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Stacking layered materials revealed to be a very powerful method to tailor their electronic properties. It has
indeed been theoretically and experimentally shown that twisted bilayers of graphene (tBLG) with a rotation
angle θ , forming a Moiré pattern, confine electrons in a tunable way as a function of θ . Here, we study electronic
structure and transport in tBLG using tight-binding numerical calculations in commensurate twisted bilayer
structures and a pertubative continuous theory, which is valid for not-too-small angles (θ >∼ 2◦). These two
approaches allow us to understand the effect of θ on the local density of states, the electron lifetime due to
disorder, the DC conductivity, and the conductivity quantum correction due to multiple scattering effects. We
distinguish the cases where disorder is equally distributed over two layers or only one layer. When only one layer
is disordered, diffusion properties depend strongly on θ , thus showing the effect of Moiré electronic localization
at intermediate angles θ , ∼2◦ < θ <∼ 20◦.
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I. INTRODUCTION

Stacking layered materials is a very powerful method to
tailor their electronic properties [1]. The properties not only
depend on the choice of materials to be stacked but also
on the details of the relative arrangement of the layers. It
has thus been theoretically [2–7] and experimentally [8–11]
shown that twisted bilayer graphene (tBLG), forming a Moiré
pattern, confines conduction electrons in a tunable way as a
function of the angle of rotation of one layer with respect to
the other. Recently, it has been experimentally proven that
this electronic localization by geometry can induce strong
electronic correlations [12] and a superconducting state [13]
for certain angles called magic angles [6]. Despite numerous
studies of the electronic structure of these systems [2–27],
the consequences of the electronic localization by a Moiré on
electrical transport properties are still poorly known. In par-
ticular, the effects of local defects such as adsorbated atoms
or adsorbated molecules, which are known to tune strongly
electronic properties in graphene-based 2D materials [27–29].

Graphene can be formed in multilayers on SiC [30–38]
but also on metal surfaces such as Ni [9] and in exfoli-
ated flakes [8], where hopping terms between successive
layers play a crucial role. While on the Si face of SiC,
multilayers have an AB Bernal stacking and do not show
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graphene properties [30–32,39–43], on the C face, multilayers
are twisted multilayers of graphene with various angles of
rotation between two successive layers. For large twist angle θ

between two layers, multilayers show graphenelike properties
even when they involve a large number of graphene layers.
Indeed, as shown by angle resolved photoemission spec-
troscopy (ARPES) [35–38], scanning tunneling microscopy
(STM) [44], transport [45], and optical transitions [46], their
properties are characteristic of a linear graphenelike disper-
sion. Therefore, in tBLG, interlayer hopping terms do not sys-
tematically destroy graphenelike properties but they can lead
to the emergence of very peculiar behaviors induced by the
Moiré patterns that are accentuated for θ smaller than ∼20◦.
Theoretical studies have predicted [2–7,15] the existence of
three domains: (1) for large rotation angles (θ > 20◦), the
layers are decoupled and behave as a collection of isolated
graphene layers. (2) For intermediate angles ∼2◦ < θ < 20◦,
the dispersion, around Fermi energy EF , remains linear but
the velocity is renormalized. Consequently, the energies of the
two Van Hove singularities (VHSs) E− and E+ are shifted
to Dirac energy ED when θ decreases, as has been shown
experimentally [9,10,47,48]. (3) For the lowest θ , θ <∼ 2◦,
almost flat bands appear and result in electronic localization
in AA stacking regions: States of similar energies, belonging
to the Dirac cones of the two layers, interact strongly. In
this regime, the velocity of states at the Dirac point goes to
almost zero for specific-angle so-called magic angles [3,6,7].
Recently, the signature of the electron localization in the AA
regions at long time evolution has been confirmed numerically
for small θ [25].

In this paper, we study the consequence of the tunable
effective coupling between layers by angle θ with interme-
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diate values, ∼2◦ < θ <∼ 20◦, on local density of states
(LDOS) and transport properties. We combine tight-binding
(TB) numerical calculations for commensurate tBLG and a
perturbative continuous theory (see Appendixes) that gives
us deeper insights on θ effect. Note that our TB calculation
includes all matrix element couplings, whereas the continuous
theory, like the one previously developed [2,15], neglects the
coupling of electrons in different valleys. To analyze transport
properties numerically in bulk 2D systems, we consider local
defects [49,50], such as adsorbates or vacancies, that are res-
onant scatterers. Local defects tend to scatter electrons in an
isotropic way for each valley and also lead to strong interval-
ley scattering. The adsorbate is simulated by a simple vacancy
in the layer of the pz orbital as is usually done [51–53].
Indeed, the covalent bonding between the adsorbate and the
carbon atom of graphene to which it is linked eliminates the
pz orbital from the relevant energy window. We consider here
that the up and down spins are degenerate, i.e., we deal with
a paramagnetic state. Indeed, the existence and the effect of
a magnetic state for various adsorbates or vacancies is still
debated [54,55]. In the case of a magnetic state, the up and
down spins give two different contributions to the conductivity
but the individual contribution of each spin can be analyzed
from the results discussed here. We consider the cases (i)
where defects are located in the two layers and (ii), where
defects are located on one layer (layer 2) only.

