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Measurement-based cooling of a nonlinear mechanical resonator
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We propose two measurement-based schemes to cool a nonlinear mechanical resonator down to energies close
to that of its ground state. The protocols rely on projective measurements of a spin degree of freedom, which
interacts with the resonator through a Jaynes-Cummings interaction. We show the performance of these cooling
schemes, that can be either concatenated—i.e., built by repeating a sequence of dynamical evolutions followed
by projective measurements—or single-shot. We characterize the performance of both cooling schemes with
numerical simulations and pinpoint the effects of decoherence and noise mechanisms. Due to the ubiquity and
experimental relevance of the Jaynes-Cummings model, we argue that our results can be applied in a variety of
experimental setups.
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I. INTRODUCTION

Cooling quantum systems in a finite time down to their
ground state is an essential task for the majority of quantum-
based technologies [1–7]. Although it is possible to isolate and
control a quantum systems, the temperature of its surround-
ings may still be too large to prepare its quantum ground state
with the desired fidelity. This thus demands the development
of cooling protocols to enable the preparation of quantum
ground states with unit fidelity, and in a short time to over-
come the impact of environmental disturbances. Such cooling
schemes typically require a hybrid system comprising of two,
or more, interacting systems of both discrete (e.g., atomic)
and continuous (e.g., vibrational mode) degrees of freedom.
Among different methods, it is worth mentioning Doppler
[8] and resolved-sideband cooling, which can be performed
depending on the lifetime of the bosonic mode system and
leading to distinct final temperatures (cf. Refs. [8–11] for the
development of these techniques in trapped-ions).

Over the last decades, different means of achieving mo-
tional ground state cooling of nano- and micro-mechanical
oscillators have been studied, both theoretically and exper-
imentally (cf. Ref. [12,13] and references therein). As in
trapped ions, sideband cooling has been demonstrated in
these setups [14–19]. However, other techniques may offer
advantages with respect to the standard sideband cooling.
Among them, we can mention bang-bang cooling [20], control
state-swapping cooling [21] and measurement-based cooling
[22–27], which is also known as stochastic cooling due to the
probabilistic nature of quantum measurements [28].

In this context, the cooling of mechanical systems is of
paramount relevance. Mechanical resonators are important
components in many electronic systems, while being widely
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employed in sensors for mass, force, and fields. Recent ad-
vancements in fabrication techniques have made possible the
realization of micro- and nano-mechanical resonators with
high sensitivity and response frequency [29] (cf. Ref. [12] for
a review). Interestingly, such push to miniaturization has led
to the appearance of nonlinear effects in the dynamic response
of such devices, often characterized by multi-stability and
hysteresis [30–32]. Such nonlinear regime can be accessed
or explored in different physical platforms, from trapped ions
[33] to circuit quantum electrodynamics [34], from graphene-
and carbon nanotube-based resonators [35,36] to optically
trapped nanoparticle [37]. Recently, they have been observed
in a system comprising a nanosphere levitated in a hybrid
electro-optical trap [38].

Mechanical nonlinearities can be utilized to enhance en-
ergy harvesting via piezoelectric (vibration-to-electricity con-
version) [39], which have a good application potential for
solving the challenging issue of energy supply for embedded
wireless sensors and portable electromechanical devices [40].
In addition, they offer high sensitivity that can be harnessed
for signal amplification [41], mass and force sensing [42] or
charge detection [43]. At the fundamental level, the quantum-
to-classical transition, i.e., the exploration of the appearance
of quantum effects at a macroscopic scale has been studied
in these nonlinear systems [44–46], where the nonlinearity
has been identified as a resource in the generation of non-
classical quantum states [47–49]. Interesting nonlinearities
can be engineered by coupling the mechanical mode to an
ancillary finite-dimensional system [50], an architecture that
can be used to study quantum foundations [51,52]. For exam-
ple, a setup that consists of a vibrating nanomechanical res-
onator flux coupled to a superconducting qubit has been pro-
posed as a testbed for quantum interferometry with massive
objects [26].

