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Multilayer graphene lattices allow for an additional tunability of the band structure by the strong perpendicular
electric field. In particular, the emergence of the new multiple Dirac points in ABA stacked trilayer graphene
subject to strong transverse electric fields was proposed theoretically and confirmed experimentally. These new
Dirac points dubbed “gullies” emerge from the interplay between strong electric field and trigonal warping.
In this work, we first characterize the properties of new emergent Dirac points and show that the electric
field can be used to tune the distance between gullies in the momentum space. We demonstrate that the band
structure has multiple Lifshitz transitions and higher-order singularity of “monkey saddle” type. Following the
characterization of the band structure, we consider the spectrum of Landau levels and structure of their wave
functions. In the limit of strong electric fields when gullies are well separated in momentum space, they give rise
to triply degenerate Landau levels. In the second part of this work, we investigate how degeneracy between three
gully Landau levels is lifted in the presence of interactions. Within the Hartree-Fock approximation we show
that the symmetry breaking state interpolates between the fully gully polarized state that breaks C; symmetry
at high displacement field and the gully symmetric state when the electric field is decreased. The discontinuous
transition between these two states is driven by enhanced intergully tunneling and exchange. We conclude by

outlining specific experimental predictions for the existence of such a symmetry-breaking state.
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I. INTRODUCTION

Since experimental realization of graphene [1], two-
dimensional materials have been a focus of intense research.
The single-layer graphene band structure provided realiza-
tion of four copies of Dirac fermions. Moving from single
layer graphene to multilayer graphene lattices, it was demon-
strated that one can realize massive Dirac fermions [2], Dirac
fermions with (approximately) cubic dispersion [3,4], and
combination of massive and massless Dirac fermions [5].
Additional tunability of the band structure can be achieved
by applying transverse electric field. For the bilayer graphene,
it leads to the gap opening [6]. For stronger electric fields, the
interplay between the field and trigonal warping was predicted
to lead to the new set of emergent Dirac points in both
bilayer [2] and ABA-stacked trilayer graphene [7,8].

Recently the emergence of new Dirac points was demon-
strated experimentally for the ABA-stacking trilayer graphene
(TLG) [9]. Under strong external electric field, the low-energy
band structure consists of multiple band minima or “gullies”
(maxima for holelike bands) that come in triples due to Cs
rotational symmetry. Moreover, the position of these gullies
in the momentum space is tunable by the strength of electric
field. In a presence of sufficiently weak perpendicular mag-
netic field, such gullies would lead to threefold degenerate
Landau levels.

Similar gully configurations have also been reported in a
number of systems, i.e., SnTe-(111) [10], PbTe-(111) [11],
and Bi-(111) surfaces [12]. Presence of interactions is ex-
pected to split this degeneracy giving symmetry-broken states.
Reference [13] suggested that these symmetry broken states
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must be maximally “gully polarized,” e.g., that they are com-
pletely concentrated in one gully if distance between gullies in
momentum space is sufficiently large, so that one can neglect
intergully electron scattering. However, this condition is not
satisfied for the case of ABA graphene in the case of weak
electric field or strong magnetic fields.

In this work, we consider the interaction effects on the
gully degenerate Landau levels in the ABA trilayer graphene.
To this end we begin with characterization of the noninteract-
ing band structure of ABA trilayer graphene in presence of
strong electric field. The evolution of the band structure upon
application of strong transverse electric field was considered
in Refs. [7,8]. However, Ref. [7] focused mostly on the regime
of strong magnetic fields, whereas Ref. [8] concentrated on
study of the valley Hall state and associated edge states. In
contrast, here we focus on understanding different parameters
of the new emergent gullies that are relevant for the interaction
effects. We explore dependence of gully parameters on the
strength of electric field. In addition, we illustrate the presence
of multiple Lifshitz transitions in the band structure and also
emergence of higher-order singularity when three van Hove
singularities meet with each other.

After characterization of band structure, we discuss the
spectrum of Landau levels. We focus on the threefold de-
generate (provided one ignores spin) Landau levels in the
regime of weak magnetic fields. Although these LLs were
observed before [7,8], we investigate their structure in greater
detail. In particular, we discuss the splitting of LLs due to
magnetic breakdown and also study the form of individual
Landau levels wave functions since it controls the interaction
effects via form factors [14].
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After providing basic understanding of the band structure
and Landau level spectrum, we consider the effects of inter-
actions on the threefold degenerate Landau level at filling
v = 1. (We assume full spin polarization which is favored
by exchange and Zeeman energies.) Analytically we find that
the ground state at this filling factor is either polarized in
one gully, thus breaking C; symmetry, or is a coherent Cs
symmetric superposition of states in all three gullies. The
intergully scattering as well as tunneling between gullies,
which cannot be neglected for small intergully distances lead
to violation of the “gully polarization theorem” proposed in
Ref. [13]. We set up a self-consistent Hartree-Fock scheme
that takes into account both intergully scattering and tunneling
effects. Our calculations show that HF ground state undergoes
the first order phase transition as a function of electric field.
Thus we conclude that the ABA-stacked trilayer graphene
provides a perspective platform for probing the first order ne-
matic transition where spontaneous (partial) gully polarization
develops.

Our work is inspired by the experiment [9] that confirmed
presence of emergent Dirac gullies and suggested the presence
of symmetry broken states. We predict that these states can
be characterized by a nonvanishing expectation value of the
dipole moment. Motivated by the experimental setup that
includes encapsulated graphene, we consider the limit of
screened Coulomb interaction, where it plays a subleading
role compared to single-particle splittings. We note that recent
work also investigated the qualitatively different regime of
strong interactions in the suspended multilayer graphene sam-
ples [15] where interactions lead to gap opening even without
magnetic field.

The remainder of the paper is arranged as follows. In
Sec. II, we introduce the tight-binding model, discuss the band
structure and Fermi-surface topology in the absence of mag-
netic field. Section III considers behavior of the Landau level

sets of gullies related by C3 symmetry. In addition we discuss
the structure of the Landau level wave functions, since it
is important for determining the interaction effects. Finally,
Sec. IV considers interaction effects within the Hartree-Fock
approximation. We present analytical calculations using sim-
ple model in the gully basis. Later these calculations are
compared with numerical results from self-consistent Hartree-
Fock approximation. We conclude in Sec. V by discussing
experimental implications of our results.

II. REVIEW OF BAND STRUCTURE AND
EMERGENT DIRAC GULLIES

In this section, we discuss the properties of new emergent
Dirac points that were predicted in Refs. [7,8] in the nonin-
teracting band structure of ABA graphene subject to a strong
electric field. We concentrate on their physical properties,
i.e., anisotropy, using tight-binding parameters from recent
experiments. The new set of tight binding parameters used
here results in predictions that differ from earlier studies [7,8].
In addition, we also discuss Lifshitz transitions and report
existence of the higher-order singularity that was previously
theoretically studied in bilayer graphene [16].

A. Tight-binding model and band structure

We use the Slonczewski-Weiss-McClure parametrization
of the tight-binding model introduced in Ref. [17] to describe
the band structure of ABA trilayer graphene. The tight binding
description requires a six-atom basis corresponding to two
sublattices in three different layers. Via a suitable rotation of
the basis, the 6 x 6 tight-binding Hamiltonian can be brought
to the block form consisting of single-layer (SLG) and bilayer
graphene (BLG) like blocks, mixed by the external electric
field Aq:

spectrum in weak and strong magnetic field limits. We show Hyc Va
that at large external electric field, triply-degenerate Landau H = ( vT HBLIG>' 1)
levels (for one spin component) are formed corresponding to A
J
Hamiltonians of respective blocks read
_ Az — % v()JTT
HSLG_( VT 25+ 0)
@)
24+ A V2 —2urt vorr
i _ \/§v37ﬂ —2A, VoTT —~/2v4T
BLG = vr vorr F 8§ —2A, V2 ’
VoTr —V2urt V2y Bys+ A

where tight-binding parameters vy, Y1, Y2, V3, V4, ¥s, 8, Ap, and the momentum-dependent function 7 are described in the
Appendix A. In this work, we use the value of these parameters from Ref. [9] where they were determined by fits to experimental

data.