In Sec. II, TB LDOS in pristine tBLG and the effect of
disorder on total DOS (TDOS) are analyzed with respect to
our analytical model for commensurate tBLG. The spatial
modulation of the DOS shows an increase of the DOS in the
AA region of the Moiré. This is a precursor of the localization
in the AA region for very small angles less than ∼2◦ [3,7]. The
electrical DC conductivity at high temperature (microscopic
conductivity) is studied in Sec. III A, and quantum correc-
tions of conductivity (low-temperature limit) are presented
in Sec. III B. The method to compute DC conductivity is
given in Appendix A. Numerical results of the paper are
analyzed using the analytical continuous model presented in
Appendixes B and C. This perturbative theory recovers known
results for the velocity renormalization [2,15] but also pro-
vides analytical results concerning LDOS and state lifetime
versus θ values.

The method to build commensurate tBLG is well known
and explained in many works. Here we use the same notations
as in our previous papers [3,7,16], where each tBLG is built
from two indexes n and m (Table I). For |m − n| = 1, the cell
of the bilayer contains one Moiré cell, whereas for |m − n| >

1 the cell of the bilayer contains several Moiré cells.

II. DENSITY OF STATES

A. Without defect

We first analyze the LDOS in pristine tBLG computed with
the TB Hamiltonian detailed in Ref. [7] and the Appendixes.
It is now well known theoretically [7,10,15,16] and experi-
mentally [10,48] that the energies E− and E+ of VHSs vary
linearly with the angle θ for θ >∼ 2◦. This is clearly seen
in the LDOS on the pz orbital of an atom located at the
center of the AA area of the Moiré (Fig. 1). Since our TB

TABLE I. Studied (n, m) bilayer structures. N is the number of
atoms, θ the rotation angle.

(n, m) θ [deg.] N

(12,13) 2.656 1876
(10,11) 3.150 1324
(8,9) 3.890 868
(6,7) 5.086 508
(5,6) 6.009 364
(4,5) 7.341 244
(7,9) 8.256 772
(10,13) 8.613 532
(3,4) 9.430 148
(8,11) 10.417 364
(2,3) 13.174 76
(5,9) 18.734 604
(1,3) 32.204 52
(1,4) 38.213 84

Hamiltonian includes coupling beyond the first-neighboring
atoms, the electron/hole symmetry is slightly broken and E−
is not strictly equal to −E+.

The LDOS in one layer of the bilayer as a function of
position �r in the Moiré structure is

ρ(E , �r) = 〈�r|δ(E − H )|�r〉 . (1)

To compare the LDOS in the bilayer with LDOS in the mono-
layer, we compute the relative variation of the LDOS due to
interlayer hopping terms �ρ(E , �r)/ρm(E ), with �ρ(E , �r) =
ρ(E , �r) − ρm(E ), where ρm(E ) is the LDOS in the monolayer
that does not depend on the position �r.

The LDOS on each carbon atom of Moiré has been cal-
culated using TB, so density map ρ(E , �r), where �r are the
positions of carbon atoms that can be drawn for an energy E .
Figures 2(a.1) and 2(b.1) show relative TB LDOS in (12,13)
and (6,7) bilayers at the energy E = ED + 0.05 eV. The strong
increase of LDOS in AA areas with respect to the AB zone are
clearly seen. As expected, this difference between LDOS in
the AA area and AB area decreases as θ increases. Moreover,
our numerical TB calculation recovers the difference in the
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FIG. 1. Local density of states (LDOS) at the center of an AA
zone in pristine tBLG listed in Table I for tBLG with different
rotation angles θ [deg.]. Some LDOS are taken from Ref. [7].
ED = 0.
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FIG. 2. Relative variation of the LDOS on top layer at energy
E = ED + 0.05 eV, close to the Dirac energy ED, in (a) (12,13)
tBLG and (b) (6,7) tBLG: (a.1), (b.1) TB results and (a.2), (b.2)
analytic results from Eq. (2). To be compared with analytic results,
the TB plots are made by a continuous extrapolation of LDOS on
atomic orbitals. The same arbitrary units are used for all four LDOS.
ED = 0.

LDOS of the two inequivalent atoms in the AB area. Indeed,
in the AB area, as in AB Bernal stacking, C atoms lying above
a C atom of the other layer have a lower LDOS than the LDOS
of a C atom not lying above a C atom of the other layer. That
leads to a triangular contrast [56] in the density map that has
been observed in STM images in AB Bernal bilayers.

According to the perturbative analytical model presented
in Appendix C 5, the relative variation of the LDOS is inde-
pendent of E for small E and can be estimated by the simple
formula,

�ρ(E , �r)

ρm(E )
�

(
θ1

θ

)2 6∑
j=1

cos( �Gj · �r), (2)

where �Gj are six equivalent vectors of the reciprocal space of
the Moiré lattice. The constant θ1 is given by

θ1 =
√

2t

(h̄vKD)
, (3)

where v is the monolayer velocity and KD is the modulus of
the wave-vector in the Dirac point of graphene. Using the
interlayer coupling value t � 0.12 eV (Appendix B 1), one
finds that the value of θ1 is close to θ1 � 1◦. Equation (2) does
not depend on the type of atom (A or B) it oscillates with �Gj as
expected. It is clear the maximum value is obtained for �r = 0,
which is at the center of the AA area, and relative variation
of the LDOS varies as θ−2. As shown in Fig. 2, the overall
agreement between TB numerical calculation and TB analyti-
cal model is very good. We just note a small triangular contrast
in the AB zone which is not reproduced by the analytical
model (see Appendix Sec. C 5 for a discussion). We observe
in particular a reinforcement of the DOS in the AA region and
a lowering in the AB regions. This behavior is a precursor of

-0.8 -0.4 0 0.4 0.8
E  (eV)

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

D
O

S 
(s

ta
te

s /
 e

V
 a

to
m

s)