In this work we present two protocols to cool a mechan-
ical resonator with a Duffing-type nonlinearity down to its
ground state aided by projective measurements performed
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onto a spin degree of freedom coupled to the resonator via
a Jaynes-Cummings interaction term [53]. Our proposals can
be carried out with or without radiative decay or polarizing
noise acting on the spin, whose effect is crucial in resolved-
sideband cooling. Hence, these cooling schemes could be
carried out using long-lived spin states, and thus also used for
other quantum information processing tasks. In particular, we
propose a scheme based on the concatenation of joint time
evolution of the bosonic and spin degrees of freedom and
projective measurements onto the ground state of the spin.
We will refer to this method as concatenated scheme (CS).
This method not only improves previous results in ultrafast
cooling of a mechanical resonator [23], but also shows that
the non-Gaussian quantum ground state of nonlinear mechan-
ical resonators can be achieved in a finite-time with a very
good fidelity. In addition, we show how to attain ground
state cooling upon a single-shot (SS) measurement of the
spin. This scheme, although allowing for faster cooling and
requiring a smaller number of measurements than its concate-
nated counterpart, demands a tunable and time-dependent spin
frequency. The temporal dependence of the spin frequency
can be determined using optimal control techniques, such
as chopped-random basis optimization (CRAB) [54–57]. We
illustrate the high-quality performance of these two schemes,
which are able to bring the thermal occupation number of
an initial state of a bosonic mode to values very close to
zero even under the presence of distinct decoherence and
noise sources. Moreover, as our results rely on the ubiquitous
Jaynes-Cummings interacting model between a bosonic and a
spin degree of freedom, our results may be applied to different
platforms to achieve ground state cooling.

The remainder of this article is organized as follows. In
Sec. II, we begin by introducing the setup of a nonlinear
mechanical resonator coupled to a spin degree of freedom
and providing relevant experimental parameters. In Sec. III we
present the theoretical scheme to cool the resonator down to
its ground state by performing projective measurements onto
the spin, either in a repeated/concatenated fashion (Sec. III A)
or upon a single-shot (Sec. III B). We further quantify the
non-Gaussianity of the resulting state from the concatenated
scheme, Sec. III A. We provide numerical results supporting
the good performance of both methods, Secs. III A and III B.
We briefly outline the influence of environment for these two
proposed schemes in Sec. IV. Finally, we present the main
conclusions and outlook in Sec. V.

II. NONLINEAR MECHANICAL RESONATOR MODEL

Let us consider a bosonic mode of frequency ω, char-
acterized by annihilation and creation operators a and a†,
respectively, such that [a, a†] = 1. Such bosonic mode or
harmonic oscillator comprises a stiffening Duffing-like de-
formation with strength ε > 0, such that ε � ω, as found
in different experimental platforms. In addition, the bosonic
mode is coupled to a (spinlike) two-level system via a Jaynes-
Cummings interaction [cf. Fig. 1(a)] [53]. The Hamiltonian of
the system reads (we take units such that h̄ = 1 throughout the
manuscript)

Hs = ωA

2
σz + ωa†a + λ(aσ+ + a†σ−) + ε

16
(a + a†)4, (1)
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FIG. 1. (a) Sketch of the nonlinear resonator coupled to a spin
degree of freedom: The bosonic mode and spin, with frequencies
ω and ωA, respectively, are coupled via a Jaynes-Cummings inter-
action with strength λ. (b) Evolution of the initial state, ρ(0) =
|g〉〈g| ⊗ ρ th

b with ρ th
b = ∑

k=0 pk |k〉〈k| (full circles) and the one
sought after the evolution, which brings the populations over the
Fock states |n〉 with n > 0 towards |e〉〈e| (open circles) while the
population of |g〉〈g| ⊗ |0〉〈0| remains locked, i.e., ρ(τ ) = |e〉〈e| ⊗∑

k=0 pk+1|k〉〈k| + |g〉〈g| ⊗ p0|0〉〈0|. (c) A projective measurement
of the spin onto the eigenbasis of σz. The outcome of applying the
projector Mg = |g〉〈g| ⊗ 1r onto the state ρ(τ ) leaves the bosonic
mode in its vacuum state. (d) Cooling scheme by concatenating
evolutions plus measurements.

where ωA and λ denote the Bohr frequency and coupling
strength of the two-level system, respectively. We have in-
troduced the spin Pauli matrices, σx,y,z such that [σi, σ j] =
2iδi jkσk and σz = |e〉〈e| − |g〉〈g| with |e〉 (|g〉) the excited
(ground) state of the two-level system. Finally, σ+ = (σ−)† =
|e〉〈g| is the spin raising operator.