The matrix that is responsible for mixing between SLG and
BLG blocks is proportional to the potential difference induced
by transverse electric field Ay,

(A 0 0 O
VA1—(0 0 0 Al>. (3)

(

In the absence of transverse electric field A = 0 and the SLG
and BLG blocks are independent and resulting low-energy
band structure consists of SLG-like linearly dispersing band
and BLG-like quadratically dispersing band [5,7,8]. We note
both of that these low energy bands are generally gapped and
displaced with respect to each other.
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FIG. 1. Three dimensional plot of electron (a) and hole (b) band structure plot at A; = 100 meV with their projected contour plots near
K™ point. Energy axis is inverted in the hole band (b) for convenience. The gullies are labeled in order of decreasing energy as T1-T4.

B. Band structure in the gully limit

When the ABA graphene sheet is subject to the perpendic-
ular electric field, the nonzero matrix V,, in Eq. (1) hybridizes
the SLG and BLG bands. In addition, the SLG-like band
rapidly floats away from the neutrality point as A; increases.
In the limit of sufficiently high A; > 30 meV (correspond-
ing to electric field strength ~0.15V/nm), the interplay of
trigonal warping and electric field gives rise to a set of new
emergent Dirac points that we dub “gullies” in what follows.
These gullies have been discovered in Refs. [7,8]. Here we
concentrate on their physical properties, i.e., anisotropy, using
tight-binding parameters from recent experiments.

In Refs. [7,8], it was demonstrated that these emergent
gullies at large A can be understood from the so-called chiral
limit. In this limit, one retains only large tight-binding param-
eters vy, ¥1, v3, and A leading to the particle-hole symmet-
ric band structure. Then the original Dirac points at K* valleys
split into six off-centered massless Dirac points and a central
Dirac point. By including the previously neglected tight-
binding parameters, one breaks the particle-hole symmetry,
making the electron and hole band structures different from
each other. In addition, the tight-binding parameters that were
neglected in the chiral approximation, break the symmetry
between six off-center Dirac points splitting them into two
different sets each containing three Dirac points (see Fig. 1).
The three Dirac points within each set are related by C;
rotation symmetry. These two sets of off-center Dirac points
differ from each other by values of gap and other parameters,
as will be discussed below.

We label these gullies in order of decreasing energy as
T1-T4, see Fig. 1. On the electron side in Fig. 1(a), the inner
gully would be T1 while the outer one T2. On the hole side in
Fig. 1(b), the inner gully is T4 and outer one T3. The gullies’
positions and anisotropies are characterized respectively by
their distance to the K* points, the gap between each two
approximately particle-hole symmetric sets (T1, T4 and T2,
T3) and their effective mass ratios. These three parameters
are plotted as functions of A; in Fig. 2. While the field
dependence of Dirac mass was considered before [7,8], the
anisotropy of effective masses and distance of the Dirac points
from the K point in the reciprocal state were not investigated.
Moreover, due to the different set of tight-binding parameters,
the gap closure between T2 and T3 gullies happens at electric
fields that at least factor two smaller compared to previous
estimates [7,8]. The second set of gullies is also predicted to
have a gap closure at higher values of electric fields.

C. Lifshitz transitions and monkey saddle

The formation of gullies necessitates discontinuous change
of Fermi-surface topology leading to Lifshitz transitions [18]
that can be tuned by changing value of the chemical potential
u at fixed A;. Two such transitions occur on the hole side
and one on the electron side. They arise due to the merging of
three Fermi pockets from a particular gully into a single Fermi
surface as p changes. Fermi contours near the transition are
shown in Figs. 3(a)-3(c). The density of states has a van Hove
singularity and diverge logarithmically as v(u) ~ In | — wo|
where o is the value of chemical potential where Fermi
surface contours merge. Observation of these transitions was
reported in Ref. [9].

In addition to Lifshitz transitions, the band structure of
ABA graphene has a stronger singularity in the density of
states when three van Hove singularities merge at the origin
in momentum space, resulting in so-called “monkey saddle.”
Near this point the density of states diverges as a power law.
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FIG. 2. (a) The displacement of the gullies center relative to
the K point, Qa is monotonously increasing with electric field A;.
(b) Effective mass ratios reveal very anisotropic character of T1 gully
in contrast to its hole counterpart T4. (c) Gap between T2-T3 and
T1-T4 gullies has nonmonotonous dependence with electric field.
The gap closure happen for A; = 92meV for gullies T2-T3 and at
A = 185 meV between T1-T4 which is not shown here.
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FIG. 3. [(a)—(c)] Fermi contours at the three Lifshitz transitions
that happen at fixed A; = 100meV as a function of chemical po-
tential. First Lifshitz transition occurs at the electron side (a), while
transitions (b) and (c) happen in the hole band. Positions of the
outer and inner gully extrema with distances Qya = 0.053 and Q,a =
0.030 are marked by red and green spots respectively; see also Fig. 1
that shows band structure at the same value of A;. (d)—(f) show Fermi
contours of the inner hole gullies at fixed value of 4 = —7meV and
three different values of electric field, A; = 40, 60, and 80 meV,
respectively. In (e), the three van Hove singularities of a Lifshitz
point join at the origin and form the “monkey saddle.”

This can be seen by applying the same argument as in the case
of bilayer graphene [16]. We use notations where the saddle
point occurs at k = 0 and at zero energy, £(0) = 0. At this
point, the Fermi contours consists of six lines intersecting at
the origin, dividing the momentum plane into corresponding
regions with alternating signs in energy, see Fig. 3(e). From
here we deduce that near the origin, £ (k) must be proportional
to cos 3¢ where ¢ is the polar angle in the momentum plane.
Given that the spectrum itself is not singular, the lowest order
terms in the expansion of energy in k must be cubic. In polar
coordinates, the expansion reads

e(k) = ak’[cos 3(¢ — ¢o) + C1, )

where one can show that constant C satisfies —1 < C < 1.
Plugging this expansion into the expression for density of
states per unit area,

8 dly

YW =50 . 196 /0k|”

&)

(where g is the spin degeneracy), we obtain that v(u) diverges
as a power law,

v(p) ~ | — pol ™73,

where o is the energy where such monkey saddle occurs.
Since such singularity requires the simultaneous meeting of
three van Hove singularities, it occurs only at a particular
value of electric field A, & 60 meV. The singularity is lo-
cated on the hole side spectrum and is shown in Figs. 3(d)—
3(f) where for comparison, we also show the Fermi surfaces
at A smaller and larger than Aj.. While this singularity
occurs at the energy po ~ —7meV and is located within the
experimentally accessible range of electric fields, it seems to
be not resolved in the recent experiment reported in Ref. [9].

III. LANDAU QUANTIZATION

We now turn to studies of Landau level (LL) spectrum
of ABA-stacking graphene. These sets of LLs were shown
in Refs. [7,8], although previous work did not consider their
properties in details. In this section, we focus on the behavior
of those gully LLs as a function of A; at weak magnetic
fields. We provide a detailed study of their energy splittings
attributed to the magnetic breakdown and visualize the struc-
ture of their wave functions. These results are used in Sec. [V
to qualitatively understand the role of interaction effects.

To obtain the spectrum, exact diagonalization is performed
using the Hamiltonian (1). With a perpendicular external
magnetic field B, the quasimomentum operator 7 in Eq. (2)
is replaced by canonical momentum IT =7 — e(A, + iA,)
where A is the vector potential and e is the elementary charge.
In the Landau gauge which we adopt throughout this paper,
IT is the creation (annihilation) operator acting in space of
LL indices, n in K™ (K~) valley. Below we present results
of numerical study of LL spectrum for B = 1.25 and 6 T at
different values of transverse electric field, A;. We emphasize
that spin degree of freedom is not considered in this section.
Indeed, presence of spin simply leads to an approximate
additional twofold degeneracy of all LLs due to small values
of Zeeman splitting.