(a)
c = 0

c = 0.1

c = 0.2

c = 0.5

c = 0.05

c = 1

c = 2

-0.8 -0.4 0 0.4 0.8
E  (eV)

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

D
O

S 
(s

ta
te

s /
 e

V
 a

to
m

s)

(b)
c = 0

c = 0.1

c = 0.2

c = 0.5

c = 0.05

c = 1

c = 2

FIG. 3. Total DOS in (a) (12,13) tBLG and (b) (6,7) tBLG, for
various concentrations c (%) of vacancies with respect to the total
number of atoms in tBLG. Dashed line: with vacancies in both layers;
full line: with vacancies in layer 2. Dotted line is the DOS in pristine
monolayer graphene (MLG). ED = 0.

the electronic localization in the AA region, which is observed
in the very low angle limit θ <∼ 2◦ [3,7,11].

B. With resonant adsorbates

To study the effect of static defects on the electronic
confinement by the Moiré, we include atomic vacancies
(vacant atoms) that simulate resonant adsorbates atoms or
molecules [52,53,57–62]. For each vacancy concentration c
with respect to the total number of carbon atoms in tBLG, we
consider two cases:

(i) vacancies are randomly distributed in both layers and
(ii) vacancies are randomly distributed in layer 2 only.
TDOS in (12,13) tBLG and (6,7) tBLG are drawn in Fig. 3

for different concentrations of vacancies in cases (i) and (ii).
For small c values, the VHSs are still clearly seen but they are
enlarged by disorder. This shows that static disorder destroys
the confinement by Moiré in AA areas. For c >∼ 0.5%,
peaks of the Van Hove singularities are destroyed by vacancy
states. With the TB Hamiltonian including only first-neighbor
hopping terms, the vacancy states are midgap states at Dirac
energy [57,58]. But, as in monolayer graphene [60] and
Bernal bilayer graphene [53], taking into account the TB
hoppings beyond first neighbor enlarges the midgap states
and shifts it to negative energies, typically around −0.2 eV.
As shown in Fig. 4, when vacancies are located in layer 2
only [case (ii)], the vacancy states only appear on LDOS
pz orbitals of layer 2. Note that average DOS in layer 1 is
slightly modified by the vacancies located in layer 2 (Fig. 4).
This effect seems similar to modification due to nonresonant
scatterers [52]. Figures 3 and 4 show that, as far as the DOS
is concerned and for rather large concentrations of vacancies
(c > 0.5 %), the rotated angle θ does not change the effect of
vacancies. As we will see in the next section, the effect of θ is
more pronounced on wave-packet quantum diffusion and thus
on transport properties.
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FIG. 4. Average LDOS in each layer: (a) (12,13) tBLG and
(b) (6,7) tBLG, for various concentrations c (%) of vacancies in layer
2. Empty symbol: average LDOS in layer 1; full symbol: average
LDOS in layer 2. Dotted line is the DOS in pristine monolayer
graphene (MLG). c is the concentration of vacancies with respect
to the total number of atoms in tBLG. ED = 0.

III. QUANTUM TRANSPORT

Within the Kubo-Greenwood formalism, we compute the
conductivity σ (EF ) versus the Fermi energy EF using the
real-space method developed by Mayou, Khanna, Roche, and
Triozon [63–67] in the framework of the relaxation time
approximation (RTA) to account [52] effects of inelastic scat-
terers due to electron-phonon interactions (see Appendix A).
Elastic-scattering events due to local defects (vacant atoms)
are included in the Hamiltonian itself in a large unit cell
containing more than 107 atoms with boundary periodic con-
ditions.

A. High-temperature conductivity

We first consider the high-temperature case (or room-
temperature case) where the inelastic-scattering time τi is
close to the elastic-scattering time τe due to static defects. In
that case, the DC conductivity is called microscopic conduc-
tivity, σM , because it takes into account quantum interference
effects occurring during time less or equal to τe � τi. σM is
close to semiclassical conductivity that does not take into
account the quantum corrections due to multiple scattering
effects. Typically, this quantity represents a room-temperature
conductivity when multiple scattering effects are destroyed by
dephasing due to the electron-phonon interactions. In Fig. 5,
σM (E ) is shown for three tBLG (12,13), (6,7), and (3,4),
with rotated angle θ equal to 2.656◦, 5.086◦, and 9.430◦,
respectively, and in Fig. 6, σM (θ2) is shown for different
energy values close to the Dirac energy ED.

For vacancy distribution (i), i.e., vacancies randomly dis-
tributed in two layers–, σM (E ) is almost independent of θ

value. When vacancy concentration c is large (Fig. 6, c =
1% and 2%) behavior is similar to that of MLG and σM �
2σM,MLG, where σM,MLG is the conductivity for MLG [52],
σM,MLG � 0.6 G0, with G0 = 2e2/h. σM,MLG reaches the well-
known universal minimum of the so-called conductivity
“plateau”—-independent of defect concentration—at energies
around ED [51]. For smaller concentrations (Fig. 6, c =
0.5%), σM increases when the concentration c increases.
These two regimes are similar to the one found in AB Bernal
bilayer graphene [53]. Roughly speaking, for large c values,
the elastic mean-free path Le in MLG (see Fig. 4(a) in
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FIG. 5. Microscopic conductivity σM in (a) (12,13) tBLG,
(b) (6,7) tBLG, (c) (3,4) tBLG, for the two cases: (Full line) with
vacancies in layer 2 and (dashed line) with vacancies in both layers.
c is the concentration of vacancies with respect to the total number
of atom in tBLG. Inserts: σM around the Dirac energy ED = 0.