The standard Jaynes-Cummings model is recovered by
setting ε = 0, and thus the ground state of the res-
onator Hr = ωa†a + ε

16 (a + a†)4 reads as |ψgs〉 = |0〉 (vac-
uum) for ε = 0 such that a†a|n〉 = n|n〉, while for ε/ω �
1, its ground state can be well approximated by |ψgs〉 ≈
N (|0〉 − 3ε/(8

√
2ω)|2〉 − √

3ε/(16
√

2ω)|4〉), which con-
tains nonzero excitations and is of a non-Gaussian nature [58].
Here,N is a normalization constant whose explicit expression
is given in Appendix A. Hence, as such nonlinear effects
are relevant in distinct experimental platforms, the analysis
of ground-state cooling based on the occupation number
requires a fair comparison with the actual and deformed
ground state of the nonlinear resonator. As a result of ε �= 0,
the number of excitations Ne = a†a + σ+σ− is no longer a
conserved quantity. However, as we consider a small Duffing
perturbation g, ω 	 ε, the dynamics are mainly governed by
the Jaynes-Cummings interaction, i.e., a state |g, n + 1〉 is
transformed into |e, n〉 at the resonant condition ωA = ω in
a time Tn = π/(2λ

√
n + 1) with n � 0.

Our goal is to cool an initial thermal state of the res-
onator down to its ground state by performing measurements
on the spin degree of freedom (cf. Sec. III). That is, the
goal consists in performing ρ th

r → |ψgs〉〈ψgs| ≈ |0〉〈0|, with
ρ th

r = ∑
k=0 pk|k〉〈k| and pk = nk

th/(1 + nth )k+1 where nth =
Tr[a†aρ th

r ] is the number of bosonic excitations in the thermal
state ρ th

r .
The model in Eq. (1) can be realized in a number of differ-

ent platforms. Among them, levitated nanoparticles [38,59],
trapped ions [33], circuit quantum electrodynamics [34],
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optomechanical systems [60–62], and cantilever systems [46].
Double-clamped carbon nanotubes can display significant
nonlinearities [62]: a μm long carbon nanotube resonator
vibrating at ω/2π ≈ 5 MHz at an environmental temperature
of Tenv = 20 mK and with a typical quality factor Q ≈ 5 ×
105 is endowed with a nonlinear strength ε/2π ≈ 200 KHz
(ε/ω ∼ 4 × 10−2) [61]. Within the optomechanical exper-
imental setup reachable values, a two-level system defect
of frequency ωA ∈ [0.5, 1.5]ω coupled to a mechanical res-
onator, ω ≈ 200 MHz, and Q ≈ 106, can achieve spin-boson
coupling λ ≈ 0.05ω and spin damping rates γd/ω ∈ [5 ×
10−8, 5 × 10−4] [63]. The amplitude of the resulting Duffing
nonlinearity amounts to ε/ω ∈ [10−4, 10−5] [50]. For our
analysis and without loss of generality, we will choose ωA ≈
ω, λ � 0.1ω and scan the values of the ratio ε/ω. The presence
of the so-called counter-rotating terms, λ(a†σ+ + aσ−) which
have been neglected in Eq. (1), can have a significant impact in
the properties of the system [64–71], and thus we will discuss
its effect on the proposed cooling schemes.

III. MEASUREMENT-BASED COOLING FRAMEWORK

We now address the cooling schemes at the core of our
proposals We study the cooling of a mechanical resonator—
initially prepared in the thermal state ρ th

r —achieved by com-
bining time-evolution under the total Hamiltonian Hs in
Eq. (1), and projective measurements onto the spin. We con-
sider both the CS and SS approaches, which are described in
Secs. III A and III B, respectively.

A. Concatenated-measurements scheme

Let us now consider the concatenation of Nrep time evo-
lutions under the Hamiltonian Hs followed by a projective
measurement onto the ground state of the spin, described by
the projector Mg where Mx = |x〉〈x| ⊗ 1r is the projector onto
the spin state |x〉 and x ∈ {e, g} and 1r is the identity operator
acting on the Hilbert space of the resonator. The initial state
of the joint system reads

ρs(t0 = 0) = |g〉〈g| ⊗ ρ th
r . (2)

This cooling scheme consists in bringing populations from
|g, n + 1〉 to |e, n〉 states with n � 0 by sweeping each of the
subspaces at a time. This is achieved by evolving ρs(0) during
a time Tn = π/(2λ

√
n + 1), i.e., ρs(Tn) = U (Tn)ρs(0)U †(Tn)

with U (t ) = e−itHs the evolution operator. In this manner, we
remove excitations and thus cool down the resonator state by
performing a projective measurement Mg on the spin degree of
freedom. The state upon the measurement becomes ρs(Tn) →
Mgρs(Tn)Mg/Tr[Mgρ(Tn)Mg]. Thus, the state after the first
block of evolution and spin measurement is given by

