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Understanding of fundamental physics of plasmonic instabilities is the key issue for the design of a new
generation of compact terahertz electronic sources required for numerous terahertz (THz) applications. Variable
width plasmonic devices have emerged as potential candidates for such an application. The analysis of the
variable width plasmonic devices presented in this paper shows that these structures enable both the Dyakonov-
Shur instability (when the electron drift velocity everywhere in the device remains smaller than the plasma
velocity) and the “plasmonic boom” instability that requires drift velocity exceeding the plasma velocity in
some of the device sections. For symmetrical structures, the driving current could be provided by an rf signal
leading to rf to THz and THz to RF frequency conversion using the source and drain antennas and reducing
losses associated with ohmic contacts. We show that narrow regions protruding from the channel (“plasmonic
stubs”) could control and optimize boundary conditions at the contacts and/or at the interfaces between different
device sections. These sections could be combined into plasmonic crystals yielding enhanced power and a better
impedance matching. The mathematics of the problems is treated using the transmission line analogy. We show
that the combination of the stubs and the variable width channels is required for the instability rise in an optimized
plasmonic crystal. Our estimates show that THz plasmonic crystal oscillators could operate at room temperature.
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I. INTRODUCTION

Short-channel field-effect transistors (FETs) supporting
decaying or resonant plasma waves have promise of invigo-
rating the terahertz (THz) electronics by providing efficient
THz and sub-THz detectors and sources [1,2]. Such transistors
are sometimes called “TeraFETs.” TeraFET detectors using
silicon complementary metal-oxide semiconductor FETs [3],
InGaAs high-electron mobility transistors (HEMTs) [4], Al-
GaN/GaN HEMTs [5], and graphene [6] operated in the 0.1 to
22-THz range [7] with noise equivalent power (NEP) as low as
0.5 pW/Hz1/2 [8]. p diamond [9] might have advantages for
implementing TeraFETs operating in 240 to 320-GHz range
for beyond 5G WiFi operation. TeraFET sources use vari-
ous plasma instabilities in the two-dimensional (2D) electron
channel of the FET to generate electromagnetic radiation in
the THz range. However, the THz emission associated with
the Dyakonov-Shur (DS) instability [10] has yielded very low
powers and the THz emission based on the proposed “plas-
monic boom” mechanism [11,12] has only been observed very
recently for the first time [13]. Furthermore, the estimates of
power budget for beyond 5G WI FI applications [14] reveal
that further improvements of NEP down to at 0.1 pW/Hz1/2

are needed for this potential “killer application” of the sub-
THz technology.

*gaizin@kbcc.cuny.edu
†shurm@rpi.edu

The ideas to improve both detection and emission of the
sub-THz and THz radiation by TeraFETs focused on several
approaches: moving from a single TeraFET to a “plasmonic
crystal” [15,16], using the TeraFET asymmetric multigate
structure [17,18] and, more recently, using plasmonic stubs—
-narrow regions protruding from the channel and having
tunable electrical parameters [19,20]. The stubs allow for an
optimization and adjustment of the boundary conditions at the
contacts and/or at the interfaces between different plasmonic
cavities [19] providing more favorable conditions for the DS
instability. As shown in Ref. [19], the stubs could also adjust
and tune the plasma velocity. This capability should make it
easier to reach the plasmonic boom conditions. In Ref. [20],
it was shown that the stubs enable the DS instability for
both directions of the driving source-to-drain current. Hence
these structures could be driven by an rf signal to excite the
plasmonic instability and generate the THz radiation. The
device channels with the stubs must be narrow so that the
channel width and the stub protrusion remain smaller than or
comparable to the electron mean-free path in order to achieve
the ballistic transport condition. The stub TeraFET is shown
schematically in Fig. 1(b) among other suggested TeraFET
configurations.

We define the stub as a protrusion with the size in the
source-drain direction being much smaller than the channel
plasmonic wavelength [19]. In this paper, we analyze the Ter-
aFET plasmonic devices with a varying width of the channel
where the lengths of the sections of different width [Fig. 1(c)]
are comparable to the plasmonic wavelength in the channel
(variable width FETs). The varying width affects the current
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FIG. 1. Different implementations of the variable width plasmonic devices (a)–(e) and schematics of the rf to THz conversion (f). TeraFETs
shown in (b) and (c) are fabricated with varying width, W1 and W2. When the wider section length �L is small compared to the plasmonic
wavelength λ the protruding section is called plasmonic “stub.” When �L is on the order of λ the TeraFET is called “variable width” TeraFET.

distribution in the channel as explained in Sec. II. We consider
gated TeraFETs with the gate to channel separation much
smaller than the gate length and width in any section of the
device and use the plane capacitor model for description of
the quasistatic electric interaction between the gate and the
channel.