Ref. [53]) is smaller than the average traveling distance [53] l1
in a layer between two interlayer hoppings of the charge carri-
ers, and thus carriers behaves as in MLG. Whereas, for small
c values, Le > l1 and thus interlayer hopping are involved
in the diffusive regime and BLG conductivity properties are
different than MLG ones.

For vacancy distribution (ii), i.e., vacancies randomly dis-
tributed in layer 2, and a large rotated angle [Fig. 5(c)],
conductivity is larger than in case (i). Indeed, for large θ ,
typically θ > 10◦, eigenstates are located mainly in one layer
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FIG. 6. Microscopic conductivity σM in tBLG versus rotated
angle θ2 for energy values E . Full line: with vacancies in layer 2;
dashed line: with vacancies in both layers. c is the concentration of
vacancies with respect to the total number of atoms in tBLG. ED = 0.

(decoupled layers) [3,16] and thus conductivity of the bilayer
is the sum of the conductivity of two almost independent
layers,

σM � σM,1 + σM,2, (4)

corresponding to conductivity of layers 1 and 2, respectively.
The conductivity of a layer with defects is close to MLG
conductivity σM,2 � σM,MLG and the conductivity of a layer
without defects σM,1 is affected by the presence of defects
in layer 2. With increasing θ , the eigenstates are more and
more located on one layer, thus layers are more and more
decoupled, and the σM,1 increases as layer 1 becomes more
and more like a pristine MLG. Consequently, the conductivity
of the tBLG increases when θ increases. In theses cases,
numerical results (Fig. 6) show that σM increases as θ2.

For small angles [Figs. 5(a) and 6], eigenstates are located
almost equally on both layers for all energies around Dirac
energy [16]; therefore, they are affected in a similar way by the
two kinds of vacancies distributions (i) and (ii). Conductivity
is thus very similar in the two cases.

The analytical model presented in Appendix C 4 allows us
to understand why σM increases as θ2 when defects are located
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FIG. 7. Conductivity in bilayer versus inelastic scattering Li, at
the energies E , for concentration c = 2% of vacancies with respect
to the total number of atoms in bilayer: (θ1 = 2.656o) (12,13) tBLG,
(θ2 = 5.086o) (6,7) tBLG, (θ3 = 9.430o) (3,4) tBLG. Line: with
vacancies in layer 2; dashed line: with vacancies in both layers.
For (3,4) tBLG (θ3 = 9.430o), the localization regime appears at
very large times for which very time-consuming calculations are
necessary; that is why this regime is only roughly estimated by
extrapolation.

only in layer 2 [case (ii)]. From Einstein conductivity formula,
conductivity in layer p, p = 1, 2, is

σM,p(E ) = e2ρp(E )v2τp, (5)

where ρp and τp are the average DOS in layer p and the aver-
age elastic-scattering time in layer p, respectively. For energy
values in the plateau of conductivity around ED, layer 2—with
defects—has a conductivity close to the universal minimum of
MLG [52], σM,2(E ) � σM,MLG, thus, from Eqs. (4) and (5), the
conductivity in the bilayer is

σM (E ) � σM,MLG

(
1 + ρ1(E )

ρ2(E )

τ1

τ2

)
, (6)

where the ratio between scattering times can be estimated
from the formula Eq. (C18) obtained in the Appendixes. Thus,

σM (E ) � σM,MLG

(
1 + ρ1(E )

ρ2(E )

θ2

θ2
0

)
, (7)
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FIG. 8. Localization length versus angle θ , at the energies E , for
concentration c = 2% of vacancies with respect to the total number
of atoms in the bilayer. Line: with vacancies in layer 2; dashed line:
with vacancies in both layers.

with θ0 related to θ1 [Appendix Eq. (C2)],

θ0 =
√

3θ1, (8)

i.e., θ0 � 2◦ (Appendix C 3). Since ρ1(E ) and ρ2(E ) are
different (Fig. 4) and depend on the energy values and the
defect concentration c, the slope of σM versus θ2 also depends
on E and c (Fig. 6).

B. Low-temperature conductivity

In the low-temperature limit, inelastic-scattering time τi is
larger than elastic-scattering time τe, and multiple scattering
effects may reduce the conductivity with respect to micro-
scopic conductivity σm. The average inelastic length Li thus
satisfies Li 
 Le and Li 
 l1. τi and Li increase when temper-
ature decreases. To evaluate this effect, we compute [52,53]
the conductivity σ versus Li at every energy E (Fig. 7) for
the two vacancy distribution cases: (i) in two layers and (ii)
in layer 2. As expected in disordered 2D systems [68], for
large Li, σ (Li ) follows a linear variation with the logarithm of
Li, like in the case of monolayer graphene [52,69] and Bernal
bilayer graphene [53]

σ (E , Li ) = σ0 − αG0 ln(Li ), (9)

where σ0 is a constant depending on σM and Le, and slope α is
almost independent on energy E , the defect concentration, and
the repartition of the defects (in one layer or in both layers).
From numerical results, one obtains α � 0.32 which is close
to the monolayer value [52] and Bernal bilayer value [53].

Localization length ξ can be estimated from the equation
σ (Li = ξ ) = 0 and the linear extrapolation of σ versus log Li

at large Li (see dashed lines Fig. 7). ξ versus θ for various
energies in the plateau of conductivity are shown in Fig. 8. As
σM , ξ is almost independent of θ when defects are located in
both layers, but ξ increases strongly when defects are located
in one layer only.