ρs(T0) = MgU (T0)ρs(0)U †(T0)Mg

Tr[MgU (T0)ρs(0)U †(T0)Mg]
, (3)

where we have chosen T0 = π/(2λ) as the duration of the
first time evolution. This procedure is repeated Nrep times,
where each repetition comprises a time evolution of duration
Tn = π/[2λ(n + 1)1/2] – with increasing n – such that the
population is transferred from |g, n + 1〉 to |e, n〉. The total
time taken by the cooling process is thus Tf = ∑Nrep−1

n=0 Tn =

π/(2λ)
∑Nrep−1

n=0 (n + 1)−1/2, so that Tf ∝ λ−1, and where we
have assumed a zero detection time. The probability of a
successful detection of the spin in its ground state |g〉 upon the
evolution U (Tn) is given by pg;n = Tr[Mgρ(Tn)Mg], which is
lower bounded by the probability p0 = (1 + nth )−1 to find the
oscillator in its ground state when prepared in the initial ther-
mal state ρ th

r = ∑
k=0 pk|k〉〈k| with pk = nk

th/(1 + nth )k+1 and
nth = Tr[a†aρ th

r ]. Upon Nrep repetitions, a successful detection

probability is given by psdp = �
Nrep−1
n=0 pg;n and psdp ≈ p0 for

Nrep 	 1. Hence, one can already notice that this method can
be favourable to cool down states of a resonator containing
few excitations. In particular, if nth � 10, we have p0 � 1/10
with pk � 10−3 for k � 50, so that Nrep � 50 would be suf-
ficient to achieve a significant reduction on the occupation
number. Recall however that as a consequence of the third
law of thermodynamics and the unattainability principle [72],
it is not possible to exactly prepare the ground state of a
quantum system in a finite time. Nevertheless, depending
on the parameters, the resulting state will be close to the
actual ground state. It is worth mentioning that our scheme
is similar to the one proposed in Ref. [23], although here we
do not require random detection times. Indeed, by fixing the
evolution times by Tn, we boost the cooling performance of the
scheme. Before illustrating the performance of this cooling
method with numerical simulations, it is worth commenting
that depending on the initial thermal occupation nth, degree of
nonlinearity ε and number of repetitions Nrep, the final state
ρs(Tf ) will exhibit a large purity and high fidelity with respect
to the ground state of the deformed oscillator.

In Fig. 2(a), we show how the occupation probability of
the nth Fock state P(n) = 〈n|ρr |n〉 changes by performing this
protocol. Here, we start with an evolution of duration T0 which
brings all the population from |g, 1〉 to |e, 0〉 so that upon the
projective measurement onto |g〉〈g|, the population over the
Fock state |1〉 vanishes, i.e., P(n = 1) = 0. By repeating the
process, the vacuum state is achieved with high probability.
The average occupation number 〈n〉 gets largely reduced upon
few repetitions, as exemplified in Fig. 2(b) for an initial state
with nth = 10. The ground state of the nonlinear resonator is
not |0〉 for ε �= 0. Our method leads to similar ground-state
occupation number, although resonators with large values of
ε require longer times to saturate the occupation number.
This is due to the nonlinear term in Eq. (1) [cf. Fig. 2(b) for
ε/ω = 10−2 and λ = 0.02ω], which couples different states
in the Jaynes-Cummings ladder. The fidelity F of the state
ρr with respect to the actual ground state of the nonlinear
resonator |ψgs〉 approaches one, F = 〈ψgs|ρr |ψgs〉 ≈ 1, upon
sufficiently many repetitions [cf. Fig. 2(c)]. The fidelity never
reaches one in a finite time, which can be thought of as
a consequence of the unattainability principle and the third
law of thermodynamics [72]. Nevertheless, the resulting state
becomes so close to the actual ground state to display all
its features: not only the mean number of excitations in the
achieved state is very close to that of the ground state, 〈n〉 ≈
21ε2/128ω2 [cf. Fig. 2(b) and Appendix A for the derivation
of the ground-state occupation number], but also other fea-
tures are accurately reproduced. Here we focus on the degree
of non-Gaussianity of the state that we obtain through our
protocol. In fact, the nonlinear nature of of the oscillator and
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FIG. 2. (a) Occupation probability of the nth Fock state, P(n) for an initial thermal state with nth = 10 (top panel), and the resulting
distribution after Nrep = 1 (middle panel) and 2 (bottom panel) iterations of the CS for ε = 10−4ω and λ = 0.02ω. The growth of the ground-
state population P(n = 0) achieved with more repetitions of the CS is well visible. In (b) we show the average occupation number 〈n〉 against
the dimensionless time λt for ωA = ω, an initial state with nth = 10, and ε/ω = 0 (solid circles), 10−4 (open circles), 10−3 (open triangles),
and 10−2 (open squares). The solid lines denote the occupation number of the actual ground state of the nonlinear resonator. Panels (c) shows
the temporal behavior of the state infidelity 1 − F (t ) with F (t ) = 〈ψgs|ρr (t )|ψgs〉, which quantifies the distance between the reduced state of
the resonator ρr (t ) at time t and the ground state |ψgs〉 of the corresponding nonlinear model. (d) Measure of non-Gaussianity δG[ρr (t )] of
the resonator state for the same cases as in panel (b). The inset displays the same the plot as in the main panel but in a log-scale for a better
illustration, where the solid lines correspond to the degree of non-Gaussianity of |ψgs〉.