A. Regime of weak magnetic fields

First, we investigate the LL spectrum at relatively small
value of magnetic field, B = 1.25T, presented in Fig. 4(a).
Most LL features can be understood from the changes of
band structure, corresponding to the quasiclassical approxi-
mation. Let us review basic changes that were discussed in
the literature [7,8], although for different values of magnetic
field. We see immediately that the two LLs with energies E ~
+14 meV at A; = 0 that move away from neutrality point
with increasing A; correspond to the tips of the monolayer
bands that float away. The approximately equidistant LLs
correspond to the remaining two low-energy bands. Their
energies decrease as A increases since the zero-field low-
energy bands move towards the neutrality point with increas-
ing electric field. Lifshitz transition positions are marked by
regions where LLs display numerous anticrossings that are
induced by the tunnelings between different pockets of Fermi
surface (magnetic breakdown).

In what follows, we focus on the few LLs in vicinity of
zero energy which were not studied before. These LLs form
groups of three as A increases, see Fig. 4(a). Different groups
correspond to sets of three gullies related by the C; symmetry.
The four emergent triples of Landau levels are labeled also
as T1-4 in correspondence to the labels of gullies in Fig. 1.
We note, that even at a weak magnetic field, B = 1.25T and
experimentally accessible values of A}, each gully hosts only
three approximately degenerate LLs. Below we concentrate
on exploring the structure of the wave function of these triply
degenerate LLs. These results will be used in Sec. IV to
understand the splitting of their approximate degeneracy by
interaction effects.

The triplet LL states can be described using two natural
choices of basis. Analytically, when gullies are well-separated
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FIG. 4. In (a), the spin-degenerate spectrum at B = 1.25 T is plotted as a function of A (left) with blue (red) for LLs in the K* (K~) valley.
The almost equispaced LLs away from neutrality point can be understood semiclassically. This behavior breaks down near the Lifshitz points
where LLs intertwine onto each other, forming a set of multiple avoided level crossings. Note that at negative energies there are two such sets,
since there are two Lifshitz transitions in the hole band. Almost triply degenerate LLs are formed at large A;. These are labeled T1-4 in order
of decreasing energy at A; = 120 meV. Intersection of two triplets at A; ~ 100 meV correspond to the joining of gullies discussed in Sec. II.
The dominant wave-function components of three T2 states are concentrated in B, sublattice and are plotted at (b) A; = 40 and (c) 80 meV,
the LLs from the T2 triplet in each row are given in the order of increasing energy from up to down. The wave function components of T2
triplet shift to higher LL indices as A, increases. The corresponding density plot visualizes the wave function in real space and shows that the
gully distance from origin increases with A;. The axes are scaled by the lattice constant. In (b) and (c), the x- and y-axis range is (—600, 600)

in units of lattice constant a with the origin at the K point.

in the momentum space, we use a particular set of basis func-
tions centered around each gully, and the intergully tunneling
is treated as a perturbation. In such a “local basis,” the wave
functions in the Landau gauge can be written as

X

) el 2_ %2 2
biny (X, y) = A, QXI5 %*/(2’3)’1"( )X""’ ©

|ei|lp

where n, i correspond to the LL index and gully index re-
spectively, X is the guiding center coordinate and ;, is the
fixed pseudospinor in layers and sublattices. [z = /(fic/eB)
is the magnetic length, Q; is the distance from the origin to
the center of the given gully in momentum space and H, (x) is
the nth Hermite polynomial. Constants «; and y; characterize
anisotropy of the gully, and A, is the normalization factor;
their definitions and derivation of Eq. (6) are delegated to
Appendix B. In the local basis, each gully contains only the
n = 0 LL, since gullies are fairly shallow in the physical range
of A and higher LLs would only appear at smaller B. Hence,
in what follows we discuss only wave functions with n = 0 in
the local basis.

However, in our system, the gullies are in general close to
each other in momentum space, so that intergully tunneling
cannot be neglected already at very moderate values of mag-
netic field. Therefore, while the local basis is convenient for
analytical considerations, in the limit of significant intergully
tunneling it is more natural to consider the “global basis”
which expands triplet LLs in isotropic LL wave functions

centered at K* on a given layer and sublattice o,
Vanx (%, ) = Ape™ 5 CDH, (x/lg)xe, (D)

where x, is the pseudospinor corresponding to
layer and sublattice o that has six possible values:
Ay, Bi, A, B, Ajz, and B;. This is the basis that is
used by numerical diagonalization, and in Figs. 4(b) and
4(c), we illustrate the structure of wave functions of T2 LL
in this basis around K™ point. Since LLs in triplet T2 are
concentrated on B, sublattice, the wave function of T2 can be
approximated as

W x (X, y) ~ Z CBy nVBynx (X, ¥), (8)

and we show in the bar chart |cp,,|/* only. LL from
other triplets are concentrated on B, for triplet T1 and on
A}, By, Az, and Bj; sublattices for triplets T3 and T4. More-
over we note that wave function coefficients ¢, are nonzero
for LL indices n that differ by multiples of three. This feature
is a consequence of the C; invariance of the Hamiltonian.
This symmetry enforces the wave function to be a coherent
superposition of different gullies.

From numerical results, we observe that wave function has
lcByn |2 peaked at some ny,,x that is generally not close to zero.
This aspect of the LL wave function in the global basis can
be understood using the simple analytic structure of the wave
function in the local gully basis. Indeed, the coefficients cg, ,
can be calculated as overlaps between basis wave functions
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@iox (x,y) and ¥p,ux (x,y) from Egs. (6) and (7). The basis
functions in Eq. (6) have displaced origin, and presence of
the “boost operator” exp(iQ; - r) causes expansion coefficients
to be peaked at np.,x ~ +/Qlp. Thus as centers of the gullies
move further away from K point, and Q increases, triplet
level components are concentrated at higher LL indices, cf.
panels (b) and (c) of Fig. 4.

The same trend is also apparent in the plots of the real-
space probability density using quasiclassical wave functions.
The quasiclassical wave functions are obtained from an con-
volution of a basis states ¥,,x(x,y) (indices «, n are fixed)
with a Gaussian envelope function Cx that maximally local-
izes the resulting wave packet, see Appendix D 3. The proba-
bility density can be understood intuitively as concentrating
around the classical cyclotron orbit. Since, in a magnetic
field, real-space quasiclassical trajectories of electrons are
obtained from constant energy contours in moment space by
7 /2 rotations and rescaling by /3, probability densities reflect
gully positions. Comparing density plots in panels (b) and (c)
in Fig. 4 we observe that the dominant weight is displaced
further away from K point with increasing A.

Finally, we return to the discussion of the splitting of three-
fold degeneracy of the triplets by magnetic breakdown. The
process of tunneling between gullies is automatically taken
into account by exact diagonalization, hence the individual
LLs in triplets T1-T4 in Fig. 4(a) oscillate with respect to
each other. On the other hand, at the level of analytical (gully)
LL wave functions, the effect can be taken into account by
introducing a tunneling between triplets that has a form

0O ¢ t*
Hr=|t 0 1t ©)]
t 0

in the local basis of triplet states. Such tunneling
breaks the triplet degeneracy €; = € 4 2|t|cos ¢, €33 = € —
2|t| cos(¢p =21 /3), where ¢ is the phase of ¢ and € is the LLs
energy without tunneling. The effective tunneling can be cal-
culated using analytic framework of Ref. [19]. Its magnitude
can be estimated as [19]

T m,
|t] ~ woexp (——szg [= ) (10)
8 my

my , is the effective mass with principle x-axis joining two
gullies, Q is the magnitude of the classical forbidden momen-
tum range. wy is the cyclotron frequency associated with the
motion on the semiclassical orbit. In the limit of large A; and
gully separation, Eq. (10) becomes

|t| ~ woexp (— CA}/B). (11)

C is a constant that depends on band geometry and tight-
binding parameters. We expect that w, varies slowly with Ay,
thus in the limit of weak magnetic breakdown, the splitting
between triplets is expected to be exponentially sensitive
to Al.

B. Regime of strong magnetic fields

In this section, we follow the fate of the low energy
triply degenerate LLs as the magnetic field strength is in-
creased. Figure 5(a) shows the spectrum as a function of B at

A1 = 100meV. Since the band structure is determined by
Ay, at small values of B only the triplet cyclotron gaps
change. Upon increasing magnetic field, amplitude of splitting
of triplet LL. energy increases due to increased tunneling.
At sufficiently large B, the intergully tunneling becomes so
strong that “triplet” states entirely lose their gully character
due to magnetic breakdown between different gullies.

