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Precision measurements of optical phases have many applications in science and technology. Entangled
multiphoton states have been suggested for performing such measurements with precision that significantly
surpasses the shot-noise limit. Until recently, such states have been generated mainly using spontaneous
parametric down-conversion—a process which is intrinsically probabilistic, counteracting the advantages that
the entangled photon states might have. Here we use a semiconductor quantum dot to generate entangled
multiphoton states in a deterministic manner, using periodic timed excitation of a confined spin. This way
we entangle photons one by one at a rate which exceeds 300 MHz. We use the resulting multiphoton state to
demonstrate super-resolved optical phase measurement. Our results open up a scalable way for realizing genuine
quantum enhanced supersensitive measurements in the near future.
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I. INTRODUCTION

When a light beam passes through a thin layer of transpar-
ent material, it gains a phase shift relative to the same beam
in vacuum. The shift depends, in general, on the thickness of
the layer, its refractive index, and its birefringence. Measuring
the optical phase has, therefore, numerous applications in
science and technology, including microscopy, lithography,
and displacement measurements, to name a few.

The precision in which such measurements can be per-
formed is typically limited to the shot-noise-limit (SNL) of
�θclas = 1/

√
N , where N is the total number of the detected

beam photons. A possible way to overcome this limit is to use
entangled multiphoton states, which can conceptually push
the measurement precision toward the Heisenberg limit of
1/N [1–3].

A well-known example is the N00N state [4,5]. Such a state
of Nent photons can be expressed as (|Nent, 0〉 + |0, Nent〉)/

√
2,

representing a superposition of all Nent photons in one
mode or all in another mode, with a well-defined quantum
mechanical phase between the two. If one mode experi-
ences a phase shift of θ relative to the other by passing a
medium, then the entangled multiphoton state transfers to
(|Nent, 0〉 + eiNentθ |0, Nent〉)/

√
2. The gained phase of Nentθ can

be accurately measured using interferometry, for example,
yielding a measure of θ with an error of �θent = 1/Nent.
Since only a single mode emerging from a single source
experiences the phase shift, the N00N states also provide
high spatial resolution when measuring local phase shifts [6].
Unfortunately, generating a N00N state is a very demanding
and resource-intensive task, and thus only N00N states with
Nent = 5 photons have been reported so far [7].

The Greenberger-Horne-Zeilinger (GHZ) [8] state is
yet another multiphoton entangled state that can be used
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for supersensitive phase measurements. It is expressed as
(|0〉⊗Nent + eiα|1〉⊗Nent )/

√
2, describing a superposition of Nent

photons, all in state |0〉 or all in state |1〉, with a well-defined
relative phase α between the two cases. Similarly to the N00N
case, if one of the states experiences a phase shift of θ relative
to the other, then θ can, in principle, be measured in the
Heisenberg accuracy limit.

In this work, we produce such a GHZ state where |0〉
and |1〉 are implemented in two orthogonal polarizations of
the photons. GHZ states have already been produced with
up to 12 [9] and 18 photonic qubits [10] using spontaneous
parametric down-converted (SPDC) light sources [11]. Never-
theless, these sources are probabilistic, and require inefficient
postselection in order to create the GHZ states. In addition,
the spatial resolution that such GHZ states can provide is
relatively limited. This is because the generated GHZ states
occupy multiple spatial modes. These and other requirements
challenge the use of SPDC sources as suitable and scalable
sources for supersensitive phase measurement applications.

Single photon sources with spontaneously generated en-
tanglement were also considered recently for achieving su-
persensitivity [12]. Single photon sources based on semi-
conductor quantum dots (QDs) are particularly bright and
capable of deterministic production of single [13–15] and
entangled [16–21] photons. Attempts to demonstrate phase
supersensitive measurements were recently reported using
entangled two-photon (Nent = 2) states from a single QD
[22,23]. Unfortunately, these methods are intrinsically limited
to low numbers of entangled photons [24,25].