the measurement-dependent interaction with the spin result
in a pronouncedly non-Gaussian effective dynamics of the
mechanical resonator. We thus quantify the degree of non-
Gaussianity of the state achieved by this cooling scheme using
the measure [73]

δG[ρr (t )] = S[ρr (t )||ρG], (4)

which is based on the quantum relative entropy of the reduced
state ρr (t ) of the resonator at the generic instant of time t and
a reference Gaussian state ρG having the same first and second
moments of the oscillator’s position and momentum operator
as ρ(t ) (cf. Appendix B).

In Fig. 2(d), we plot the behavior of δG[ρr] against the
dimensionless time λt and for various choices of the ratio ε/ω.
As the initial state of the system is thermal, by definition we
have δG[ρr (0)] = 0. However, as mentioned above, due to the
dynamics the system soon starts developing a nonzero degree
of non-Gaussianity,which converges to the value of the ground
state |ψgs〉 [cf. inset in Fig. 2(d)]. In between, the dynamics
induces a strong non-Gaussian character of ρr (t ), producing a
peak whose location and amplitude depends on the choice of
ε/ω. This suggests that, should the goal be that of achieving
a state with a large degree of Gaussianity, the protocol can
be tailored so as to achieve δG[ρr (t )] 	 δG[|ψgs〉〈ψgs|], at the
cost of a larger occupation number.

As commented previously, CS is effective in cooling down
thermal states containing nth � 10: larger initial occupation
numbers imply a decreasing successful detection probabil-
ity psdp and an exceedingly large number of iterations to
significantly cool down the state of a nonlinear resonator.
This is illustrated in Fig. 3(a), where the average occupation
number 〈n〉 after Nrep repetitions is plotted as a function of
the initial thermal occupation nth, and for ε = 0 (chosen as
a benchmark case). Indeed, while high temperature states are
not so efficiently cooled down with this scheme, states with
nth � 10 are brought down to 〈n〉 < 10−4 after Nrep � 20. The
same applies to nonlinear resonators. In Fig. 3(b), we plot the
value of 〈n〉 achieved after Nrep = 5, 10 and 20 as a function
of ε/ω and for nth = 1, revealing again that the actual ground

state of the nonlinear resonator |ψgs〉 can be reached to a very
good approximation.

The inclusion of counter-rotating terms in Eq. (1), and
thus of transitions between |g, n〉 ↔ |e, n + 1〉, may affect
the cooling performance depending on the value of λ/ω and
the nonlinear contribution ε/ω. For example, for ε = 10−2ω

and λ = 0.02 ω, as considered in Fig. 2, we observe a sim-
ilar cooling performance. The effect of the counter-rotating
terms becomes more evident for ε/ω → 0 since 〈n〉 → 0,
and thus small but nonvanishing transition rates for |g, n〉 ↔
|e, n + 1〉 will limit this cooling scheme. Indeed, including
counter-rotating terms for ε = 10−3ω and λ = 0.02ω leads
to 〈n〉 ≈ 10−4 for λt ≈ 30 [cf. Fig. 2(b)]. We note that the
impact of decoherence and dissipation processes, which is
discussed in Sec. IV, will set a tighter constraint on the cooling
performance.