This can be visualized by plotting the energy spectrum at
B =6T as a function of A, see Fig. 5(b) where the triplet
energy splittings become larger than cyclotron gaps between
different triplets. Magnetic breakdown effects become strong
when 8kl ~ 1, where 8k is the smallest distance between two
Fermi contours corresponding to the semiclassical gully LLs.
At large A or small B, when the size of Fermi surface of a
given LL is small comparing to intergully distances AQ, §k ~
AQ ~ Ay, and the magnetic field corresponding to the onset
of magnetic breakdown increases quadratically with electric
field, B ~ A%, see Eq. (11).

Finally, we illustrate the structure of LL wave functions
in the regime of strong magnetic breakdown in Fig. 5(c). We
concentrate on the structure of wave function components
and probability densities of T2 at B = 6 T. From the plots of
the real-space probability density, we conclude that LLs are
concentrated near the origin and look qualitatively different
from the regime of small B; see Fig. 4(c). However, the “mod
3” pattern in expansion coefficients described in the Sec. I[IT A
still persists. This feature can be potentially used for the
tunability of interactions in the regime of strong electric fields,
helping to realize interesting fractional quantum Hall states
and phase transitions via tunability of form factors [20].

IV. INTERACTION EFFECTS

As we discussed in previous section, in the absence of
interactions and magnetic breakdown, the single-particle de-
generate eigenstates are linear superpositions of gully states
of the same LL index that realize three irreducible C; repre-
sentations. Electron-electron interactions are expected to alter
this picture considerably, potentially resulting in symmetry-
breaking ground states. In this section, we focus on interaction
effects in the case of v =1 filling. After a brief review of
variational Hartree-Fock approximation that uses the local
gully basis, we use them to present analytical approximation
at large intergully distances. Then we perform numerical
study of Hartree-Fock states that fully incorporates effect of
intergully exchanges that are partially neglected in the analytic
treatment. In both cases, we find the phase transition between
gully polarized state and gully coherent state to be of the first
order.

In this section, the magnetic length /p is set to one.
Moreover, as we discuss below, we largely ignore spin de-
gree of freedom. Exchange interactions favor complete spin
polarization whereas Zeeman field fixes the direction of this
polarization.

A. Hartree-Fock approximation in gully basis

To set up analytical calculations, we first discuss the HF
approximation in the basis of gully LLs. We only consider
one set of C; symmetric gullies. Thus the total Hamiltonian
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100 meV plotted as a function of B shows that triplet degeneracies are rapidly lifted with increasing

magnetic field. (b) LL spectrum at B = 6T is plotted as a function of A, illustrates that triplets lose their gully character as is manifested
by avoided crossings between different Landau levels. (c) Wave-function components on the B, sublattice of LLs that formally belong to T2
triplet [marked by dots in (b)] show that eigenstates are concentrated near lower LL indices compared to Fig. 4(c) due to reduced magnetic
length. Magnetic field is B = 6 T, electric field is A; = 80 meV. The x- and y-axis range is (—600, 600) in units of lattice constants with the

origin at the Kt point.

has the form:
H = Hy + U + Hzm, (12)

where Hj is the spin-degenerate single particle Hamiltonian
and Hyy is the Zeeman term. The interaction term is given by

U=%/ﬁ%fmwn—mWmemmewa

13)

where U (r) is the two-dimensional Coulomb potential.

In what follows, we are interested in the v =1 ground
state. The single-particle Hamiltonian H, does not depend
on spin, whereas exchange terms in U(r) favor electron
polarization. Therefore we assume that all spin is aligned
with the magnetic field to minimize the Zeeman energy Hyy;.
This allows us to omit spin degrees of freedom in what
follows [21].

In Sec. IV B, we consider large intergully distances and
weak magnetic field, such that the energy splitting between
different LLs from the same triplet is negligible. Then both
Hy and Hzy in Eq. (12) give an overall energy shift and can
be ignored. In order to treat the remaining interaction term and
find the ground state at v = 1, we use the HF approximation
which finds the best wave function in the variational manifold.
We write the W operators in Eq. (13) in the second quantized
language,

W)= G (Natin., (14)
in,X

where a;,x is the electron annihilation operator and the basis
wave function ¢;,x (r) is given in Eq. (6). The HF variational

wave function for a given LL n,

In, {c;}) = ]_[ (anmx)w (15)

depends on three complex parameters, c¢;, which specify am-
plitudes of degenerate gully states.

Using this variational wave function we calculate the
expectation value of interaction term and optimize it over
values of ¢;. In the process of calculation, we use expectation
values of creation and annihilation operators. For instance,
two-operator expectation value reads

<n {Cl}|al|n|X]al2n2X2|n’ {Ci}> - Cllclzan]nz(SXle-

Assuming that the density-density term is neutralized by a
positive charge background, we obtain the exchange energy
as a quartic polynomial in ¢;:

3

_ (n)
Uy = ) E Jlll4 lzhcllclzclxcl4 (16)
i1,0,i3,i4=1

2
W = [V@ELCORE @SS an

where F/7'(q) are form factors derived in Appendix B.

U(q) = 2me*/[ge(q)] is the Fourier transform of the
Coulomb potential where £(q) is the dielectric function de-
scribing screening. For B = 1.25 T and within the accessible
range of A, T1-T4 correspond to the zeroth LL in each gully,
therefore in Eq. (16) only such wave-functions are considered
and we omit LL index n = 0 in the following.
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The exchange integrals J;;, i, in Eq. (17) characterize
interactions between LLs and can be constrained using lattice
symmetries. Note that one can neglect the dependence of U (¢)
on the structure of wave functions in layer space. Indeed,
the interactions between layers introduce an additional factor
exp(—qd) where d is the layer distance [see Eq. (D5) in Ap-
pendix], and the important range of integration in Eq. (17) is
qlp ~ 1.1In graphene, adjacent layer distance is d = 0.335nm
and I > d always holds, therefore, the layer structure of the
wave function can be neglected in Eq. (16).

The expectation value of interaction energy U is minimized
with respect to ¢; to find the ground state. Minimization of
Eq. (16) is in general not possible analytically. However,
as will be shown in the next subsection, the situation is
considerably simplified in the limit of large gully distance and
small anisotropy. This allows us to derive analytical results
that illustrate qualitatively the evolution of ground state as a
function of gully distance which is tuned by A;.

B. Analytical results in gully basis

From Eq. (16), we see that each pair of indices in J;j, i,
refers to matrix elements taken between the two gully states.
Transitions between different gully states are suppressed ex-
ponentially by the momentum space distance Q between cen-
ters of the two gullies in the reciprocal space, see Appendix B.
In the limit of large Q, exchange integrals of the form Jj; z; are
dominant and, neglecting scattering between different gullies,
Eq. (16) simplifies into

1
Uen = =5 D _lei Plei i i (18)
i1,ip
This is also the limit considered in, i.e., Refs. [13,22-25]. Due
to C3 symmetry, J;; ,x = Jix have same values for all diagonal
elements Jy and all off-diagonal ones J;. Then the ground state
is given by minimizing

1
Ux = 3 —J()Xi: lei* — U ;}; lci*lcx|? (19)

that follows from Eq. (18). Eq. (19) is minimized by the
fully gully-polarized c¢; = 1 state, provided that the gullies are
anisotropic, which leads to Jy > J;. [13,23] When J; = Jj, the
system has SU(3) symmetry in the space of gully states and
Uex = —Jo for any values of ¢;.

However the maximal gully polarization cannot persist
when gullies become close to each other. Indeed, in the
opposite limit of very small intergully distance, we expect
all terms in Eq. (18) to be of comparable magnitude J. In
this limit, the HF ground state becomes a coherent super-
position of N =3 gully states. This can be seen from the
following argument: the coherent state has ¢; ~ 1/+/N and
Uex ~ =J Y i i, (1/7/N)* ~ —JN?, which is energetically
favorable to gully polarized state with Ugx ~ —J.