Here we demonstrate an approach for achieving super-
sensitive optical phase measurement. This approach utilizes
semiconductor QDs to deterministically generate multipho-
ton, polarization-entangled GHZ states. We do it by periodic
pulsed excitation of the QD, entangling photons at a rate
of 330 MHz. The number of photons that can be entangled
(Nent) in this way is in principle unlimited. In addition, the
produced GHZ states occupy one spatial mode, providing the
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FIG. 1. Schematic and simplified description of the experimental
system. A sequence of pulses is applied to the quantum dot (QD) at
76 MHz. The pulses deterministically generate a string of photons,
which are polarization entangled with the spin of the dark exciton
(DE) in the QD. The emitted photons pass through a liquid crystal
variable retarder (LCVR), which adds adjustable relative phase dif-
ference between the two components of the light circular polariza-
tions R and L. The polarization of the photons is then projected on
two rectilinear polarizations H and V using a polarizing beam splitter
(PBS). Correlation events in which two or three clicks occur during
the same period are recorded by the time-tagging electronics.

highest spatial resolution possible. These advantages pave the
way for building a scalable method for performing super-
sensitive measurements. We describe below the experiment
that demonstrates the concept and discuss the conditions for
achieving genuine supersensitivity.

II. THEORETICAL BACKGROUND

A. Optical phase measurement with classical light

Consider the experimental setup described in Fig. 1. We
set a liquid crystal variable retarder (LCVR) to add a relative
phase of θ between left- and right-circularly polarized light
transmitted through the LCVRs. For example, rectilinear hor-
izontally polarized light |H〉 = (|R〉 + |L〉)/

√
2 accumulates

a phase of θ on transmission through the LCVR to become
(|R〉 + eiθ |L〉)/

√
2. A way to measure the accumulated phase

θ is to project the light on a polarizing beam splitter (PBS).
One measures then the degree of rectilinear polarization at the
output, which is given by DRP(θ ) = IH (θ )−IV (θ )

IH (θ )+IV (θ ) , where IH (θ )
[IV (θ )] is the intensity of the light transmitted (reflected) by
the PBS. It is straightforward to show that

IH (V )(θ ) ∝ 1
2 [1 ± DRP(θ )]

DRP(θ ) = DS
RP cos(θ ),

(1)

where DS
RP is the degree of rectilinear polarization of the light

source before the LCVR (ideally DS
RP = 1).

The best uncertainty in determining θ , �θ is therefore
given by:

�θ = �DRP

∂DRP(θ )/∂θ

= �DRP

DS
RP|∂ cos(θ )/∂θ |cos(θ )=0

= �DRP

DS
RP

,

(2)

where one chooses the angle θ such that DRP(θ ) almost van-
ishes, and its slope maximizes. Here �DRP is the experimental
uncertainty in measuring the degree of rectilinear polarization
after the LCVR, for θ close to such a point (θ � π/2). For
classical light this uncertainty is given precisely by 1/

√
N ,

where N is the total number of photons used for measuring
DRP. It follows that �θclas = 1

DS
RP

√
N

.

B. Optical phase measurement with entangled light

For nonclassical light composed of N/Nent bunches of
Nent entangled photons in each bunch, forming a GHZ state,
(|R〉⊗Nent + |L〉⊗Nent )/

√
2, the considerations are slightly dif-

ferent. This time, transmission through the LCVR results in
accumulated phase of Nentθ between the left and right polar-
ization components (|R〉⊗Nent + eiNentθ |L〉⊗Nent )/

√
2. Measuring

the degree of rectilinear polarization in this case allows the
determination of θ with higher accuracy. To see this, one
obtains, as before [see Eq. (2)],

INent
H (V )(θ ) ∝ 1

2

[
1 ± DNent

RP (θ )
]

DNent
RP (θ ) = DS,Nent

RP cos(Nentθ ),
(3)

where DS,Nent
RP is the degree of rectilinear polarization of the

entangled light source. Substituting this in the expression for
�θ , recalling that in this case the uncertainty in the mea-
sured polarization degree is given by the number of bunches:
�DNent