B. Single-shot measurement scheme

CS relies on a population transfer from |g, n + 1〉 to |e, n〉
achieved by sequentially addressing different subspaces with
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FIG. 3. (a) Average occupation number 〈n〉 different Nrep repeti-
tions (5, 10 and 20), as a function of the initial thermal occupation nth

for ε = 0. The solid black line corresponds to 〈n〉 = nth (no cooling).
The panel (b) shows the attained 〈n〉 upon Nrep repetitions (again 5,
10, and 20) as a function of the nonlinearity ε/ω of the resonator,
with nth = 1. The solid black line denotes the occupation number of
the nonlinear ground state, and very close to 〈n〉 ≈ 21ε2/128ω2 (cf.
Appendix A).
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growing n. In order to overcome the limitation intrinsic to
that scheme, we propose an optimal protocol to perform the
population transfer |g, n + 1〉 → |e, n〉 for different n simulta-
neously and in a short time, τ � Tf ∝ N1/2

rep λ−1. A single pro-
jective measurement Mg at the end of such optimal dynamic
protocol will bring the system to its ground state with a very
good accuracy.

In order for the protocol to be effective, though, and to
implement the optimal control strategy, one must allow for
a time-dependent parameter to be tuned externally. In the fol-
lowing, we assume that the spin frequency can be controlled
in a time-dependent fashion, although similar results can be
obtained straightforwardly by selecting another parameter.
The initial state ρs(0) now evolves under the following time-
dependent Hamiltonian

Hs(t ) = ωA(t )

2
σz + ωa†a + λ(aσ+ + a†σ−) + ε

16
(a + a†)4.

(5)

The shape of the protocol ωA(t ) is then optimized to achieve
the desired final state. As an example, consider ε = 0 so that
we aim to transform ρs(0), as given in Eq. (2), into ρs(τ ) =
|g〉〈g| ⊗ p0|0〉〈0| + |e〉〈e| ∑k=0 pk+1|k〉〈k|, where ρs(τ ) =
Ut (τ )ρs(0)U †

t (τ ) and Ut (τ ) = T e−i
∫ τ

0 dtHs (t ) is the time-
evolution operator. A single-shot measurement Mg would lead
to ρs(τ ) = |g〉〈g| ⊗ |0〉〈0|, i.e., to the ground state of the
resonator for ε = 0. As in the CS, the success probability of
detecting the spin in the state |g〉 upon a single shot is lower
bounded as psd p � p0 = 1/(1 + nth ).

The optimization is carried out using the technique
chopped-random basis approximation (CRAB) [54–56] and a
Nelder-Mead search algorithm [74]. Other techniques could
be employed equally effectively [75–79]. For convenience,
and as ε/ω � 1, we perform the optimization for ε = 0,
i.e., in a Jaynes-Cummings model, which decouples in a set
of Landau-Zener models at different energy spacings (cf.
Appendix C). We fix ωA(0) = ωA(τ ) = ω, so that the opti-
mization corresponds to finding the coefficients an and bn in

ωA(t )/ω = 1 + t (τ − t )
Nω∑

n=1

[an cos(ωnt ) + bn sin(ωnt )]

(6)

where ωn = 2πn/τ and with a total protocol time τ longer
than the value set by the quantum speed limit [80]. In this
case, the minimum time needed to perform such transforma-
tion reads as τQSL ≡ T0 = π/(2λ) [56]. Here we choose τ =
3τQSL although we remark that, provided that τ � τQSL, an
optimal protocol can always be found. As the achievement of
exact ground-state cooling requires the optimization over the
infinitely many subspaces of Hs(t ), our numerical simulation
would lead to the ground state only approximately.

In Fig. 4(a), we show a possible optimal form of ωA(t )
obtained by CRAB optimization considering the first Nc = 10
subspaces of the Jaynes-Cummings model, taking Nω = 10
frequencies in Eq. (6) and λ = ω/10. By evolving the initial
state Eq. (2) using such optimal choice, we are able to cool
down the nonlinear resonator, and get close to its ground
state. For 〈n〉th = 1, we find 〈n〉 � 10−2 for ε/ω < 10−3

with fidelity F > 0.999 [cf. Fig. 4(b)]. Finally, it is worth
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FIG. 4. (a) An optimized time-dependent spin frequency ωA(t )
found for Nc = Nω = 10 and total time τ = 3τQSL = 3π/(2λ).
(b) Infidelity of the resulting state upon the time evolution and a
projective measurement onto |g〉〈g| (single-shot) with respect to the
ground state of the nonlinear resonator, as a function of the parameter
ε and for two different initial states, 〈n〉th = 1 and 0.1. See main text
for further details.

mentioning that the inclusion of the counter-rotating terms in
Eq. (5) can be still carried out via an optimization, although
numerically more demanding as it requires the use of the full
Hamiltonian Hs(t ).