Our analysis demonstrates that these structures enable both
the DS instability (when the electron drift velocity everywhere
in the device remains smaller than the plasma velocity) and
the plasmonic boom instability that requires drift velocity
exceeding the plasma velocity in some of the device sections.
The stub and the variable width FETs could be combined
to form one-dimensional plasmonic crystals [Fig. 1(d)] and
two-dimensional patterns [Fig. 1(e)]. We show that in these
structures, the driving current could also be provided by the rf
signal leading to rf to THz and THz to rf frequency conver-
sion. Such conversion using the source and drain antennas re-
duces losses associated with ohmic contacts as schematically
illustrated in Fig 1(f).

The rest of this paper is organized as follows. In Sec. II, we
develop the general theory of the variable width plasmonic
devices with comparable lengths of the sections of different
widths. Our model is based on the transmission line (TL)

approach and describes the structures with finite number of
sections with different width as well as the plasmonic crystals
based on these structures. In Sec. III, we apply the developed
model for the analysis of the plasma instability in the TeraFET
with three sections of variable width. The advantage of these
structures is that they enable both the DS instability and the
plasmonic boom instability. In Sec. IV, we use the developed
approach to analyze performance of the plasmonic crystals
with periodically changing channel width. In Sec. V, we
present numerical estimates for different materials used in
the TeraFET structures. These estimates yield the parameters
ranges for the experimental observation of the predicted ef-
fects at cryogenic and room temperatures. Our conclusions
and a brief summary are presented in Sec. VI. Some additional
analysis is contained in the Appendix.

II. BASIC EQUATIONS

We consider plasma oscillations in the 2D electron channel
of variable width in the FET biased by a DC current. The
general FET geometry is shown in Fig. 1(c). The FET channel
consists of several segments with different constant widths.
We assume that the widths of the individual segments are
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much smaller than their lengths and consider plasma waves
propagating along the channel (x axis) between the source
and the drain. In the hydrodynamic approximation, the plasma
waves in the 2D electron layer (z = 0) are described by the
Euler equation and the equation of continuity as

∂v

∂t
+ v

∂v

∂x
= e

m∗
∂ϕ

∂x
∂n

∂t
+ ∂ (nv)

∂x
= 0 ,

(1)

where n(x, t ) and v(x, t ) are the local electron density and the
velocity in the plasma wave, −e is the electron charge, m∗
is the electron effective mass, and ϕ(x, z = 0, t ) is electric
potential in the 2D layer. This hydrodynamic approach is
justified when the electron-electron scattering length lee is
the shortest characteristic length in the system. In particu-
lar, the value of lee should be smaller than the size of the
transient regions between the segments of different width in
the FET channel. This condition makes hydrodynamic model
applicable for description of the plasma waves in the entire
2D channel of the variable width. We also assume ballistic
electron transport with respect to the collisions with phonons
and impurities and neglect the collision term in the Euler
equation. This approximation is justified if ωpτ � 1, where
ωp is the plasma frequency and τ is the collision time. The
pressure gradient term is also omitted in the Euler equation
because in the gated 2D channel this term is small in compared
with the field term [12].

To obtain plasma waves, we linearize the hydrodynamic
equations (1) with respect to the small fluctuations of electron
density δn(x, t ) and velocity δv(x, t ) assuming that n = n0 +
δn and v = v0 + δv where n0 and v0 are the equilibrium
electron density and the constant electron drift velocity, re-
spectively. In the gradual channel approximation, the fluctu-
ations of the electron density δn and electric potential δϕ in
the gated 2D channel are connected as −eδn = Cδϕ, where
C = εε0/d is the gate to channel capacitance per unit area,
d is the gate to channel separation and ε is the dielectric
constant of the barrier layer between the channel and the
gate. In this model, general solution of the linearized Eq. (1)
describing the plasma wave with frequency ω and wave-vector
q [δn, δv ∝ exp(−iqx + iωt )] propagating in the 2D channel
is [12]