By the above argument, the maximal gully-polarization
is expected to break down upon increasing intergully scat-
tering. To investigate this transition in greater details, we
include first order corrections due to intergully scattering in
addition to terms in Eq. (19). These are terms of the form
Ji[,kllci|2czc, with k # 1. In the limit of small anisotropy,

0.14¢
0.12¢
0.10¢
0.08¢
0.06¢
0.04F
0.02¢
0.00 : : :

1.2 1.3 1.4 1.5 1.6

Ay, arb.unit

d, arb.unit

FIG. 6. The dipole moment calculated from Eq. (21) has a jump
as a function of A;. The state is obtained by minimizing the Eq. (20)
with couplings setto Jo —J; = 0.3 and J, = exp(—Af)‘

we could regard J; ;; as calculated with the isotropic gully
wave-functions and the only parameter is O, the magnitude
of momentum transfer between gullies / and k. Thus, to a
first approximation, all J;; 5 = J» can be regarded as equal
due to rotational symmetry. From Eq. (B4) we see that J, ~
Jo exp(—Q?/4), where Q is measured in units of inverse mag-
netic length. We can also neglect the single particle energy
splitting due to tunneling. It is of the magnitude |f| and, from
Eq. (10), |t| ~ wgexp(—m Q?/8) ~ wo(J2/Jo)'>7 <« J,. Thus
the resulting exchange energy reads

1
Uex = — 5 ]0 Z |C,‘|4 +J1 Z |C[|2|Ck|2
i i#k
) Z c?cm|ck|2. (20)
i#m,k

The nature of the ground state that minimizes Eq. (20) de-
pends on the value of dimensionless parameter k = J,/(Jy —
Ji). For small k, the ground state is still strongly gully
polarized but with nonzero components in all gully basis. Ata
certain critical k. ~ 0.25, the ground state becomes fully gully
coherent with c; = ¢, =c3 =1/ /3 and the phase transition
is of the first order (see detailed discussion in Appendix C).

To characterize the nature of C3 symmetry breaking transi-
tions, the most natural order parameter is the dipole moment.
To understand qualitatively its behavior, we use the quasiclas-
sical dipole moment which is the time-averaged position vec-
tor of classical cyclotron motion [13]. Here we approximate
it as the sum of real-space position vectors r; of each gully
multiplied by their weight in the wave function, |c;|*> and LL
degeneracy Ny = eB/2m I

d=eNy» lcil’r:. 1)

We now consider the dipole moment of our HF state using
Eq. (21). Since, in a magnetic field, real-space quasiclassical
trajectories of electrons are rotated moment space orbit, the
magnitude of r; is proportional to Q; o< A;. The behavior
of the dipole moment across the phase transition is shown
schematically in Fig. 6, where the dipole moment d is plot-
ted as a function of A; which controls the suppression of
intergully scattering. The discontinuous jump reveals the first-
order phase transition where spontaneous gully polarization
develops.
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C. Numerical results for TLG triplets

In the analytical treatment presented above, we ignored
gully anisotropy and single particle energy splitting due
to magnetic tunneling. However, in realistic systems, the
anisotropy of gullies cannot be regarded as a small perturba-
tion. Also, magnetic breakdown is already significant even at
the very weak fields. Hence, below we investigate numerically
the nature of the v = 1 HF ground state, using LL coefficients
obtained from exact diagonalization outlined in Sec. III. Since
we use the exact Hamiltonian expanded near the K* points,
this procedure automatically takes into account all the tun-
neling and anisotropic effects. While these perturbations may
change the location of phase transition where spontaneous
gully polarization develops, we observe that it remains to be
of the first order. For numerical HF calculations, we follow
the approach outlined in Ref. [26] and use an interpolation
formula for the dielectric function &(g) to take account of
screening [27]. Details of our numerical simulation and choice
of screening are discussed in Appendix D. In addition, we
discuss the qualitative effect of screening in the end of this
section.

We apply the HF procedure to triplets T1-T4 (see Fig. 4)
in the range of values of A;. We note that setup when A is
a tuning parameter is more natural, since changing magnetic
field would lead to a varying filling factor. Before discussing
generic results, we illustrate the wave functions deep in the
gully polarized and symmetric phases; all electron spins are
up. For instance, the HF calculation for T3 at A} = 50 meV
reveals gully polarized state, whereas at A; = 40 meV, the
HF ground state coincides with the single particle state;
see Figs. 7(a) and 7(b) for the wave-function visualization.
Another example is provided by HF calculations on T4 that
has larger anisotropy as can be seen from Fig. 2(b). As shown
in Figs. 7(c) and 7(d), at A; = 70 meV, the HF eigenstate co-
incides with the single particle state and at A} = 80 meV, the
HF state becomes gully-polarized. Symmetry breaking occurs
at much closer intergully distance, which is consistent with
analytic arguments in Sec. IV B. Indeed, the high anisotropy
of pockets in T4 reduces the magnitude of intergully scattering
form factors in exchange integrals.

Gully polarized states can be accessed experimentally
by measuring dipole moment. The explicit expression for
the expectation value of the dipole moment is given in
Appendix D 4. Fig. 8 shows the dipole moment d calculated
for triplets T1-4 as a function of A;. It might seem from
Fig. 8 that, for all triplets and just below the critical A; value,
d has a small and smooth initial increase, then undergoes a
discontinuous change at the critical point. We believe this
is due to the slowness of numerical convergence near the
critical point: while our iteration number is sufficient for
convergence of HF loops for most A values, near the critical
point, the numerics fail to converge and the initial small d
values decrease considerably with more iterations. Thus, the
transition is still expected to be first order. In Appendix D 4,
we present additional arguments in support of this statement.

We see from Fig. 8 that, while T2-4 exhibit one single
discontinuity in dipole moment, several transitions occur for
T1. We attribute the alternating appearance and vanishing of
dipole moment in T1 the large splitting of energies of single

FIG. 7. Real-space probability densities for T3 filling factor 1 HF
ground states are plotted at (a) A; = 40 meV; (b) A; = 50meV. HF
ground state in (a) coincides with the single-particle eigenstate while
in (b) it exhibits gully polarization. Real-space probability densities
for T4 filling factor 1 HF ground states are plotted at (c) A; =70
and (d) 80 meV. In (c), the HF state coincides with the single-particle
one. In (d), it is strongly polarized into one of the gullies. The x- and
y-axis range is (—600, 600) in units of lattice constant a with the
origin at the K~ point.

particle LLs in this triplet due to magnetic breakdown (see
Fig. 4). In addition, the development of gully polarization for
T2 happens at lower value of A;. This can be explained by

(a) 1.5+ (b) 1.5
CR R
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‘ ! ! |
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FIG. 8. (a)—(d) show discontinuous change of dipole moments as
a function of A for T1-4 respectively. In particular, the oscillating
behavior of T1 dipole moment is due to the oscillation of single
particle energies of triplets with A;.
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the weaker tunneling between different pockets in T2 and,
consequently, smaller splitting of degeneracy. We also con-
clude from comparing values of A; where transition occurs
and Fig. 2(a), that gully polarization sets in for T2 at greater
intergully distance compared to T1-4. This is consistent with
the smaller anisotropy of triplets T2-3 compared to T1-4, as is
shown in Fig. 2(b).

Finally, we comment on the form of dielectric function
&(g) used in numerical HF calculations above. We have
used an interpolation formula for e(g) in the limit of strong
screening which is suggested by measurements in Ref. [9].
This approach provides an order of magnitude estimate, that
qualitatively agrees with the range of A; where experiment
begins to resolve the large gap between triplets [9]. The re-
alistic fully microscopic calculation of screening is challeng-
ing as it requires the knowledge of microscopic interactions
in the system and incorporation of effects of filled Landau
levels into screening. However, we can understand the overall
effect of weaker screening (provided that the overall scale of
interactions remains fixed) qualitatively. Generally we expect
the Coulomb potential to remain unscreened at short distances
(large momenta) and suppressed at larger distances (small mo-
menta). Since intergully scattering destroys gully polarization,
qualitatively we expect the strong screening to favor gully-
coherent states. Indeed, stronger screening reduces the relative
ratio between exchange integrals for intra-gully scattering and
intergully exchange and scattering. In the opposite limit of
weak screening, we expect gully polarization to set in at even
smaller Aj.