IV. CONCLUSION

We have presented a numerical study of the LDOS and
the conductivity in pristine and covalently functionalized
tBLGs, with an angle of rotation θ > 2◦. Those results are
understood using a perturbative analytical model described
in the Appendixes. The atomic structure in Moiré induces a
strong modulation in the LDOS between AA stacking areas
and AB stacking areas, which varies as θ−2, following a
simple analytic expression. We show that disorder breaks the
interlayer effective coupling due to the Moiré pattern. There-
fore, when defects are randomly distributed in both layers, the
conductivity σM is almost independent of θ , whereas σM ∼ θ2

when defects are randomly distributed in one layer only. Such
a nonsymmetric distribution of defects may often occur in
experimental situations because of the effects of substrate,
adatoms, or admolecules. Finally, the quantum correction
to the conductivity is computed and localization length is
calculated versus θ .
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APPENDIX A: KUBO-GREENWOOD CONDUCTIVITY

In the Kubo-Greenwood approach for transport properties,
the quantum diffusion D is computed by using the polyno-
mial expansion of the average square spreading, �X 2, for
charge carriers. This method, developed by Mayou, Khanna,
Roche and Triozon [63–67], allows for very efficient nu-
merical calculations by recursion in real space that takes
into account all quantum effects. Static defects are included
directly in the structural modelization of the system and they
are randomly distributed on a supercell containing up to 107

carbon atoms. Inelastic scattering is computed [52] within the
RTA, including an inelastic-scattering time τi beyond which
the propagation becomes diffusive due to the destruction of
coherence by inelastic processes. One finally gets the Einstein
conductivity formula [52],

σ (EF , τi ) = e2ρ(EF )D(EF , τi ), (A1)

where EF is the Fermi level, D(E , τi ) is the diffusivity (diffu-
sion coefficient at energy E and inelastic scattering time τi),

D(E , τi ) = L2
i (E , τi )

2τi
, (A2)

ρ(E ) is the DOS and Li(E , τi ) is the inelastic mean-free path.
Li(E , τi ) is the typical distance of propagation during the time
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interval τi for electrons at energy E :

L2
i (E , τi ) = 1

τi

∫ ∞

0
�X 2(E , t ) e−t/τi dt . (A3)

Without static defects (static disorder), the Li and D goes to
infinity when τi diverges. With statics defects, at every energy
E , σ (τi ) reaches a maximum value,

σM (EF , τi ) = e2n(EF ) Maxτi{D(EF , τi )}, (A4)

called microscopic conductivity. σM corresponds to the
usual semiclassical approximation (semiclassical conductiv-
ity). This conductivity is typically the conductivity at room
temperature, when inelastic-scattering time τi (inelastic mean-
free path Li) is close to elastic-scattering time τe (elas-
tic mean-free path Le), τe(E ) = Le(E )/v(E ) and Le(E ) =
DM (E )/2v(E ), where DM (E ) is the maximum value of D(τi )
at energy E and v(E ) the velocity at very small times [slope
of �X (t )].

For larger τi and Li, τe � τi and Le � Li, quantum inter-
ferences may result in a diffusive state, D(τi ) � DM , or a sub-
diffusive state where D decreases when τi and Li increase. For
very large Li, Li close to localization length ξ , the conductivity
goes to zero.

APPENDIX B: TIGHT-BINDING MODEL

1. Real-space couplings

In the TB scheme, only pz orbitals are taken into account
since we are interested in electronic states close to the Fermi
level. The TB model used in this paper is the same as in
our previous work on twisted bilayer graphene [3,7,16] and
AB Bernal bilayer graphene [53,62]. The Hamiltonian has the
form

H =
∑

i

εi|i〉〈i| +
∑
(i, j)

ti j |i〉〈 j|, (B1)

where i is the pz orbital located at �ri with an on-site energy
εi, and the sum runs over all neighboring i, j sites. ti j is
the hopping element matrix between site i and site j, com-
puted from the usual Slater-Koster parameters as given in
Ref. [7]. Since the layers are rotated, interlayer neighbors are
not on top of each other (as is the case for the Bernal AB
stacking). Therefore, the interlayer hopping terms are then
not restricted to ppσ terms but ppπ terms also have to be
introduced [3,7]. Moreover, hopping terms are not restricted
to first-neighboring orbitals and they decrease exponentially
with the interatomic distance. A cutoff distance rc is intro-
duced which must be large enough so the results do not
depend on it. We have checked that rc = 0.6 nm is enough.
For small rc values, a small gap may appear at the Dirac
energy as shown in Fig. 9. Several studies [70–73] have
shown that this small gap comes from nonzero matrix element
coupling electron states in equivalent Dirac cones for some
superstructures with a small number of atoms in the cell of
tBLG.

The matrix element of the interlayer Hamiltonian Hc be-
tween one orbital at �r in layer 1 and one orbital at �r ′ in layer
2 is given by

〈�r′|Hc|�r〉 = Hc(|�r − �r ′|). (B2)
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FIG. 9. Band dispersion E (�k). Red points: DFT calculation using
VASP code (for details on the calculation, see Ref. [7]); red lines:
TB calculation, for (a) (1,3) tBLG (θ = 32.20o), (b) (1,4) tBLG
(θ = 38.21o), calculated with a large interlayer cutoff distance rc =
0.60 nm, whereas blue dashed line shows TB bands with a too-small
rc, rc = 0.34 nm. In the latter case, a nonphysical gap appears at
energy ED = 0. Dotted black line is for MLG. Insert: Zoom of the
bands around the K point. ED = 0.