Iω = I1e−iq1x + I2e−iq2x

Vω = 1

CW

(
I1

v0 + vp
e−iq1x + I2

v0 − vp
e−iq2x

)
, (2)

where Iω = W δ jω = −eW (v0δnω + n0δvω ) is the total plas-
monic current in the 2D channel of width W , Vω ≡ δϕω(x) is
the voltage distribution in the plasma wave, q1,2 = ω

v0±vp
are

the wave vectors of the plasmons propagating in the direction
of the constant electron drift, q1, and in the opposite direction,
q2, vp =

√
e2n0/m∗C is the plasma velocity of the gated

plasmon at v0 = 0. Coefficients I1 and I2 depend on v0 and
vp and should be determined from the boundary conditions.
Equations (2) are applicable for any values of v0 and vp. The
seemingly divergent terms in Eq. (2) remain finite when v0 →
±vp and do not, in fact, diverge because of the dependence of
the coefficients I1 and I2 on v0 and vp. Both the analytically

and numerically computed plasmonic dispersion relations and
the current and voltage distributions of the plasma waves
found below show no divergences at v0 → ±vp.

It has been demonstrated in numerous publications [21–23]
that the linearized hydrodynamic equations (1) describing the
plasma waves in the gated 2D channel at v0 = 0 have the form
of the telegrapher’s equations for the TL with the distributed
inductance L = m∗/e2n0W , distributed capacitance CW , and,
in the presence of disorder, distributed resistance R = L/τ

so that the gated electron channel can be considered as a
plasmonic waveguide [24–26]. In Ref. [12], it has been shown
that the TL analogy still stands in the presence of a constant
electron drift with velocity v0 in the channel if the electric
voltage Vω in the telegrapher’s equations is replaced with the
effective voltage V eff

ω = Vω + V kin
ω , where V kin

ω = −m∗v0δv/e
is the so-called kinetic voltage [27] related to the kinetic
power carried by the oscillating electrons in the drifting
plasma wave. It follows from Eq. (2) that [12]

V eff
ω = Vω + V kin

ω = (1 − M2)Vω + Z0MIω (3)

where M = v0
vp

is the Mach number, and Z0 = √
L/CW =

1/CW vp is the characteristic impedance of the plasmonic TL.
In the hydrodynamic model, the continuity of V eff

ω and Iω
corresponds to the conservation of energy and of the number
of particles in the plasma wave maintained in the entire 2D
channel.

Using Eqs. (2) and (3) one can relate the values of V eff
ω

and Iω at the opposite ends of the plasmonic waveguide
representing the 2D electron channel. For a DC biased 2D
channel of length l and constant width W positioned between
the source (s) and the drain (d) we obtain [12](

V eff
ω,s

Iω,s

)
= t̂

(
V eff

ω,d

Iω,d

)
, (4)

where

t̂ = e−i(v0
/
vp)


(
cos 
 i

WCvp
sin 


iWCvp sin 
 cos 


)
,


 = ω�vp

v2
p − v2

0

. (5)

Equation (4) can also be applied for description of the FET
with the 2D electron channel consisting of N segments of
different length and width provided that the transient regions
between the segments meet restrictions imposed by the hydro-
dynamic model as discussed at the beginning of this section.
For the segmented channel, the matrix t̂ in Eq. (4) should be
replaced with the matrix

T̂ =
N∏

j=1

t̂ j, (6)

where matrices t̂ j are described by matrix t̂ in Eq. (5) written
for each individual segment j, j = 1, 2, . . . , N . As it was
mentioned above in relation to Eqs. (2), the seemingly di-
vergent terms in Eq. (5) when v0 → ±vp do not result in
any discontinuities in the calculated plasmonic spectra or the
current/voltage distributions in the plasma waves.
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The plasmon dispersion equation in the segmented plas-
monic cavity characterized by the transfer matrix T̂ and
bounded by the source and the drain contacts can be found
by adding the boundary conditions to Eqs. (4)–(6) at the con-
tacts. These boundary conditions depend on the impedances
between the source and the gate, Zgs, and the drain and the
gate, Zgd , and can be written as [20]

Vω,s = −ZgsIω,s

Vω,d = Zgd Iω,d .
(7)

For the sake of simplicity, we consider symmetric struc-
tures with Zgs = Zgd ≡ Zg and the width W of the 2D chan-
nel being the same near the source and the drain contacts,
though the results can be easily generalized to the arbitrary
asymmetric boundaries. Combining Eqs. (3)–(7) we obtain
the following plasmon dispersion equation in the source-drain
cavity:

(M2 − 1)2T21Z2
g − (M2 − 1)(T11 + T22)Zg

+ Z0M(T11 − T22) − Z2
0 M2T21 + T12 = 0. (8)

In the next section we present solution of Eq. (8) and the
analysis of the obtained results.