V. SUMMARY AND OUTLOOK

In this work, we focused on the role of interaction effects
in the ABA-stacking trilayer graphene in presence of strong
transverse electric (displacement) field and magnetic field.
In this regime the single-particle band structure is charac-
terized by new emergent Dirac points—gullies—that were
theoretically predicted in Refs. [7,8] and recently observed
experimentally in Ref. [9]. First, we characterized properties
of gullies in a noninteracting band structure using the recently
obtained set of tight-binding parameters. In addition, we
identify multiple Lifshitz transitions and higher-order singu-
larity of “monkey-saddle” type that can be tuned by chemical
potential or displacement field.

In presence of weak transverse magnetic field, these gul-
lies lead to a threefold degenerate Landau levels observed
earlier [7,8]. Moving beyond the results obtained earlier, we
considered the structure of wave functions of these threefold
degenerate LLs. The understanding of the structure of wave
functions and effects of magnetic breakdown was used to un-
derstand the lifting of the threefold degeneracy by interaction
effects. We considered the effect of interactions on threefold
degenerate sets of LLs at integer filling v =1 within the
Hartree-Fock approximation. In a case of strong displacement
field corresponding to gullies being well-separated in recipro-
cal space, interactions favor states with gully polarization that
break C; rotational symmetry. However, at stronger magnetic
fields or smaller values of displacement field we find a gully
coherent state. Within the Hartree-Fock approximation, the
breakdown of gully coherence happens via first-order phase

transition that is characterized by an emergence of nonzero
expectation value of the dipole moment.

Our results suggest that multilayer graphene is a promising
platform for investigating interaction effects. Without mag-
netic field, singularities in density of states at Lifshitz points
and monkey saddle may potentially host novel interaction-
induced states. The particularly promising region to search for
such states is between two Lifshitz points on the hole side,
where the experimental quantum capacitance measurements
confirmed the existence of the region with particularly high
density of states [9].

In presence of magnetic field, the ABA graphene is ex-
pected to host interaction-driven symmetry broken states sim-
ilarly to the case of other multi-valley platforms such as SnTe-
(111) [10], PbTe-(111) [11], and Bi-(111) [12]. However, the
ABA trilayer graphene enjoys additional tunability compared
to other platforms. The displacement field changes the dis-
tance between gullies in reciprocal space. As we discussed
above, there exists the first order phase transition separating
the gully-coherent and partially gully-polarized ground states.
This phase transition can be tuned by the strength of displace-
ment field. It is characterized by emergence of nonzero dipole
moment in the gully polarized state. Thus biased ABA trilayer
graphene allows for observation of phase transition that may
be inaccessible in other multivalley materials where gullies
are well-separated.

Recent realization of extremely high-quality ABA
graphene encapsulated in hBN with graphite gates, Ref. [9],
provides the first step towards observation of the physics
discussed above. Indeed, the experimental data reported in
Ref. [9] strongly suggest existence of symmetry broken states
at integer fillings of gully LLs. However, establishing the
nature of these states requires further investigation. On the
experimental side, it would be interesting to perform transport
measurements on these states that can be potentially capable
of detecting anisotropy that originates from C; symmetry
breaking. Alternatively, scanning tunneling microscopy
(STM) can be potentially used to directly visualize LL
wavefunction profiles pinned by local impurities [28,29].
Therefore STM could potentially be useful for probing
symmetry-breaking states in our system, although more
detailed study is needed to understand feasibility of such
setup.

Theoretically, the dielectric function is an important ingre-
dient used in the Hartree-Fock calculations, that is challenging
to calculate realistically. Hence predicting the exact location
of the phase transitions theoretically remains challenging. As
we discussed in Sec. IV C, qualitative effect of weaker screen-
ing (provided that overall scale of interactions stays the same)
is the shift of gully polarization transition to smaller values
of displacement field. Experimentally, this may enable tuning
the location of phase transition via changing the dielectric
thickness or even using suspended samples [15].

Finally, we discuss the physics beyond the Hartree-Fock
approximation considered in this work. The analytical con-
siderations in Sec. IV presented a model with an approximate
SU(3) symmetry in the space of gully states, which is ex-
plicitly broken by small anisotropy and intergully scattering.
Provided that symmetry breaking is weak, the disorder may
lead to a presence of domains with different order parameters.
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Moreover, the low energy excitations are given by ‘gully-
wave’ Goldstone modes may influence the physical prop-
erties of the system. Both of these ingredients are beyond
the naive Hartree-Fock approximation with spatially uniform
order parameter adopted here. The disorder and Goldstone
mode effects were considered for two-valley systems with
approximate SU(2) valley symmetry [23-25,30]. In the SU(2)
case, valley configurations can be formally characterized
as spin states and mapped to an effective O(3) non-linear
sigma model. The model predicts the existence of charged
topological excitations at domain walls that separate different
valley coherent configurations [23-25]. In addition, Ref. [23]
suggests that weak disorder might be sufficient to destroy
macroscopic gully polarization but preserve gapped quantum
Hall state. We expect similar topological defects to be present
in our system. Thus the study of effective theory for Goldstone
modes in the SU(3) case and understanding of disorder effect
remains an interesting open question.
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APPENDIX A: BAND STRUCTURE WITHOUT
DISPLACEMENT FIELD

We use the Slonczewski-Weiss-McClure parametrization
of the tight-binding model introduced in Ref. [16] to describe
the band structure of ABA trilayer graphene. The Hamiltonian
contains six tight-binding parameters that describes hopping
between different sublattices. We denote as A; (B;) atoms
from A (B) sublattice, and index i =1, ..., 3 labels three
layers. Parameter )y controls A; <> B; hopping within the
same layer; y; determines the hopping between atoms atop
of each other, B 3 <> A; in our notations. Next, the parameter
y3 corresponds to hops A 3 <> B, and determines the trigonal
warping. Parameter y; labels hopping amplitude between
atoms from same sublattices on adjacent layers, A3 <> A,
and B3 <> B,. Finally, much weaker parameters y, and ys
determine hoppings between two outer layers, A; <> A3 and
B, < Bj, respectively.

In addition, we introduce the parameter § to account for an
extra on-site potential energy for B, A, and Bj sites which are
on top of each other. Parameters A, are used to describe the
effect of external electric field and charge asymmetry between
middle and outer layers of the ABA-stacking graphene. They
are related to the layer potentials U, ... Us; as [5,31-33]

U, UZ, Ay = (—e)Ul 20U, + U3.
2 6

We note that the above parametrization is spin-independent:

in the absence of the magnetic field, the spectrum is doubly

spin-degenerate.

The complete Hamiltonian can be separated into the tri-
layer Hy in the absence of external electric field and Hy,,

(A2)

Ay = (—e) (AD)

H =Hy+ H,,.

We choose as our basis the atomic orbitals Ay, B, A,,
B,, Az, B; and write the two terms in the Hamiltonian as

Ay Yoty Yaly V3lk z 0
Yoty 0+ A 7 vatl 0 B
H, Vatk 71 §—=2A1  wty  vak 71

vty Valk Yotk —2Ay  yty  vat
z 0 Z V3l A Yoti
0 s Y1 vaty  votk S+ A
(A3)
Hp, = diag(A;, A1,0,0, —Aj, —A)). (A4)

In Eq. (A3), . is a function of quasimomentum k,

3
t = Zexp(ik -a;) = —1 — 2exp(+/3ik, /2) cos % (A5)
i=1

where the summation is carried over position vectors a; con-
necting an A; site to its nearest neighbors in a single hon-
eycomb lattice: a; = (0, 1/«/§), a3 = (F1/2, —1/2\/§).
Quasimomenta are given in units of inverse lattice constant
a=246A.