RP = (N/Nent )−
1
2 yields

�θNent = �DNent
RP

DS,Nent
RP |∂cos(Nentθ )/∂θ |cos(Nentθ )=0

= 1

DS,Nent
RP

√
N

√
Nent

= �θclas√
Nent

,

(4)

which means that if the initial degree of rectilinear polariza-
tion DS,Nent

RP of the entangled light is the same as that of the
classical light (DS,Nent

RP = DS
RP = DS,1

RP ) and if all N photons are
detected, the sensitivity of the optical phase measurement with
entangled light is

√
Nent times better than that of the classical

light.
Equation (4) holds for the ideal case in which each bunch

of Nent photons is maximally entangled and the efficiency of
the photon detection, η, is 1. In reality, however, the situation
is different [26,27]. The system detection efficiency is limited,
and therefore for a finite η, the efficiency of detecting Nent-
photon events is given by ηNent . This means that in order
to reach genuine supersensitivity even with entangled light
of only Nent = 2, η should exceed 0.71. For supersensitivity
which is order of magnitude better than the classical limit, Nent

should be more than 100 and η should be better than 98%.
Another obstacle in reaching genuine supersensitivity is

the deviation of the multiphoton entangled state from a
pure state. Typically, due to various decoherence processes
in the state generation, adding photons to the multiphoton
state results in greater coherence loss. This loss can often
be described by a characteristic exponential decay in the
degree of rectilinear polarization DS,Nent

RP of the entangled light
source, as the number of entangled photons Nent increases:

DS,Nent
RP = DS,1

RP e−(Nent−1)/ND, (5)
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where DS,1
RP is the degree of rectilinear polarization of the

classical light beam composed of single nonentangled photons
and ND is a characteristic polarization decay length of the
entangled photon string.

With this dependence, although the increase in the string
length improves the sensitivity as

√
Nent, at the same time the

exponential decay of the DRP reduces it. For the ideal case
in which DS,1

RP = 1 and η = 1 it is straightforward to show
that for a given ND maximum sensitivity is obtained when
Nent = ND/2. With this at hand, it follows that supersensitivity
which is about 10% better than the SNL can be achieved with
Nent = 2 entangled photons from an entangled light source
with ND � 4. In order to get supersensitivity which is an
order of magnitude better than the SNL, bunches longer than
Nent = 270 entangled photons are required from a light source
with ND � 540. The limit in which ND → ∞, DS,1

RP = 1, and
η = 1 is called the Heisenberg limit.

III. EXPERIMENT

A. The dark exciton as a photon entangler

We use a QD to implement a scheme for deterministic
generation of a string of entangled photons [28]. A QD-
confined dark exciton (DE) forms a physical two-level system,
effectively acting as a matter spin qubit (Fig. 2) [29]. Its two
total spin (2) projections on the QD symmetry axis ẑ form a
basis, |±Z〉 = |±2〉, for the DE qubit space. The DE energy
eigenstates are |±X 〉 = (|+Z〉 ± |−Z〉)/

√
2, with an energy

splitting �ε2 = 1.5 μeV. In the Bloch sphere representation,
this splitting corresponds to a coherent state precession around
the x̂ axis, with a period of TDE = h/�ε2 � 3 ns [29]. In
addition to the DE, we use two states of a biexciton (BIE),
a bound state of two excitons whose total spin projections on
the spatial ẑ axis are either +3 or −3. The BIE eigenstates
|±XBIE〉 = (|+ZBIE〉 ± |−ZBIE〉)/

√
2 are also nondegenerate,

having precession period of TBIE = h/�ε3 � 5 ns [30]. We
denote these states by |±3〉. The experimental protocol relies
on the optical transition rules |+2〉 ←→ |+3〉 and |−2〉 ←→
|−3〉 through right-hand |R〉 and left-hand |L〉 circularly po-
larized photons, respectively (see Fig. 2).

The pulse sequence for generating the |GHZ〉 state is
schematically described by the energy-levels diagram in the
lower panel of Fig. 3. It is executed at a rate of 76 MHz,
corresponding to a time window of ∼13 ns. Within each time
window, a |GHZ〉 state is generated and used for the optical
phase measurement.