If a large number of identical plasmonic cavities de-
scribed above are connected together the device behaves
as a plasmonic crystal with repeated segmented elementary
cells each characterized by the transfer matrix T̂ . The 2 × 2
matrix T̂ connects the values of V eff

ω and Iω at the oppo-
site ends of the cell of length L. Using the Bloch condi-
tion [V eff

ω (x + L), Iω(x + L)] = eikL[V eff
ω (x), Iω(x)], where k

is the Bloch wave vector defined in the region −π/L � k �
π/L, we obtain the following dispersion equation for the
plasmonic crystal:

detT̂ − eikLTr T̂ + e2ikL = 0. (9)

This equation (identical to the one used in the photonics
crystal theory [28]) is used in Sec. IV to derive plasmon
dispersion in the plasmonic crystal TeraFET.

III. PLASMA INSTABILITIES IN TeraFET OF
VARIABLE WIDTH

To explore the plasma instabilities in the FET of variable
width we applied Eq. (8) to the symmetric FET structure
shown in Fig. 2(a). The TL model for this FET structure is
shown in Fig. 2(b).

This FET structure consists of three individual segments
of equal length L but the width of the central segment W1 is
larger than the width W of the two identical segments adjacent
to the source and drain contacts. We also assumed that Zgs =
Zgd = 0 so that an AC current at the drain and source contacts
is short circuited to the gate. In this case, Eqs. (5), (6), and (8)
yield the following dispersion equation:

2γ

γ 2 + 1
sin

2ωL

vp(1 − M2)
cos

ωL

vp(1 − γ 2M2)

+ sin
ωL

vp(1 − γ 2M2)

(
cos

2ωL

vp(1 − M2)
− 1 − γ 2

1 + γ 2

1 + M2

1 − M2

)
= 0, (10)

FIG. 2. Variable width FET geometry (a) and the corresponding
TL model (b).

where γ = W
W1

< 1, and the Mach number is defined with
respect to the drift velocity v0 in the narrow segments adjacent
to the FET contacts, see Fig. 2.

First, we consider Eq. (10) when γ = 0. In this limit, we
obtain two sets of solutions:

ω(1)
n = πvp

L
n , n = 1, , 2, . . . (11)

and

Reω(2)
n = πvp|1 − M2|

2L
n , n =

{
2, 4, . . . |M| < 1
1, 3, . . . |M| > 1

Imω(2)
n = ±vp(1 − M2)

2L
ln

∣∣∣∣1 + M

1 − M

∣∣∣∣.
(12)

Figures 3(a) and 3(b) show these solutions as functions of
|M|, 0 < |M| < 2. The first solution, ω(1)

n , corresponds to the
energy levels of plasmons confined in the central wide region
of the FET structure, see Fig. 2. The limit γ = 0 implies
the infinitely wide central cavity, where the drift velocity
effectively reduces to zero and the plasmon energy spectrum
in Eq. (11) does not depend on M as shown in Fig. 3(a). This
spectrum describes the plasmon in the cavity with symmetric
boundaries.

The second solution, ω(2)
n , describes the energy spectrum

of the plasmons confined in the side regions of the FET
channel adjacent to the source (the source cavity) or to the
drain (the drain cavity). These cavities have asymmetrical
boundaries leading to the Dyakonov-Shur plasma instability,
and the plasma spectrum in Eq. (12) is similar to the spectrum
first derived by Dyakonov and Shur in Ref. [1]. However,
there is a very important difference. In the limit of γ = 0, the
oscillating plasma current density at the boundary between
the source (the drain) cavity and the central cavity is zero
at the central cavity side because the current spreads out
into the central section of the infinite width. As the total
current is preserved, the spatial derivative of the total current
at this boundary at M = 0 is zero, and therefore the boundary
condition for the current density at the source (drain) side
corresponds to the antinode of the standing wave. Hence, at
M = 0, the standing plasma waves confined in these cavities
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FIG. 3. Real (a) and imaginary (b) parts of the complex plasma
frequencies ω = ω′ + iω′′ as a function of the Mach number M in the
plasmonic FET in Fig. 2 for noninteracting source/drain and central
cavities (γ = W/W1 = 0). The frequencies of the plasma modes
localized in the central cavity (source/drain cavities) are marked
by blue (red) lines. Unstable plasma modes are indicated by the
thick solid lines in (b). Inset: spatial distribution of the normalized
plasmonic current in the source cavity for several values of M > 0.

have the integer number of half wavelengths being equal to
the length of the cavity. Inset in Fig. 3(b) showing the spatial
distribution of the normalized plasmonic current in the source
cavity for several values of M > 0 clearly illustrates this point
explaining the difference in the wave numbers of the plasma
modes: n = 1, 3, 5, . . . for the Dyakonov-Shur instability [1]
and n = 2, 4, 6, . . . in Eq. (12) for |M| < 1 and vice versa for
|M| > 1.