The values of tight-binding parameters are usually deter-
mined by matching the tight-binding structure to the exper-
imental data. Some of the parameter sets may be found in
Refs. [34-37]. In what follows, we adopt the values of tight-
binding parameters determined in Ref. [9] using a combina-
tion of experimental data at zero magnetic field and Landau
level spectrum. The values of these parameters read

Yo = 3.1 eV, Y= 0.38 CV,
y3 =0.29eV, y4=-0.141¢V,
§ =35.5meV, A, =3.5meV.

y, = —21 meV,
s = 50 meV,
(A6)

At low energies, we expand #; from Eq. (AS5) in quasimo-
mentum near its two minima K+ and K —, which are located at
(447 /3, 0) in the hexagonal Brillouin zone. Correspondingly
in Eq. (A3), we replace y;t; with v;r, where

T =E&k + iky, hv; = TG%‘, (A7)
with & = £1 for K and K~ points, respectively.

In the absence of external electric field, the Hamiltonian
(A3) can be shown via a change of basis to consist of
monolayer- and bilayerlike bands [5]. The new basis is

Ay —A3 B —B; A +A;3 By +B3>
: : By Ay, =2 (A8)
< V2 V2 N I

and the Hamiltonian now acquires the form
Hsig  Va
H= ),
( Vi HBLG)

where blocks are defined in Eq. (2).

APPENDIX B: CALCULATION OF FORM FACTORS AND
THE EXCHANGE INTEGRALS

In this Appendix, we obtain analytical expressions for
the form factors and exchange integrals in Eq. (18). The
Hamiltonian has N (N = 3 in physical case) gullies and is
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Cy symmetric. In the neighborhood of ith gully center, the
Hamiltonian without magnetic field has the form

(i)2 (02
2 L S e (B1)
2my  2my

Letting the first gully to have a center at p, =0 (i.e., on
the p, axis), each p'”) is given by successive rotation by an
angle 6; with 8; = 0. The energy spectrum and eigenstates for
(B1) in a magnetic field is found in Ref. [10]. Introducing
the anisotropy parameters for the ith gully «; = ncosé, +
isin®;/n, Bi = cos6;/n + insin;, n = (my/my,)"/*, and the
creation operator

~F

1
a; = —(—(a;px +iBipy),
T, Px +iBipy

it is straightforward to verify that the Hamiltonian in each
gully can be written as

H = ho(aja; + 1),

where w = eB/, /m,my,. We have used the Landau gauge A, =
0, Ay = eBx and made the substitution x — x — X where X
is the electron orbital center. Iz has been taken unity. The
eigenstates and energy spectrum are found similarly to the
case of a linear oscillator resulting in

Binx (x.y) = ATV, <i> : (B2)

i

E, = ho(n+ 1). (B3)
A, = (2"n!/m|e;|Ly)~1/? is the normalization factor, Q; is the
distance of gully to the K point. y; = B;/w;, i, n, are gully and
LL indices, respectively.

Substituting Eq. (B2) into (13), one obtains matrix ele-
ments of the form (iy, n;, Xi| exp(iq - r)|iz, na, X2). The ex-
pression is evaluated by integrating over y first, which pro-
duces a Kronecker delta dx, x,+4, and x appear in the wave
functions in the form x — X, or x — X,. By a change of
variable z =x — Xj, the expression gains a phase factor
exp(ig.X;) and the integrand becomes independent of X . This
allows a complete cancellation of all degeneracy indices after
taking into account Kronecker delta-functions coming from
expectation values of the form (a;nl %, %isnsx,) and summing
over all X. This leads to Eq. (16) for the final expression
for Ue. Each form factor is given by F;"(q + Q,;), where
0;. = 0; — 0, is the momentum transfer between two gullies
and 7 is the gully LL index of the triplet. The analytical
expressions for form factors calculated with the zeroth gully
LL reads

| | X @+ e
Fﬁ%q)==AmeXP[“th<§'_w*>}em)<_7i;;;7%§-.

(B4)

Al = VQ/laillo|(vi + v, wic = v/ (vi + v Tt is easy
to see that intergully scattering is suppressed exponentially by
the intergully distance ;. In the isotropic limit y; = |a| =
1, Eq. (B4) becomes the standard form factor obtained in
Ref. [38].

APPENDIX C: PROOF OF GULLY
POLARIZATION THEOREM

We prove the statement in Sec. IV that, to first order in
anisotropy and intergully scattering, the state that minimizes
(18) is either strongly gully polarized or fully gully coherent.
As discussed in Sec. IV, the exchange energy is reduced to
Eq. (20). This is to be minimized with the constraint }_ |¢;|* =
1. We choose the Lagrange multiplier to be —2X and solve for
A. Substituting the expression for A back into the equations
gives for each i:

o — Jl>c,~(|ci|2 -3 |ck|4)
k

(CDH

+J Zcm _CiZCZCm =0.

m#i k#m

It is easy to see that setting c¢; as all real in Eq. (20) re-
sults in a similar equation which does not affect the nature
of the solution. In transforming the J; term, we use the
identity >, #i lcx|? = 1 — |c;|*. Without intergully scattering,
J, = 0, the first term has as a solution both, complete gully
coherent state, |¢;| = 1/+/3, and gully polarized state ¢; =
1,cr = 0,1 # k. It is important that gullies are anisotropic,
so that Jy > J;. The exchange energies calculated from the
corresponding solutions are —(Jy + 2J;)/6 and —Jy/2, re-
spectively, so the completely gully-polarized state is indeed
the global minimum. In the isotropic limit Jy = J;, all choices
of ¢; give the same energy corresponding to presence of full
SU(3) symmetry in the system [39].

For a nonzero J, the bracketed expression proportional
to J, admits the solution ¢c; = ¢, =c3 =1/ /3 modulus an
arbitrary phase factor. Thus full gully coherence state is still
an extrema. On the other hand, the completely gully-polarized
state receives corrections and has components also in other
gullies. Thus the nonzero J, removes the complete gully
polarization. A first order transition occurs when the energy
for the gully-coherent state becomes a global minimum. By
numerically minimizing Eq. (C1), we find that this occurs
when J,/(Jo — J1) ~ 0.25.

APPENDIX D: DETAILS OF THE RESTRICTED
HARTREE-FOCK CALCULATION

In this section, we describe the Hartree-Fock (HF) approx-
imation for completely filled Landau Levels (LL) originally
proposed in Ref. [38]. The essence of the method is a vari-
ational optimization of the energy over a trial set of wave
functions (Slater determinants). In this work we largely follow
the approach of Ref. [26]. We aim to capture the interactions-
induced splitting of emergent (nearly) threefold degenerate
Landau levels formed at large A;. In what follows we refer to
such states as “triplets,” where threefold degeneracy originates
from the set of three Dirac cones related to each other via Cs
rotation symmetry. Hence, we restrict our set of variational
states to an arbitrary superpositions of single-particle triplet
wave functions.
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1. Numerical procedure

More specifically, we start with the set of six Landau level
wave functions denoted as w("”) m =1, 2,3. Index s labels

spin projection onto z axis, so that w(m) ™ @ 1) and

tri tr1
) — ™ @ 1), with the wave function ¥

wi Obtained
from exact diagonalization of Hamiltonian (A2). Three states
Wt(r?q) with m =1, 2, and 3 can be distinguished by their
transformation under C; rotations which can be intuitively
seen as a proxy of “angular momentum.” Due to presence
of discrete rotational symmetry, this “angular momentum” is
defined module 3 and takes values 0, 1, and 2, corresponding
to phase of 0, 27 /3 and 47 /3 acquired from rotation by angle
of 27 /3.

The wave functions wt(r'i”) are vectors in the basis of
Landau level indices and sublattices. They are obtained by
exact diagonalization of the Hamiltonian near K* points; see
Sec. III. Note that the gully indices are omitted since all 3
Landau level forming the triplet belong to the same gully. In
addition, we introduce a LL index cutoff A.x = 15 which
allows to represent triplet vector norm of more than 0.9 in
A range concerned, thus incorporating most of the tripltets
weight.