Note that Hc(�r − �r ′) is real and depends only on the modulus
|�r − �r ′|. Hc(|�r|) is maximum at zero distance, i.e., when the
two orbitals are aligned perpendicularly to the two layers.
The hopping integral between the two orbitals decreases when
their distance increases. The Fourier transform, which will be
essential in the following, is also real and depends only on the
modulus of the wave vector. From the Fourier transformation,
we write

Hc(�r) =
∫

H̃c(�k) ei�k·�r d2�k (B3)

and

H̃c(�k) = 1

(2π )2

∫
Hc(�r) e−i�k·�r d2�r. (B4)

Here too the coupling H̃c(�k) decreases when |�k| increases. We
shall see below that the largest value of H̃c(�k) is for |�k| close
to the modulus of a Dirac point which is represented by KD in
Fig. 10.
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FIG. 10. Modulus of the interlayer coupling t versus inlayer
distance r and modulus k of the wave vector, calculated from the
tight-binding model described in Ref. [7].

2. Interlayer coupling between Bloch states

We want to compute the coupling between two Bloch states
of layer 1 and layer 2. Each graphene layer is a honeycomb
lattice with two atoms, A and B, in its unit cell. Let us consider
normalized Bloch states made of atomic pz orbitals A or B in
layer α, α = 1 or 2,

|A�k〉α = 1√
N

∑
�R

ei�k· �RA |A �R〉α, (B5)

|B�k〉α = 1√
N

∑
�R

ei�k· �RB |B �R〉α, (B6)

where N is the number of unit cells of the crystal and the
summation is performed on all cells of crystal ( �R). In the fol-
lowing, A or B are indicated by ε according to the following
convention:

ε =
{

A for A atom

B for B atom,
(B7)

α =
{

1 lower layer

2 upper layer.
(B8)

The positions of the atoms in layer 1 are{
�rε �R = �R if ε = A

�rε �R = �R + �u if ε = B
(B9)

and, in layer 2, {
�r ′

ε′ �R ′ = �R ′ if ε′ = A

�r′
ε′ �R ′ = �R′ + �u ′ if ε′ = B,

(B10)

where �u and �u ′ are vectors connecting the two atoms in the
unit cells, i.e., A and B atoms in layer 1 and A′ and B′ atoms
in layer 2, respectively. Writing

Hc|ε �k〉2 =
∑

i

t (εi �ki , ε �k) |εi �ki〉1, (B11)

where t (εi �ki , ε �k) ≡ ti is the transfer matrix element, we find
a selection rule such that

�k + �Kr = �k ′ + �K ′
r, (B12)

where �Kr and �K ′
r are vectors of reciprocal lattices. This means

that interlayer coupling Hamiltonian Hc couples the upper
state |ε �k〉2 to lower state |ε �k〉1 only if the selection rule
Eq. (B12) is obeyed.

Finally, for �ki = �k + �Kr = �k ′ (mod �K ′
r ), we derive a for-

mula for the coupling matrix; after some calculations [74], we
switch to the following expression of the Hamiltonian:

ti(�k + �Kr ) = 4π2

S
H̃c(�k + �Kr ) ei (�k+ �Kr )·(ε′ �u′−ε�u+ ��). (B13)

S is the area of the unit cell, �� is the translation between the
two layers. However, this translation of the two layers just
translates the overall Moiré pattern and can be set to zero
without loss of generality.

By symmetry of hopping term between two orbitals, cou-
pling depends only on the modulus of �k + �Kr , i.e., H̃c(�k +
�Kr ) � H̃c(| �KD + �Kr |), in the vicinity of the Dirac point. The

modulus of ti is represented in Fig. 10. One sees that the
largest value of |ti| is one that corresponds to the smallest
possible value of �k + �Kr . By careful examination, it can be
shown that for electronic states close to the Dirac point, this
minimum corresponds to the modulus of the wave vector in
the Dirac point (KD = || �KD|| � 17.2 nm−1). From Fig. 10,
it is easy to deduce numerically the interlayer hopping term
close to Dirac is around t1 � 0.12 eV. All the other contribu-
tions are much smaller and will be neglected here.

Selecting only this contribution means that �Kr is such that
�k + �Kr belongs to one of three equivalent valleys. Therefore,
a set of two Bloch states with a given wave vector [Eqs. (B5)
and (B6)] in one layer will be coupled to three sets of two
Bloch states in other layers corresponding to three different
wave vectors. This strongly simplifies the structure of the
Hamiltonian and the analytical calculations presented here.

In the following, we shall count the vectors �k and �k′ from
their respective Dirac points �KD1 and �K ′

D1. �K ′
D1 is obtained

from �KD1 by a rotation of an angle θ around the vector �ζ which
is perpendicular to layers 1 and 2. Therefore, one has

�k = δ�k + �KD1, (B14)

�k ′ = δ�k ′ + �K ′
D1. (B15)

Finally, one gets for the selection rule

δ�k ′ � δ�k − θ �ζ × �KDi, (B16)

where the index i takes the values i = 1, 2, 3. �KDi and �K ′
Di

are the three equivalent Dirac points in layers 1 and 2. �K ′
Di

is obtained from �KDi by a rotation of an angle θ around the
vector �ζ .