The instability occurs for the modes with Imω(2)
n < 0. As

shown in Ref [1] the plasmonic instability develops in the
DC biased asymmetric cavity if the current flows from the
low-impedance cavity edge to the high-impedance one at
0 < M < 1 and in the opposite direction if M < −1. In the
variable width FET (Fig. 2), the instability develops for any
direction of the DC current and at any value of M as it follows
from Eq. (12). At 0 < M < 1 and M < −1, this instability is
supported by the source cavity and at −1 < M < 0 and M >

1, it is supported by the drain cavity. This conclusion follows
from the obvious fact that the source and the drain cavities
have reflection symmetry. In Fig. 3, we plotted Imω(2)

n for both
stable (Imω(2)

n > 0) and unstable (Imω(2)
n < 0) modes.

For a more relevant case of γ 	= 0, the plasmons in the in-
dividual cavities interact. In particular, at M = 0, the plasmon
energy in the central cavity is still determined by Eq. (11) but

the plasmon energy levels in the source and the drain cavities
split.

ω(2)
n = πvp

L
n ± vp

L
arccos

1

1 + γ
, n = 1, 2, . . . (13)

At finite values of M and γ 	= 0, the plasmon energy levels
in the central cavity depend on M:

ω(1)
n = πvp

L
|1 − γ 2M2|n , n = 1, 2, . . . (11a)

Equation (11a) represents the plasmon spectrum of the
drifting plasmon in a symmetric cavity [12]. At finite γ ,
interaction between the plasma modes in different cavities
results in multiple anticrossings and merging of the plasmon
dispersion curves in the central cavity with the ones in the
source/drain cavities. This dependence modifies both the real
and imaginary components of the plasma frequencies as dis-
cussed below.

Equation (10) was solved numerically for finite val-
ues of M and γ . Figures 4(a) through 4(f) show the re-
sults for the plasma frequencies ω = ω′ + iω′′ for γ =
0.1, 0.3, 0.5, 0.7, 0.9, 1 and 0 < |M| < 2. It follows from
Eq. (10) and from the numerical simulations that at given γ ,
the instability develops in the interval γ < |M| < 1/γ . The
entire Mach number |M| domain can be divided into three re-
gions with distinctly different behavior of the plasmonic spec-
trum as shown in Fig. 4. At |M| < 1 and γ |M| < 1 (region I),
the drift velocities in all cavities are smaller than the plasma
velocity vp and the Dyakonov-Shur instability is developed in
a very broad interval of the plasma frequencies yielding the
frequency and increment (ω′′ < 0)/decrement (ω′′ > 0) pat-
terns shown in Figs. 4(a)–4(e) for different values of γ . When
|M| > 1 but γ |M| < 1 (region II), the drift velocity in the
source and the drain cavities exceeds vp, whereas in the central
cavity it is smaller than vp. In this case, the Dyakonov-Shur
instability is supplemented by the plasmonic boom instability
[12] resulting in the qualitatively different frequency and
increment/decrement pattern as seen in Figs. 4(a)–4(e). If both
|M| > 1 and γ |M| > 1 (region III), the electron drift velocity
exceeds vp in the entire FET structure and the instability
disappears as illustrated in Figs. 4(d) and 4(e). When the value
of γ is approaching unity the region of instability shrinks and
the instability completely disappears at γ = 1 as shown in
Fig. 4(f). In this limit, the plasmon spectrum is determined
by ωn == πvp

3L |1 − M2|n, n = 1, 2, . . . and describes drifting
plasmons in the symmetric cavity of length 3L as expected.