First, we deterministically initialize the DE in its spin
eigenstate |ψ init

DE 〉 = |−X 〉 = (|+2〉 − |−2〉)/
√

2 using a short
π -area picosecond pulse [29,31]. The pulse is tuned to an ab-
sorption resonance of the DE, which acquires non-negligible
oscillator strength due to residual mixing with the bright
exciton [32]. After the initialization, we repeatedly apply a
cycle containing three elements: (i) a converting laser π pulse,
resonantly tuned to the DE-BIE optical transition [29]; (ii)
subsequent radiative recombination of the BIE, resulting in
an emission of a photon entangled with the spin of the DE
which remains confined in the QD [28]; and (iii) timed free
precession of the DE spin for one full period [33]. In the
first step of the cycle (i), the pulse is horizontally polarized

FIG. 2. The Bloch spheres describing the dark exciton (DE) spin
two level system and the biexciton (BIE). The degeneracy of the
qubits two eigenstates |±X 〉 is lifted by the exchange interaction
leading to precession around the x̂ axis of any coherent superposition
of the qubit’s eigenstates. The circularly polarized optical transitions
which connects between the two qubits are marked by the green
vertical arrows.

|H〉 = (|R〉 + |L〉)/
√

2—an equal superposition of right- and
left-hand circular polarizations. It converts the DE state into
the BIE state: |ψBIE〉 = (|+3〉 − |−3〉)/

√
2, keeping the same

relative phase between the ± spin state components. In step
(ii), radiative recombination of this BIE results in an entangled
state of the DE spin and the emitted photon polarization√

2|ψDE-1ph〉 = (|Z〉|R1〉 − |−Z〉|L1〉). In step (iii), the DE
completes full rotation around the Bloch x̂ axis, thus returning
to its original state after the BIE decays:

(6)

where we subdivided the evolution into increments of quarters
of precession period.

The sequence of steps (i) and (ii) forms one full cycle.
Repeating the cycle again results in a second photon, whose
polarization state is entangled with that of the first photon and
the spin of the remaining DE, yielding the tripartite GHZ state:

√
2 |ψDE-1ph-2ph〉 = (|Z〉|R1〉|R2〉 − |−Z〉|L1〉|L2〉). (7)
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FIG. 3. Time-resolved photoluminscence (PL) signal (upper
panel) and the 76-MHz pulse sequence for generating the entangled
GHZ state (lower panel). Within 13 ns the DE is initialized [31]
(green upward arrow), converted Nent = 2 times to the BIE level
using rectilinearly polarized π pulses (purple arrows), and separated
apart by the DE precession time [29]. As a result, Nent = 2 pho-
tons are emitted represented in the figure by the curly downward
red arrows. The emitted photons pass the LCVR and then their
polarizations are projected on the rectilinear basis by the PBS as
shown in Fig. 1. The last pulse is circularly polarized, and timed
quarter of a precession after the previous pulse. The detection of
the resulted emitted photon projects the DE spin on the |Y 〉 basis.
The emitted photons are detected by single photon detectors, as
shown by the time resolved trace in the upper panel. Detection of
three-photon events during one period forms a projection of the
multiqubit |ψ (θ )DE-1ph-2ph〉 GHZ state. The sequence ends with a
few-nanoseconds depletion pulse [34], which removes the DE from
the QD and prepares the QD for the next period.

In terms of the pulse sequence (Fig. 3), this state is generated
with the emission of the second BIE photon following the
second converting pulse.

This cycle can be applied Nent times to generate an entan-
gled Nent + 1 GHZ state, containing Nent photons and a DE.