APPENDIX C: EFFECT OF INTERLAYER COUPLING

We consider layer 1 coupled to layer 2, which is rotated by
an angle θ with respect to layer 1. If one considers the time
evolution within layer 1 or, more generally, the restriction of
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the total Green’s function to layer 1, the coupling to layer
2 amounts to the addition of an effective Hamiltonian or
self-energy. From this effective Hamiltonian, we shall get the
velocity renormalization, the electron lifetime in layer 1 due to
disorder in layer 2, and the modulation of the DOS close the
charge neutrality point. The theory which is developed here
is perturbative and assumes that the rotation angle θ is not too
small. In particular, we emphasize that the perturbation theory
is valid for

z, t, � � h̄vKDθ, (C1)

where v is the monolayer velocity and KD = || �KD||, z is the
energy of calculation, t is the interlayer coupling (t � t1 �
0.12 eV, Appendix B 1) and � is a possible difference in on-
site energy between the two layers. The condition on t implies
that θ > θ1, where

θ1 =
√

2t

(h̄vKD)
. (C2)

The value of θ1 is close to θ1 � 1◦. The condition on z implies
that the current energy at which the quantities are calculated
is smaller than the typical energy of the VHSs, which depends
linearly on θ . The difference in energy � of the two layers
must also be smaller than the energy of the VHS. Note that
the VHSs have been clearly observed with STM experiments
on twisted graphene bilayer [10].

1. Effective one-plan Hamiltonian

We consider first a Bloch state in layer 1 with wave vector
δ �k0. It can be coupled to a Bloch state δ �k′ in layer 2, then
propagates freely in layer 2, and is scattered again to a Bloch
state in layer 1 with a wave vector δ �k f . Applying the selection
rule Eq. (B16) to each interlayer hopping term, we find that
�δk f and �δk0 are related by

δ �k f � δ �k0 − θ �ζ × ( �KDi − �KD j ). (C3)

Therefore, the coupling between layers 1 and 2 induces an
effective coupling between Bloch states of layer 1 with the
selection rule Eq. (C3). Note that the indices i and j take the
values 1, 2, 3.

When i = j, a Bloch state with δ �k0 is coupled only to
the Bloch states with the same wave-vector δ �k f = δ �k0. This
process gives a self-energy which renormalizes the energy of
the state of the single layer 1 (see below).

When i and j are different, then δ �k f and δ �k0 are different:

δ �k f � δ �k0 + �Gk . (C4)

�Gk = θ �ζ × ( �KDi − �KD j ) is a reciprocal lattice vector of the
Moiré lattice, where �KDi − �KD j is a reciprocal lattice vector
of graphene. These vectors take six possible values, named
�Gk in the main text, that are vectors of the reciprocal lattice of

the Moiré pattern. As we show below, this coupling between
Bloch states of different wave vectors will create eigenstates
with mixing of different oscillating components which leads
to oscillations in the DOS with wave-vector components �Gk

(see below). We note also that the coupling introduces only
small spatial frequencies and in particular it does not connect
states of the two nonequivalent Dirac cones.

2. Self-energy

We are interested in the self-energy of coupling of states
in layer 1 due to the coupling with states of layer 2. Indeed,
the real part of self-energy �σ (z) is associated to the modifi-
cation of the dispersion relation and will allow us to discuss
velocity renormalization. The imaginary part of self-energy is
associated to the electron lifetime. It will allow us to discuss
the lifetime of the electron in one layer when there is disorder
in another layer.

Using matrix notations defined in Appendix B, we have

�̃1(z) =
∑

�Kr

T+( �Kr ) G2 ( �KD + �Kr ) T−( �Kr ), (C5)

where �Kr is the vector of reciprocal lattice which has three
values that connect one Dirac point to itself or to the two other
equivalent Dirac points. T describes the coupling between two
layers and the Green’s operator at wave vector θ �ζ × �Kdμ is

G2 (z, θ �ζ × �Kdμ) = 1

z − H−(θ �ζ × �Kdμ)
, (C6)

where �Kdμ counts the three equivalent Dirac points. And for
the Hamiltonian [74],

H2(θ �ζ × �Kdμ)

=
(

� −γ0 f (θ �ζ × �Kdμ)

−γ0 f ∗ (θ �ζ × �Kdμ) �

)
,

(C7)

where � is potential difference between the two layers (layer
1 is in potential 0 and layer 2 is in potential �), γ0 is the
next-nearest-neighbor hopping, and

f (θ �ζ × �Kμ) = 2 sin
πθ√

3
exp i

(
θμ + π

2
εθ + α−(θ )

)
,

(C8)
with εθ = sgn(θ ) and α−(θ ) = 2πθ/

√
3. Note that this matrix

is evaluated at θ �ζ × �Kdμ. Indeed, for �k sufficiently close to
Dirac point �k, because h̄v(||�k − �Kd ||) � γ0| f (θ �ζ × �Kdμ)|,
we can neglect the dependence on �k in H2, G2 and �̃2(z).
This corresponds to the general conditions of validity of the
present perturbation theory (see above the introduction to
Appendix C).

So now, after some calculations, we get for the self-energy

�̃0(z) = σ (z) I, (C9)

with

σ (z) � θ2
0

θ2

[
� − z

]
, (C10)

where we have introduced θ0:

θ0 = 3√
2π

t

γ0
. (C11)

Using the values of t � t1 � 0.12 eV (Appendix B 1) and
γ0 � 2.7 eV, one finds that the value of the angle θ0 is
θ0 � 1.7◦.
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FIG. 11. Velocity ratio vr/v = Vbi/Vmono for commensurate
(n, m) bilayer cell versus rotation angle θ , computed from Eq. (C11)
with various θ0 values. Circle, DFT calculation using VASP code;
cross, TB calculations, from Ref. [3].