The instabilities described above occur for both directions
of the driving current (M > 0 and M < 0). As was mentioned
in Ref. [20], this allows for driving this structure wirelessly
via an rf signal with the frequency much smaller than the
instability frequency. It also enables mixers, frequency mul-
tipliers, and heterodyne sources and receivers based on the
variable width plasmonic structures. This approach is espe-
cially effective when the variable width plasmonic structures
are assembled into plasmonic crystals considered in the next
section.
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Evolution of the plasmonic spectrum in the FET of the variable width with changing geometry: (a) γ = 0.1; (b) γ = 0.3; (c)
γ = 0.5; (d) γ = 0.7; (e) γ = 0.9; (f) γ = 1.

IV. PLASMONIC CRYSTAL TeraFET
OF VARIABLE WIDTH

Plasmonic crystal FETs of variable width with various
configurations of the elementary cell are shown in Fig. 1(d).
Plasma dispersion in these plasmonic crystal structures is
described by Eq. (9).

As shown in Ref. [12], the plasmonic crystal compris-
ing periodically repeated sections with different widths [see
Fig. 1(d)] could support the plasmonic boom instability.
This instability requires the electron drift velocity to exceed
periodically the plasma velocity (M > 1) in some sections
of the 2D electron channel. The condition M > 1 imposes
additional restrictions on the design and material parameters
of the plasmonic structure though very recently the plasmonic
boom instability was measured in the plasmonic crystals with
periodically modulated electron density [13].

We now use the hydrodynamic model to predict the types
of the plasmonic crystals supporting the plasma instability at
M < 1, such as the DS instability. The total power carried by
the drifting plasmon P = V eff

ω I∗
ω consists of the electric (Pel =

VωI∗
ω) and kinetic (Pkin = V kin

ω I∗
ω) powers. If the total energy

is conserved when the plasma wave crosses the boundaries
between different sections of the 2D electron channel, the DS
plasmon instability does not occur because the equal energy
fluxes at both ends of the crystal elementary cell prevent the
plasmons in the elementary cell from gaining energy (see

Ref. [29] for more detailed discussions). This is in contrast
with the plasmonic boom instability [12], which occurs via
gaining energy from the electron flow crossing the plasmonic
velocity threshold.

In order to support the DS instability, the plasmonic struc-
ture should break the total energy continuity of the drifting
plasmons. In a single FET considered in Ref. [1], the asym-
metric boundary conditions at the source and drain contacts
ensured this discontinuity because of the different kinetic
power flows at the source and the drain [29] resulting in the
DS plasma instability at M < 1.

Another example is a plasmonic crystal consisting of
periodically repeated gated and ungated sections in the
2D electron channel considered in Ref. [16]. The authors
demonstrated that accounting for the ballistic transport at the
boundaries between the gated and ungated sections results
in the instability of the plasmonic band spectrum at M <

1. From the energy considerations, the “ballistic” boundary
conditions (continuity of the voltage and the current) be-
tween the gated and ungated sections with different plas-
mon dispersion laws imply continuity of the electric power
flow but discontinuity of the kinetic power flow. The result-
ing discontinuity of the total power flow may lead to the
DS-type plasma instability (although only at certain phase-
matching conditions of the plasma waves in different ele-
mentary cells, i.e., in some finite intervals of the Bloch wave
vector).
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FIG. 5. Elementary cell of the plasmonic crystal consisting of several sections of different width (a) and its electric equivalent circuit
diagram (b). (c) Plasmonic band spectrum at different values of the Mach number M. In this calculation L1 = 0.15L, L2 = 0.1L, L3 = 0.35L,
L4 = 0.4L, W/W1 = 0.15, and W/W2 = 0.35.

These examples demonstrate that the theory of the plas-
monic crystal instability requires careful consideration of the
boundary conditions between different sections of the 2D
electron channel controlling the energy, voltages, and currents
at the interface that determine plasmon reflection and trans-
mission.

We illustrate these requirements by calculating the plas-
monic band spectrum for M < 1 in the plasmonic crystal
with the arbitrary asymmetric elementary cell consisting of
several sections of different widths where the total energy
is conserved at the interfaces. The geometry of the crystal
elementary cell and its electric equivalent circuit are shown
in Figs. 5(a) and 5(b), respectively. As shown in Ref. [12] and
confirmed below, the instability for M < 1 does not occur.

The plasmonic band spectrum is determined by Eq. (9)
with the matrix T̂ = ∏4

i=1 t̂i, where t̂i matrices defined in
Eq. (5) correspond to the four different sections of the electron
channel in the crystal elementary cell, see Fig. 5(b). The
results of the plasmonic spectrum calculations are shown
in Fig. 5(c) for several values of M < 1. As expected, the
plasmonic band spectrum is purely real with a Doppler shift at
finite drift velocities (see a detailed Doppler effect discussion

in Ref. [29]). When M is approaching unity, the energies of
all plasmonic bands are approaching zero value due to an
increased Doppler redshift [1].

