz at time t =
1 ns of an initialized spin density s(t = 0) ‖ ẑ for �3 = 0.12 in
dependence on the growth angle θ . A helical spin texture emerges
from [001] to approximately [111], while a homogeneous texture is
prevalent from [111] to [110]. (b) Yellow diamonds represent the
extracted wave vector Q while the black solid line is calculated by
Eq. (7). The green solid line shows the angle ξ between the PSH field
�PSH and surface normal ẑ. (c) Extracted spin relaxation rate is shown
as yellow circles. Computed eigenvalues for homogeneous [λ(0)min]
and helical [λ(Q)min] spin texture are displayed as blue and black
dotted lines, respectively. The global minimum of the relaxation rate
corresponding to the longest-lived spin textures is highlighted as a
solid line on the curves for the homogeneous and helical relaxation
rates.

angles θ < π/4, we obtain a spin relaxation rate and wave
vector Q that agree well with the ideal values for the PSH
[cf. Eqs. (7) and (13)]. Therefore, we can readily access the
PSH for different directions including the superior lifetime
direction [225] in conventional optical measurements and take
advantage of manipulable spin orientation. For larger angles θ

corresponding to growth directions from [111] to [110], the
angle ξ further decreases and the extracted relaxation rates
and wave vectors belong to the homogeneous spin textures,
which have the superior lifetime along these directions. Also,
the spin precession length of the helical textures becomes
very long, which makes it difficult to distinguish from the
homogeneous texture. Apart from that, the magnitude of the
PSH field becomes insignificant in comparison to the k-cubic
SO field, which yields large deviations of the long-lived
helical spin texture from the PSH and makes the fit function
Eq. (8) unsuitable.

Finally, we look at the prospects of studying the
PSH lifetime limitation in magnetoconductance measure-

ments of weak antilocalization. The characteristic weak-
antilocalization feature, namely the position of the magneto-
conductance minima, which is necessary for a reliable param-
eter fitting, is predominantly determined by the longest-lived
spin texture [26,71,72]. In particular, if its lifetime is much
longer than the electron-dephasing time, the minima disappear
and only weak-localization features are seen. Hence, to extract
the PSH lifetime and the related k-cubic Dresselhaus SO
coefficient, it is desirable that the minima are still observable
at the optimal ratio of k-linear SO coefficients α/β (1) = �0,
where for �3 = 0 persistent spin textures appear, and that
the helical spin texture is superior. The relaxation rate of
the longest-lived spin texture for general growth directions
is highlighted by the solid line in Fig. 6(c), where the black
and blue correspond to the helical and homogeneous spin
texture, respectively. We see that the homogeneous texture
shows clear dominance for a wide range of growth directions.
The lifetime discrepancy between helical and homogeneous
textures is most pronounced in [110] quantum wells, where
the homogeneous rate vanishes while the helical rate reaches a
maximum. For this reason, we only observe weak localization
even for a large k-cubic SO field in [110] quantum wells due to
the presence of persistent homogeneous spin textures [50,52].
Here, observing a crossover to weak antilocalization requires
the breaking of the PSH condition �0 via an increasing Rashba
term [52]. Similarly, we can expect the extraordinary small
relaxation rates of the homogeneous spin textures for growth
directions between [111] and [110] to prevent the emergence
of the weak antilocalization features. Intriguingly, the homo-
geneous relaxation rate far exceeds the helical rate in the
vicinity of the growth direction [225]. The large separation of
the two relaxation branches implies that such quantum wells
are suitable to extract the PSH lifetime as well as the k-cubic
Dresselhaus SO strength in magnetotransport measurements.
Also, the required near absence of the Rashba coefficient in
the PSH case in [225] simplifies the parameter fitting process.

To sum up, [225] quantum wells are not only good can-
didates to enhance the PSH lifetime, but they also represent
an excellent platform for a comparative study of the spin
relaxation in optical and magnetotransport measurements.

IV. CONCLUSION

We have investigated the lifetime limitations of the PSHs
due to the presence of third angular harmonics in the k-cubic
Dresselhaus SO field in 2DEGs of general growth directions.
A numerical approach using Monte Carlo simulations in
conjunction with an analysis of the spin diffusion equation
provides detailed knowledge of the robustness of the long-
lived spin textures.

Our findings reveal that a crystal orientation where the
k-cubic SO field is perpendicular to the collinear SO field
suppresses the decay of the PSH because it partially protects
local spin orientations from relaxation. In combination with
additional small modulations of the k-cubic SO field magni-
tude, it is shown that the most robust PSH is formed in a low-
symmetry quantum well whose orientation is well approxi-
mated by a [225] lattice vector. Remarkably, the realization of
a PSH in such a system requires a nearly vanishing Rashba
SO coefficient. This enables the utilization of a symmetric
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quantum well that mitigates complications that are connected
to the electrical gate-tuning or a spatial inhomogeneity of the
Rashba SO strength. We demonstrate explicitly that the PSH
in [225] quantum wells can be experimentally accessed by
optical spin excitation/detection measurements. Additionally,
we point out that the PSH lifetime clearly exceeds that of the
long-lived homogeneous spin textures, which makes it also
a suitable candidate for an experimental extraction via weak
(anti)localization measurements.