3. Velocity renormalization

The eigenvalues are the poles of the Green’s function.
Therefore, the energy E (�k) is given by

E − σ (E ) = ±h̄v||δ�k||. (C12)

For |�k| = 0, we have solution E = E0 such that

E0 − σ (E0) = 0. (C13)

For small �k, we can write E (�k) = E0 + δE (�k). Eventually, we
have a nice formula:

δE = ±h̄v||δ�k||
1 − σ ′(E0)

. (C14)

Finally, the renormalized velocity vr is

vr

v
= 1

1 + θ2
0 /θ2

. (C15)

Therefore, using a well-established TB model, we recover
velocity renormalization consistent with that of Refs. [2,15].
In addition, we find that this velocity renormalization is
independent of the difference in potential of two layers. As
shown in Fig. 11, a systematic study of the renormalization
of the velocity close to the Dirac point is done [3], compared
to its value in a monolayer graphene, for rotation angles θ

varying between 0◦ and 60◦ (Fig. 11). The renormalization
of the velocity varies symmetrically around θ = 30◦. Indeed,
the two limit cases θ = 0◦ (AA stacking) and θ = 60◦ (AB
stacking) are different, but Moiré patterns when θ → 0◦ and
when θ → 60◦ are similar because a simple translation by a
vector transforms an AA zone to an AB zone.

Focusing on angles smaller than 30◦, three regimes can be
defined [3] as a function of the rotation angle θ (Fig. 11). For
large θ (20◦ � θ � 30◦), the Fermi velocity is very close to
that of graphene. For intermediate values of θ (3◦ � θ � 20◦),
the velocity renormalization is predicted by Eq. (C15), as well
as by the perturbative theory of Lopes dos Santos et al. [15]
For the small rotation angles (θ < 2◦), a new regime occurs
where the velocity tends to zero and perturbation theory
cannot be applied.

4. Electron lifetime

The two layers of the tBLG can have a very different
amount of disorder due to their different exposures to envi-
ronment. For example, the lower layer will be in contact with
a substrate and the upper layer is exposed either to vacuum or
to a gas (sensor application). Therefore, it is of high interest
to consider the limiting case where defects are present in one
layer and absent from the other layer. In the following, we
consider that defects are present only in layer 2. If the two
layers were decoupled, defects in one layer would affect the
electron lifetime in that layer but not in the other one. Since
the layers are coupled, defects in one layer will also affect
the electronic lifetime in the other layer. In this Appendix
section, we discuss how such a distribution of defects impacts
the electron lifetime.

If there is disorder in the lower layer (layer 2), the Bloch
states of this layer will have a contribution to their self-energy
which is imaginary. This can be represented in the simplest
possible model by a purely imaginary part of the potential
energy �,

� = − ih̄

τ2
, (C16)

where τ2 is the lifetime in layer 2 due to disorder in layer
2. Using formula Eq. (C10), we see that electrons in layer 1
acquire an imaginary self-energy:

�σ (z) = − ih̄

τ1
= − ih̄

τ2

θ2
0

θ2
. (C17)

Therefore, the lifetimes τ1 and τ2 in layer 1 and layer 2 are
related through

τ1

τ2
=

(
θ

θ0

)2

, (C18)

where θ0 is given by Eq. (C11) and is the same quantity as in
the velocity renormalization expression Eq. (C15).

5. Spatial variation of density of states

As explained above, the coupling between Bloch states of
different wave vectors in layer 1 (due to interlayer coupling
with layer 2) corresponds to the selection rule

δ �k f � δ �k0 + �Gk, (C19)

where �Gk = θ �ζ × ( �KDi − �KD j ) is a reciprocal lattice vector
of the Moiré lattice. The typical difference in energy be-
tween Bloch states of �δk f and of �δk0 is �E � h̄vθ || �KDi||.
This difference is nearly independent of �δk0 provided that it
is sufficiently close to zero. The typical coupling is te f f �
t2/(h̄vθ || �KDi||).

Then the mixing between states of wave vector close to
( �KDi) and wave vector close to �KDi + �Gk will be of order
teff/�E , i.e., of order (θ1/θ )2. Therefore, the relative variation
of the DOS of a state is independent of the energy, for states
sufficiently close to the Dirac point, and it depends only on
the position in the Moiré pattern. A precise calculation [74]
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provides the expression given in the main text [Eq. (2)],

�ρ(E , �r)

ρm(E )
�

(
θ1

θ

)2 6∑
j=1

cos( �Gj · �r), (C20)

where �Gj are six equivalent vectors of the reciprocal space of
the Moiré lattice and where the rotation angle θ1 is given by

θ1 =
√

2t

(h̄vKD)
= θ0√

3
. (C21)

Using the interlayer coupling value t � 0.12 eV
(Appendix B 1) one finds that θ1 is close to one degree.

We emphasize that the present theory is perturbative in
the coupling t . This perturbation theory is valid for suffi-
ciently large values of θ as explained in the introduction
of Appendix C. The other assumption is to neglect Fourier
components of the interlayer Hamiltonian that couple a Bloch
state to other states having wave vectors away from the Dirac
cones. This approximation can lead to the underestimation
of modulations of the DOS at high spatial frequencies with
respect to the Moiré period. This could explain why the DOS
modulation (TB calculations) on sublattices A and B can
differ by about ±15% as compared to averaged DOS, whereas
the present perturbative theory does not predict this difference.
Note that the average DOS of two neighboring A and B atoms
is well reproduced by the analytical model.
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