In order to break the continuity of the energy flow in
the crystal and provide conditions necessary for the onset of
the DS instability we suggest using plasmonic stubs [19,20]
to define and control the boundaries between the plasmonic
crystal cells. This approach allows for more design flexi-
bility and optimization than simply relying on very abrupt
boundaries to ensure the ballistic boundary conditions at the
interfaces. (Accounting for the ballistic boundary conditions
at the interface should predict the instability similar to that
considered in the gate-ungated geometry in Ref. [16].)

A big advantage of using plasmonic stubs discussed in
detail in Ref. [19] is an ability to control the boundary
conditions by choosing the appropriate stub parameters. We
now consider the plasmonic crystal structure with elementary
cell comprising the several sections of different width and
the plasmonic stub. The geometry of the structure is shown
in Fig. 6(a) along with its equivalent electric circuit shown
in Fig. 6(b). The stub in the plasmonic waveguide is a
lumped element controlling the plasmon propagation [19]. In
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FIG. 6. Elementary cell of the plasmonic crystal with the stub (a)
and its electric equivalent circuit diagram (b).

equivalent electric circuit diagram, the open-end stub is repre-
sented by the shunting impedance:

Zst = − i

CWsvp
cot

ωl

vp
, (14)

where Ws and l are the width and the length of the stub,
respectively [19,30]. As shown in Ref. [20] the values of V eff

ω

and Iω across the plasmonic stub in the electric circuit diagram
in Fig. 6(b) are linked by the transfer matrix:

ŝ =
(

1 + Z0
Zst

M
1−M2 − Z2

0
Zst

M2

1−M2

1
Zst

1
1−M2 1 − Z0

Zst

M
1−M2

)
. (15)

This equation implies continuity of the electric voltage but
discontinuity of the AC plasmonic current when the plasma
wave in the channel travels across the stub. It happens because
the AC current partially escapes into the gate through the stub.
As a result, the total plasmonic energy flow in the channel
P = V eff

ω I∗
ω has discontinuity when the plasma wave passes the

stub. This provides conditions necessary (but not sufficient)
for the DS instability. For example, our analysis shows that
if the plasmonic crystal includes only stubs in its elementary
cell the instability does not occur (see the Appendix). The
stub changes the energy conservation balance at the stub
interfaces but fails to meet the necessary phase conditions for
the plasmon reflection in a crystal, in contrast to a single FET
with a stub considered in Ref. [20]. Both the energy change
in the plasmonic elementary cell and plasmonic reflection
with a proper phase matching are required for the standing
plasma wave instability in a crystal. As shown below, adding
a wider channel section to the elementary cell containing a
stub enables the instability by providing the needed reflection
conditions for the standing wave.

To this end, we calculated plasmonic band spectrum in
the structure shown in Fig. 6 using Eq. (9) where T̂ matrix
is defined as T̂ = t̂1ŝt̂2t̂3 with t̂i matrices given by Eq. (5).
The t̂i matrices describe the plasmon propagation in three
different sections of the 2D channel in the crystal elementary
cell as indicated in Fig. 6(b). (In this calculation, we assumed
Ws = W .)

The dispersion curves for several lowest plasmonic bands
are shown in Fig. 7. These results confirm the possibility of
the DS-type plasmonic instability in the variable width plas-
monic crystal structure with stubs. Stable plasmonic bands
(Imω = 0) at M = 0 are shown in Fig. 7(a). When M > 0, the

(a) (b)

(c) (d)

FIG. 7. Frequencies (ω′ = Reω) and increments/decrements
(ω′′ = Imω) of the first three plasmonic bands in the plasmonic
crystal structure shown in Fig. 6 for M = 0, 0.3, 0.7, and 0.95.
In this calculation L1 = 0.1L, L2 = 0.4L, L3 = 0.5L, l = 0.2L, and
W/W1 = 0.1