IV. ROBUSTNESS OF COOLING SCHEME: DYNAMICS IN
THE PRESENCE OF ENVIRONMENTAL EFFECTS

Cooling the resonator down close to its ground state de-
mands an evolution time such that dissipation effects may be
significant. We must thus determine the impact of the interac-
tion with an environment on the performance of the protocol.
Here, we consider the dynamics of the system dictated by the
master equation [81,82]

ρ̇r (t ) = −i[Hs, ρr (t )] +Da[ρr (t )] +Da† [ρr (t )], (7)

where the dissipators have the standard Lindblad form

DA[•] = 
A

2
(2A • A† − {A†A, •}) (8)

with jump operator A and noise rate 
A. In particular, for a
and a†, the noise rates are 
a = γd (nth + 1) and 
a† = γd nth

[81]. Note that for the SS measurement scheme, the dynamics
follows from Eq. (7) but with a time-dependent Hamiltonian
Hs. As discussed in Sec. II, we consider the experimentally
relevant regime γd/ω ∈ [10−6, 10−2].

In the CS, the average occupation number 〈n〉 now results
a competition between the decreasing behavior due to the
cooling scheme and an additional contribution 〈n〉 ∝ nth(1 −
e−γd t ) in the long time limit, due to the dissipation in Eq. (7)
[81]. It is worth stressing that, due to the time-evolution
followed by projective measurements, there is a nontrivial
interplay between cooling and heating processes. As a result,
〈n〉 becomes minimal upon a number of repetitions. This is
plotted in Fig. 5(a), where we show the evolution of 〈n〉 for
different parameters ε and γd , with nth = 1 and λ = ω/10.
The data points for ε = 0 and ε/ω = 10−3 lie on top each
other since the impact of dissipation is stronger that nonlinear
effects. The fidelity with respect to the ground state of the
nonlinear resonator behaves in a similar manner.

For the SS scheme, one might consider that the system-
environment interaction is less relevant as the protocol is
performed in a shorter time than in CS. However, in the
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FIG. 5. (a) Evolution of the average occupation number for the
CS for different dissipation rates γd , from top to bottom, γd/ω =
10−2, 10−4, and 10−6, and ε = 0 (open points) and ε/ω = 10−3 (full
points), which lie on top of each other. In panel (b) we show the
minimum value 〈n〉min for the CS (circles) as well as the resulting 〈n〉
upon a SS measurement using the optimized protocol (triangles).

CS the time between consecutive projective measurements is
given by Tn, while in the SS the time evolution τ is such that
τ � Tn, where the equality holds for evolutions performed at
the quantum speed limit. The shorter the evolution time, the
smaller the impact of the dissipation on the performance of
the protocol, and better cooling performance can be achieved.
Yet, for τ = τQSL, the numerical optimization becomes very
demanding. We have analyzed the performance of SS with
τ > τQSL, finding that dissipation has a larger effect than
in CS. In particular, we find that the minimum number of
excitations in the resonator during the application of CS,
〈n〉min, depends linearly on the rate of dissipation γd . This
is illustrated in Fig. 5(b). While such behavior is common to
the performance of the SS scheme, the resulting number of
excitations is above the CS counterpart.

V. CONCLUSIONS

We have presented a method to cool down a nonlinear
mechanical resonator via projective measurements performed
on a spin coupled to the oscillator via a Jaynes-Cummings
interaction term. We have illustrated a repeated-measurement
scheme and a single-shot one. While the former requires the
application of concatenated time evolutions and spin projec-
tive measurements, the single-shot scheme relies on a time-
dependent tuning of the spin frequency. The time-dependent
profile is designed in such a way that, after the optimized time
evolution, a single projective measurement onto the ground
state of the spin significantly reduces the excitations of the
resonator state. The single-shot measurement scheme requires
just a projective measurement and can be performed in a
shorter time than its iterative counterpart, although it demands
further control and tunability. We determine the shape of
the spin frequency relying on the well-established chopped-
random basis optimization method. The good performance
of both methods is supported with numerical simulations,
which allow us to attain the ground state of the nonlinear
mechanical resonator to a very good approximation, even
in the presence of distinct decoherence and noise sources.
Thanks to the generality of the Jaynes-Cummings model in
a variety of situations, our results can be applied to different
experimental platforms.

ACKNOWLEDGMENTS

The authors acknowledge the support by the SFI-DfE
Investigator Programme (Grant 15/IA/2864), the Royal Com-
mission for the Exhibition of 1851, the H2020 Collabo-
rative Project TEQ (Grant Agreement 766900), the Lever-
hulme Trust Research Project Grant UltraQuTe (Grant No.
RGP-2018-266) and the Royal Society Wolfson Fellowship
(RSWF/R3/183013).