√
2 |ψDE-1ph-2ph-. . . -Nent〉 = |Z〉|R1〉|R2〉...|RNent〉

− |−Z〉|L1〉|L2〉...|LNent〉. (8)

When the emitted photons pass through the retarder of Fig. 1,
the state evolves to:
√

2 |ψDE-1ph-2ph-. . . -Nent〉 = |Z〉|R1〉|R2〉...|RNent〉
− eiNentθ |−Z〉|L1〉|L2〉...|LNent〉. (9)

The last pulse is circularly polarized. It excites the DE quarter
of a precession period after the previous pulse. Detecting the
emitted photon after this pulse projects the DE state on the
|Y 〉 basis. The cycle then ends in a ∼7-ns-long optical pulse,
which depletes the QD and prepares it for the next cycle [34].

B. Calculating the multiqubit quantum state
using the repeated cycle’s process map

The multiqubit states that our method produces de-
viate from the pure wave functions ψ (θ )DE-1ph and
ψ (θ )DE-1ph-2ph-...Nent, described above. The proper way to de-
scribe our actual output state is within the formalism of
density matrices. We can calculate the density matrix of the
multiqubit state that we produce by applying repeatedly a
linear transformation 
 to the initial state of the DE. The
transformation 
 is called a “process map” and it describes
the evolution of the system from Nent qubits to Nent + 1 [28].
For example, one can describe the evolution of any initial DE
state (spanned by a 2×2 density matrix) when it is subjected to
the excitation, photon emission, and full periodic precession
of the DE, resulting in an entangled DE-photon state (spanned
by a 4×4 density matrix), by:

ρ
(DE+1ph)
αβ =

∑

μ



μ

αβρ (DE)
μ . (10)

Here the density matrix elements are given in the
Pauli basis, such that ρ̂ (DE) = ∑

μ ρ (DE)
μ σ̂μ, ρ̂ (DE+1ph) =

∑
αβ ρ

(DE+1ph)
αβ σ̂α ⊗ σ̂β , where μ, α, β ∈ 0, 1, 2, 3. The pro-

cess map has, therefore, 64 real parameters. To measure the
process map, we first perform full tomography of the initial-
ized DE in six different initialization states |±X 〉, |±Y 〉, |±Z〉
[35]. Next, we apply to these states one cycle of our protocol
and perform full two-qubit tomography on the resulting en-
tangled DE-photon states. Finally, by solving a set of linear
equations, the process map 
 is fully obtained [28]. The
fidelity of our measured map to the ideal one, which describes
an ideal two-qubit gate and no decoherence at all, is 0.82.

Having the process map at hand, we apply it Nent times
to the measured initialization of the DE state, simulating
the resulting (Nent + 1) GHZ state. Then we add a phase
of cos(Nentθ ) to the |L〉〈L| component of the density matrix
relative to the |R〉〈R| one, imitating the action of the LCVRs
on the transmitted photons. Finally, we project the simulated
Nent + 1 qubits density matrix on the orthogonal basis ele-
ments (photons on |±X 〉 and spin on |±Y 〉), as done in the
experiment.

C. Experimental system

A simplified version of the experimental system appears
in Fig. 1. A sequence of laser pulses is launched on the QD,
resulting in emission of a string of single photons separated
from each other by ∼3 ns. The photons are polarization
entangled as explained above. By passing through the LCVR
an optical phase of θ is added to |L〉 polarized photons relative
to the |R〉 polarized ones. Here we used the setup to produce
Nent = 1 and Nent = 2 entangled spin-photon and entangled
spin-photon-photon (|GHZ〉) states, respectively. The photons
are then projected using a standard PBS and detected using
superconducting single-photon detectors. In principle, one
pair of detectors is enough to perform the demonstration,
provided that their recovery time is shorter than the temporal
separation of two sequential photons (3 ns). In practice, since
the recovery time of our detectors is longer than that (∼20 ns),
we used two more detectors, allowing us to measure up to
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FIG. 4. Coincidence rates as a function of the LCVR phase θ . (a) Two-photon coincidence rate of all four |ψ (θ )DE-1ph〉 state projections.
Note that two have a positive cos (θ ) dependence and two a negative cos (θ ) dependence [see Eq. (1)]. (b) Three-photon coincidence rates
of all 8 |ψ (θ )DE-1ph-2ph〉 state projections. Like in (a), four have positive cos (2θ ) dependence and four have negative cos (2θ ) dependence
[see Eq. (3)]. (c) Measured (symbols) and calculated (solid red line) degree of rectilinear polarization [D1