Projecting Hamiltonian on the manifold of six triplet states,

we get the following expression:
(m, S|H|m/, S/> = E()(m)(sm,m’av,s/

+ Un )ity + 00

— EZMUSZS/
(D1)

In this Hamiltonian, Ey(m) represents the diagonal spin-
degenerate single-particle Hamiltonian. The second term is
the Zeemann energy which retains its standard form after pro-
jection onto the triplet states. The last two terms in Eq. (D1)
originated from the interactions and account for Hartree and
exchange terms respectively. These terms can be obtained
from the transformation of conventional Hartree and exchange
terms by the wave functions of triplet states. Thus these terms
depend on the density matrix in the basis of sublattices («, &)
and Landau levels (n, n'), A%™. This density matrix can be
obtained from the density matrix in the triplet basis, A} via
the change of basis:

— i ofy (Misi) (myesy )T
Ag:tlsv - Z Y;kikwafs; ® I//ﬂn/ks’k :

M, My, S, Sk

D2)

Using density matrix in the basis of Landau levels, A#"Y,

we can write standard expressions for Hartree and exchange
terms, following Ref. [26]:
g En
(ans|Un|pn's’) = —= Amia(28p,,0 + 2845,0 — 1),
(D3)
Jotﬁvv

n,ny,ny, n

Aﬁnzs'

anys

(ans|Ue|pr's’) =

where parameter Ey = e’d /2l é/{o) characterizes the scale of
the Hartree energy. Here, e is the electron charge, «g is the
effective screening constant and d = 0.335 nm measures the
distance between adjacent graphene layers. Density matrix
projection Amia = Y., (A} + AR corresponds to the
electron density on the middle layer. In this paper, we assume
Upy has been neutralized by a positive charge background and

set it to zero.

The exchange integral is defined as

d*q
apss _
Jn,n],nz,n’ - / mUaﬂ (Q)Fn,nl(_Q)Fnz,n’(q)sss’- (D4)

The explicit form of the form factors F,, (q) is listed in
Ref. [38], and the interaction potential in the exchange integral
is given by

2me
—Tup,
qe(q)

where &(q) is the dielectric function. T, = 1, exp(—gd) or
exp(—2qd) for «, B in the same, adjacent or different outer
layers.

The projection of the exchange interaction matrix onto the
triplet basis is given by

’ ( ) isi)T
Jnr;lAik Z wﬂ’,’:k;k o, n, serxLB’ }’l/, S/>WD(Z’ZSS) ’

where the summation is taken over repeated indices.

The self-consistent solution of HF equations is imple-
mented as follows. For instance, fixing filling at N = 1, we
start with the trial density matrix in the triplet basis, Aﬁl‘; =
(c1, ¢2, c3) X (1, Ca, C3)"'|T) (1], where ¢; are random normal-
ized coefficients Y ;_, |c;|> = 1. Using this density matrix,
we calculate the density matrix in LL basis and exchange
integrals according to Egs. (D2)—(D5). Finally, by diagonaliz-
ing projected Hamiltonian in Eq. (D1), we calculate updated
eigenstates |n) and produce a new density matrix AJr% by
filling the lowest v of them (v is fixed to v =1 in what

follows),

Uap(q) = (D3)

(D6)

80 = Y
n=1
For probability density plots in the main text, the above proce-
dure is repeated until eigenvalues and eigenstate coefficients
converge. For dipole moment plots, iteration number is set to
be 500.

Intuitively, one can easily undertand why the interactions
favor the symmetry broken state at v = 1. Each of the single-
particle wave functions xpfr’i”), m=1, 2, and 3 lives on all
three Dirac points (see Fig. 4 in the main text). In fact, in
the limit of weak magnetic field (or large separation between
emergent Dirac gullies), these single particle wave-functions
become the proper combination of wave-functions localized
on each of the Dirac cones ¢; with an additional phase factors

m_ 1
Vi = —=(@1 + ¢+ ¢3),

5 (D7)

1 . .
w[(r?) — ﬁ(¢l +€27”/3¢2 +€47ﬂ/3¢3), (DS)
b = L 4 ing, 4 Pring,), (D9)

V3

The C; rotations simply permutes ¢; between themselves.
This results in the function wt(r}) being invariant under ro-
tation, and remaining two states 1//t(§’3) acquiring a phase
factor e*?/3. Now, since support of wave functions ¢;
and ¢; are weakly overlapping for i # j, exchanges fa-
vor the state where all weight of the wave function is lo-

cated in one of the Dirac gullies. In the basis of ¥\,
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such a state corresponds to a coherent superposition of all
three single-particle wave functions and it breaks Cs rotation
symmetry.

2. Screening

In the reduced basis of one triplet, Coulomb interactions
between three LLs receive polarization corrections from all
other LLs. As a result, the dielectric function e(g) acquires
a nontrivial dependence on g. Asymptotic behavior of ¢(q)
was derived in the large and small-g limit in Ref. [40]. For
HF calculations in this paper, we use an interpolation formula
proposed in Ref. [27] for e(q):

f(@13/2)

e(@)=1+
qls

, (D10)

where function f(x) = atanh(1.25x) and parameter a
me?/koh* is a dimensionless constant whose value depends
on the specific system. Quasiparticle mass is set to m =
/Tty ~ 0.005m, for the A range considered for HF calcu-
lations, where m, is the electron mass. Given the overall good
agreement of experimental data with single-particle simula-
tions in Ref. [9], we expect that the LL mixing and interaction
corrections must be smaller than typical cyclotron gaps. In this
paper, we choose a = 10 which gives, for example, Ji; 11 ~
3meV.

3. Visualizing symmetry broken states

In order to visualize the form of the symmetry broken
states in real space, we transform the LL wave functions
into the maximally localized “wave packet.” This is done via
convolving the single particle LL wave function in the Landau
gauge with the Gaussian envelope function,

W,(x,y) = / " Gy exp (mﬂé)%(’ﬂ)dx,

oo lB

where 1, is the nth eigenstate of the Hamiltonian. In order to
get the maximally localized wave packet in both directions,
we choose Cx = (2712)"2 exp(—X2/212). We calculate the
integral using explicit expression for ¥,

Ya(x) = exp (— x%/213)H,(x),

1
75 /2l
where H,(x) is the n-th Hermite polynomial. This gives the
following wave function describing LL “wave packet” cen-
tered at the origin:
U (. y) 1 <x—iy>" < x? +y? ,xy)
WX Y)=——) exp| ——5— +i=55 ).
Y V' \ V21 P 412 22

(D11)

We numerically simulate the probability distribution for
the triplet eigenstates wt(r’i"), m=1, 2, and3 at B=1.25T
and compare them with the momentum band structure. More
specifically, we plot probability density p(x, y) for the wave
function in the basis of LL and sublattices, ¥*", which is

calculated as

6

Py =Y

a=1

Amax

Z Comq'ln(x7 y)

n=1

2
s

(D12)

where the inner sum goes over LL and outer sum sums
probability density for each of the sublattices.

4. Dipole moment calculation

The existence of the first order phase transition can be
verified by measuring the dipole moment d of the system.
Expectation value of dipole moment, d, is found by averaging
the position of an electron over the HF ground state. This
is most easily done in the quasimomentum representation
where the problem of degeneracies does not arise. The nth
LL eigenstate can be shown to be

\Ijan(k) o8 exp(_ikxky)wom (kx)v

where « denotes layer and sublattice indices and ¥, (k,) is
the nth momentum eigenstate of a harmonic oscillator at «.
Let aj; be the corresponding component of the HF state in the
global basis, simple calculations show that

= § : ak o, = § : ak o
X = XmnQy, Q5 Y = Pmn@,, a, .

m,n,o m,n,o

(D13)

Xmn and p,,, are coordinate and momentum matrix elements of
a harmonic oscillator. The averaged position vector 7 seems
to agree qualitatively with our visual representation of the
probability density: for a given state, 7 is approximately the
sum of position vectors of each gully r; weighted by their
respective probability: 7 = ) . |c;|?r;. In particular, 7 vanishes
for the C3 symmetric single particle LLs due to the mod 3
feature described in Sec. III.
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FIG. 9. (a)~(d) show dipole moments and HF energies as a
function of A, for T1-4, respectively. At critical points marked by
vertical lines, the HF energies demonstrate cusps characteristic of a
first-order transition.
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Finally, we offer additional evidence in support of
the conclusion that dipole transitions in Sec IVC is
first order. In Fig. 9, we plot and compare dipole mo-
ments and HF energies as a function of A; for T1-4.

It shows that critical points for dipole moments co-
incide with a cusp in the HF energies, indicating a
first order transition in which one minima overtakes the
other.
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