APPENDIX A: APPROXIMATE GROUND STATE OF THE
DEFORMED HARMONIC OSCILLATOR

The ground state of a nonlinear deformed harmonic oscilla-
tor with a x4 perturbation can be calculated using a first-order
perturbation on ε as

∣∣ψ (1)
gs

〉 = ∣∣ψ (0)
gs

〉 + ∑
k�1

〈k|H1|0〉
E (0)

0 − E (0)
k

|k〉, (A1)

where H1 = ε(a + a†)4/16 and |ψ (0)
gs 〉 = |0〉 is the ground

state of H0 = ωa†a, and E (0)
k = kω the eigenenergies. In this

manner,

∣∣ψ (1)
gs

〉 = 1√
1 + 39ε2/(512ω2)

×
(

|0〉 − 3ε

8
√

2ω
|2〉 −

√
3ε

16
√

2ω
|4〉

)
. (A2)

The actual ground state |ψgs〉 of H = H0 + H1 can be approx-
imated as |ψgs〉 ≈ |ψ (1)

gs 〉 to first-order perturbation on ε. For
ε/ω � 0.1, we find infidelity I = 1 − |〈ψgs|ψ (1)

gs 〉|2 � 10−5.
From the previous expression it is easy to find the approxi-
mate mean number of excitations in the ground state, which
reads as

〈
ψ (1)

gs

∣∣a†a
∣∣ψ (1)

gs

〉 = 21ε2

128ω2
(
1 + 39ε2

512ω2

)
≈ 21ε2

128ω2
+ O(ε4/ω4). (A3)

APPENDIX B: NON-GAUSSIANITY MEASURE

We quantify the non-Gaussianity of a state ρ by δG[ρ]
following [73]. For that, we construct a reference Gaussian
state ρG such that the first and second moments are equal
to those of ρ. The non-Gaussianity of the state ρ is then
quantified as the quantum relative entropy between ρG and
ρ, which for a single mode reads as

δG[ρ] = S[ρ||ρG] = Tr[ρ ln ρ] − Tr[ρ ln ρG] (B1)

= S(ρG) − S(ρ) = h(
√

det[s]) − S(ρ), (B2)

where s is the covariance matrix, with elements
s jk = 1/2〈{r j, rk}〉 − 〈r j〉〈rk〉, with r = (q, p) and
q = (a + a†)/

√
2 and p = i(a† − a)/

√
2, and the function

h(x) = (x + 1/2) ln(x + 1/2) − (x − 1/2) ln(x − 1/2). Note
that S(ρ) = −ρ ln ρ is the von Neumann entropy.
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APPENDIX C: OPTIMAL PROTOCOL FOR SINGLE-SHOT
MEASUREMENT COOLING

In this paper, we find an optimal protocol of the spin
frequency ωA(t ) through CRAB optimization [54–56] for
linear nano-mechanical resonator (ε = 0). In this manner, the
time-dependent Jaynes-Cummings model decouples in a set
of Landau-Zener problems, as HJC = −ωA(t )/2|g, 0〉〈g, 0| +
⊕∞

n=0Hn(t ), where Hn(t ) is the effective Jaynes-Cummings
Hamiltonian in the subspace containing n excitations which
reads as

Hn(t ) = ωA(t ) − ω

2
σ̃z + λ

√
n + 1σ̃x (C1)

where σ̃z = |e, n〉〈e, n| − |g, n + 1〉〈g, n + 1| and σ̃+ =
|e, n〉〈g, n + 1|, so that σ̃x = σ̃+ + σ̃−. The protocol ωA(t )
must be determined such that after a time τ , the initial

state |φn(0)〉 = |g, n + 1〉 is brought to |e, n〉. Hence, the
optimization is then carried out by minimizing the cost
function

C = 1 − 1

Nc

Nc−1∑
n=0

|〈e, n|φn(τ )〉|2, (C2)

where Nc − 1 is the last subspace considered in the optimiza-
tion, and with respect to the 2Nω variables, {Am, Bm} with
m = 1, . . . , Nω. These variables {am, bm} define the protocol
δ(t ) = ωA(t ) − ω as

δ(t ) = ωt (τ − t )

[
Nω∑

n=1

(an cos(ωnt ) + bn sin(ωnt ))

]
. (C3)

Here we consider fixed frequencies as ωn = 2πn/τ , and
therefore they are not randomized as required by CRAB. We
minimize C using the standard Nelder-Mead algorithm [74].
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