RP(θ )]. (d) Measured (symbols) and
calculated (solid blue line) D2

RP(θ ). For the calculations of D1
RP(θ ) and D2

RP(θ ) we used the measured process map. The color-matched shaded
areas represent the uncertainty in the calculations due to one standard deviation uncertainty in the measured process map. The inset describes
the measured (symbols) and calculated from the process map (green circles) DS,Nent

RP . The black solid line describes characteristic exponential
decay with ND = 2.2 ± 0.2, best fitted to measured and calculated by the process map DS,Nent

RP . The red solid line describes best fitted exponential
decay with ND = 3.8 ± 0.2 to the calculated DS,Nent

RP corrected for the depletion efficiency (red circles).

four-photon correlations. We used a HydraHarp time-tagging
device to record two- and three-photon coincidence events for
projection-measurements of the Nent = 1 and Nent = 2 cases,
respectively. We recorded the coincidence rates while scan-
ning θ between 0 and 2π . A coincidence event is registered
whenever two (or three) photons are detected within the same
repetition cycle of 13 ns. The overall collection efficiency of
our system, is estimated as 1%, thereby resulting in three-
photon coincidence rate of ∼150 Hz.

IV. RESULTS AND DISCUSSION

When a coincidence event is recorded, the data analysis
proceeds as follows: The detection of the last photon which
results from the last |R〉 (|L〉) circularly polarized excitation
pulse is used to project the DE spin on the |+Y0〉 (|−Y0〉) base.
The preceding pulse(s), which result from |H〉 polarized exci-
tation pulse(s) are detected in either |H〉 or |V 〉 polarization,
thereby projecting the detected photons on either the |+X 〉 or
|−X 〉 basis states.

For the case of spin-photon entanglement |ψ (θ )DE-1ph〉
two-photon correlation measurements are used. In Fig. 4(a),
we present the measured coincidence rates as a function of θ

for each one of the four possible projections. Two of them,

|+Y0〉|+X1〉 and |−Y0〉|−X1〉, depend on θ through A[1 +
DS,1

RP cos(θ )], where A is the average two-photon coincidence
rate [see Eqs. (1) and (2)]. We call this dependence a “pos-
itive cos(θ )” dependence, referring to the plus sign coeffi-
cient of cos(θ ). The other two projections, |+Y0〉|−X1〉 and
|−Y0〉|+X1〉, have a “negative cos(θ )” dependence through
A[1 − DS,1

RP cos(θ )]. Similarly, for the case of spin-photon-
photon entanglement three-photon correlation measurements
are used. We then project the three-qubit |GHZ〉 state,
|ψ (θ )DE-1ph-2ph〉, on eight different possible polarization basis
elements. Four of these projections, namely:

|+Y0〉|+X1〉|+X2〉, |+Y0〉|−X1〉|−X2〉,
|−Y0〉|−X1〉|+X2〉, |−Y0〉|+X1〉|−X2〉,

have positive cos(2θ ) dependence and four, obtained simply
by flipping all the signs in the expressions above, have nega-
tive dependence [see Eq. (3)]. Figure 4(b) presents the rate of
three-photon coincidences as a function of θ for all these eight
projections.

The measured DNent
RP (θ ) for Nent = 1 and 2 as deduced

from Figs. 4(a) and 4(b) are given by the data points in
Fig. 4(c) and in Fig. 4(d), respectively. As can be seen in these
figures the measured data points are indeed well described by
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functions of the form DS,1
RP cos (θ ) and DS,2

RP cos (2θ ), respec-
tively, as presented in the figures by the calculated solid lines.

The observed frequency doubling in the three-photon cor-
relation events as compared with the two-photon correlations
is termed “super-resolution.” It demonstrates the gain in the
accuracy of the optical phase measurements, resulting from
the use of the Nent = 2 entangled photon state.