The results provide a complete picture of the stability of
the PSH and the long-lived spin textures in general growth di-
rections, and they define the longest possible PSH lifetime in
2DEGs in the presence of k-cubic Dresselhaus SO couplings.
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APPENDIX A: DERIVATION OF THE SPIN-ORBIT FIELDS
FOR GENERAL GROWTH DIRECTIONS

In this Appendix, we summarize the derivation of expres-
sions (2) and (3) for the spin-orbit fields of an arbitrarily
oriented 2DEG as carried out in Ref. [26].

Let us consider a 2D electron system that is confined
by a quantum well grown along an arbitrary normal unit
vector n̂ = (nx, ny, nz ). In this system, the underlying basis
vectors x̂, ŷ, and ẑ correspond to the high-symmetry crystal
directions [100], [010], and [001], respectively. Pursuant to
the 2D confinement, the electron wave vector k = (kx, ky, kz )
is decomposed as k = k‖ + kn, where kn = n̂(n̂ · k) is
pointing in the growth direction while k‖ lies in the
2DEG plane and thus obeys the constraint n̂ · k‖ = 0.
The effects of SO coupling are described by the Hamiltonian
HSO = h̄

2 (�R + �D) · σ with the vector of Pauli matrices σ.
The generic Rashba (R) and Dresselhaus (D) SO fields �R

and �D can be written as [26,73,74]

�R = 2α

h̄

(
k‖ × n̂

)
, �D = 2γD

h̄
ν, (A1)

where

νx = 〈
k2

n

〉[
2nx

(
nyk‖

y − nzk
‖
z

) + k‖
x

(
n2

y − n2
z

)] + k‖
x

(
k‖

y
2 − k‖

z
2)

(A2)

and similarly for νy and νz as obtained by cyclic index
permutation. The Rashba parameter α = γR〈En〉 depends
on the electric field E = Enn̂, and the coefficients γR and
γD constitute material-specific parameters. The expectation
values denote the average over the ground-state wave function
of the quantum well.

As demonstrated in Ref. [26], a 2DEG can host persistent
spin textures if and only if at least two growth-direction Miller
indices agree in modulus. Thus, without loss of generality
we focus in the following on the growth direction given
by the vector n̂ = (η, η, nz ), where nz =

√
1 − 2η2 and η ∈

[1, 1/
√

2]. This vector lies in the first quadrant of the [110]-
[001] crystal plane as illustrated in Fig. 1(a). The relation to
the polar angle θ ∈ [0, π/2], measured from the [001] axis, is
given by η = sin(θ )/

√
2.

For the calculations in this paper, it is more practical
to choose a reference frame whose basis is adapted to the
geometry of the 2DEG, i.e., one basis vector is aligned with
the quantum-well growth direction while the others lie in
the quantum-well plane. Selecting x̂ = (nz, nz,−2η)/

√
2, ŷ =

(−1, 1, 0)/
√

2, and ẑ ≡ n̂ = (η, η, nz ) as in the main text
[cf. Fig. 1(a)], the transformation of HSO into the new basis
is achieved by replacing k �→ Rk and σ �→ Rσ using the
rotation matrix

R = 1√
2

⎛
⎜⎝

nz −1
√

2η

nz 1
√

2η

−2η 0
√

2nz

⎞
⎟⎠. (A3)

After performing this transformation, the in-plane wave vec-
tor is given by only two components k‖ = (k‖

x , k‖
y ) and we

identify 〈k2
n〉 ≡ 〈k2

z 〉 and 〈En〉 ≡ 〈Ez〉. Henceforth, we suppress
the superscript ‖ and introduce polar coordinates for the in-
plane wave vector, i.e., k = (k cos ϕ, k sin ϕ). In a final step,
the transformed total SO field is sorted with respect to their
angular harmonic order in k, where �1 and �3 contain the
first and third angular harmonics yielding the expressions (2)
and (3), respectively.

APPENDIX B: SPIN DIFFUSION OPERATOR

For a general growth direction with two Miller indices
equal in modulus and arbitrary SO strengths, the spin diffu-
sion operator �̃sd(q) in Eq. (10) reads

�̃sd =
⎛
⎝�̃xx �̃xy �̃xz

�̃∗
xy �̃yy �̃yz

�̃∗
xz �̃∗

yz �̃zz

⎞
⎠, (B1)

with

�̃xx = 4π2

τ0

[
1 − 18η2 + 105η4 − 144η6

4
− (1 − 9η2)nz

2
�1

+�2
1

4
+ 1 + 10η2 − 15η4

4
�2

3 + q2

Q2
0

]
, (B2)

�̃xy = 4π2

τ0
i
√

2(η − 3η3)
qy

Q0
, (B3)

�̃xz = 4π2

τ0

{√
2(η − 9η5)nz

4
+

[√
2(η − 3η3)

4
− i

qx

Q0

]
�1

−3(η − 4η3 + 3η5)nz

2
√

2
�2

3 − i(1 − 9η2)nz
qx

Q0

}
, (B4)
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�̃yy = 4π2

τ0

[
1 + 6η2 − 15η4

4
+ (1 + 3η2)nz

2
�1 + �2

1

4

+1 + 10η2 − 15η4

4
�2

3 + q2

Q2
0

]
, (B5)

�̃yz = −4π2

τ0
i(�1 + nz + 3η2nz )

qy

Q0
, (B6)

�̃zz = 4π2

τ0

[
1 − 8η2 + 57η4 − 90η6

2
+ 6η2nz�1 + �2

1

2

+1 − 8η2 + 21η4 − 18η6

2
�2

3 + q2

Q2
0

]
, (B7)

where we used the basis vectors {x̂, ŷ, ẑ} as defined in
Sec. II A.
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