We note here that in principle, the function DNent
RP (θ ) can

be measured directly by our system, without measuring first
coincidence rates at various projections. This is because the
sign dependence of the measured DRP in a given bunch of
Nent photons can be deduced directly from the measurement
results. In each individual bunch measurement i, the degree

of rectilinear polarization is given by Di
RP = Ni

H −Ni
V

Ni
H +Ni

V
, where

Ni
H (Ni

V ) is the number of |H〉 (|V 〉) polarized photons among
the detected photons before the last detected one in a given
bunch. (Ni

H + Ni
V = Nent equals 1 (2) in Fig. 4(a) [Fig. 4(b)]).

The sign of the cos(Nentθ ) dependence is given by the sign of
the spin projection base |±Y i

0 〉 and the parity of the number of
photons detected in |V 〉 polarization. The measured degree of
rectilinear polarization is therefore given by:

DRP =
N/Nent∑

i=1

sign(|±Y i
0 〉)(−1)Ni

V Di
RP (11)

where N is the total number of photons in the experiment.
The inset in Fig. 4(c) presents the measured DS,Nent

RP

(diamond-shape marks) and calculated DS,Nent
RP by the process

map (circle-shape marks). Using the measured and calculated
amplitudes in Eq. (5) one finds that the characteristic decay of
the DRP of our state is given by ND = 2.2 ± 0.2.

We note that the DRP of the single photon beam that
we produced, DS,1

RP � 0.4, is relatively low. The reason for
this is attributed to the limited efficiency (∼75%) by which
we deplete the QD before the DE preparation [34]. This
inefficient depletion, can be measured directly by the PL
emission intensity at the end of the depletion pulse (see
Fig. 3). The limited depletion reduces both the fidelity of DE
state preparation and the fidelity of the DE spin projection,
resulting in the measured DS,1

RP of 0.4 only. In fact, if one takes
this inefficiency into account, corrects the initial state for it,
and applies the process map on a fully depleted QD, then the
characteristic DRP decay length becomes ND = 3.8 ± 0.2, as
can be seen in the inset to Fig. 4(c). With this decay length
genuine supersensitivity of a few percentages can be achieved
with Nent = 2 entangled photons (and η � 0.71).

To see this, we display in Fig. 5 the calculated enhancement
of the optical phase resolution relative to the SNL, as a
function of Nent. We display it for several sources of vary-
ing quality, characterized by their DRP characteristic decay
lengths, ND. As can be seen in Fig. 5 for a given source
quality, an optimum is obtained if the number of entangled
photon used (Nent) equals half of the characteristic decay

FIG. 5. The enhancement in the optical phase resolution relative
to the SNL, as a function of the number of entangled photons
bunch length Nent for various characteristic decay length ND. The red
curve represents the performance of our device as deduced from its
measured process map. The black diamonds indicate the measured
points, normalized for ideal initialization of the DE. With better
QD depletion, genuine supersensitivity of a few percents could be
achieved. The inset shows maximum sensitivity enhancement as a
function of Nent = ND/2. An order-of-magnitude better resolution
requires bunches of Nent = 270 entangled photons from a source
quality of ND = 540. The solid diagonal line represents the case in
which ND → ∞, for which the Heisenberg limit is obtained.

length. Using this condition, we plot in the inset to Fig. 5 the
enhancement in the optical phase measurement with respect
to the SNL as a function of the number of entangled photons
in a bunch under this condition (Nent = ND/2). The few-
percentages super-resolution that we achieved is represented
by the data point in Fig. 5 and in its inset. The case in which all
the photons in a given bunch are maximally entangled (ND →
∞) is represented in the inset by a dashed line (Heisenberg
limit).

In summary, we have demonstrated a way for achieving su-
persensitivity in optical phase measurement using deteministi-
cally prepared entangled multiphoton GHZ state. We outlined
the required conditions for achieving genuine supersensitivity
and showed that there are no conceptual physical barriers
which prevent achieving this long-desired technological goal.
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