plasma frequencies become complex, see Figs. 7(b) and 7(c).
Also, when M → 1 the energies of all plasmonic bands are
approaching zero value due to an increased Doppler redshift,
see Fig. 7(d). The modes with Imω < 0 are unstable with
the instability increment mostly increasing at larger M. The
instability increment is also larger for higher plasmonic bands.
In contrast to the instability considered in Ref. [16], some
plasmonic bands are unstable throughout the entire Brillouin
zone and do not require additional phase matching between
the plasma oscillations in different elementary cells. In some
plasmonic bands Imω > 0, and these modes die out at M > 0.
However, it follows from Eq. (9) that at the center of the
Brillouin zone Reω and Imω are even and odd functions of M,
respectively. Therefore, the damped plasma modes at M > 0
become unstable at M < 0. This property is mostly preserved
at the finite values of the Bloch vector as illustrated in Fig. 8
showing the plasmonic spectrum as a function M at a fixed
value of the Bloch vector k 	= 0. This result suggests that
the plasma instability occurs for both directions of the DC
current through the plasmonic crystal structure with the stub.
As shown in Ref. [20] this property enables the rf to THz
conversion.

Our analysis also shows that the plasmonic spectrum de-
pends on the position of the stub in the elementary cell and
the stub size providing ample opportunities for tuning the
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FIG. 8. Frequencies (ω′ = Reω) and increments/decrements
(ω′′ = Imω) of the first three plasma modes in the plasmonic crystal
structure shown in Fig. 6 as a function of the Mach number M. In
this calculation kL = 1.7 and all other parameters are the same as in
Fig. 7.

frequency and the increment of the plasma modes. In Fig. 9,
the plasmonic band spectrum at fixed Mach number M is
plotted for two different positions of the stub in the elementary
cell demonstrating the shift in both real and imaginary parts of
the plasma frequency.

The predicted instability increments are on the order of
the vp/L ∼ ωp. The losses introduced by the scattering of
impurities, lattice vibrations, and viscosity of the electron
fluid must be smaller than the increment in order not to
suppress the instability. In the next section, we show that
this condition could be easily met at 77 K for most typical
semiconductor materials and even at 300 K for small enough
dimensions. Even a more intense instability should occur in a
graphene high-mobility plasmonic crystal but this analysis is
beyond the scope of this paper.

V. NUMERICAL ESTIMATES FOR DIFFERENT
MATERIALS

Since the instability increment is on the order of the
fundamental plasma frequency, the necessary instability re-
quirement reduces to the condition Q � 1. Here Q = ωpτ is
the plasmonic quality factor and

τ = τmτν

τm + τν

. (16)

Here τm = μm∗/e is the momentum relaxation time, μ is the
low-field mobility, τν = 1

νq2 is the viscosity relaxation time,

FIG. 9. Frequencies (ω′ = Reω) and increments/decrements
(ω′′ = Imω) of the first three plasmonic bands in the plasmonic
crystal structure shown in Fig. 6 for two different positions of the stub
in the elementary cell and M = 0.1. Solid lines: L1 = 0.05L, L2 =
0.45L, dashed lines: L1 = 0.2L, L2 = 0.3L. All other parameters are
the same as in Fig. 7.

q = π
2L is the plasmonic wave vector for the fundamental

plasma mode, ν = EF τee/m∗ is the viscosity of the electronic
fluid defined in terms of the Fermi energy EF = π h̄2no/m∗,
and the electron-electron collision time τee = h̄EF /(3.4k2

BT 2)
[31]. Plasma frequency is determined as ωp = vpq where the
plasma wave velocity vp is given by

vp =
√

ηkBT

m∗
(
1 + e−(eUgt

/
ηkBT )

)
ln(1 + eeUgt

/
ηkBT ). (17)

Here Ugt = Ug − Uth is the gate voltage swing (Uth is the
threshold gate voltage), kB is the Boltzmann constant, and
η is the ideality factor. The last expression accounts for the
dependence of the electron density in the channel on the
temperature T [32]. The quality factor first increases with the
gate voltage swing along with the plasma frequency because
the plasma oscillation period becomes smaller compared to
the momentum relaxation time but then peaks in most cases
because at high plasma frequencies the viscosity damping
becomes dominant. Table I lists the maximum values of
the quality factor Qm that could be achieved in Si, GaN,
InGaAs, and p-diamond TeraFETs at 300 and 77 K. These
values were obtained by varying the gate voltage swing; see
Ref. [33] for more details.) Table I also lists the plasma
frequency fm at which the maximum value of Q is achieved.
In longer devices, where viscosity is not dominant, we en-
ter the values of Qm and fm achieved at 1-V gate voltage
swing.
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TABLE I. The values of Qm and fm for Si, GaN, InGaAs, and
p-diamond TeraFETs at 300 and 77 K.

22 nm 65 nm 130 nm

Qm fm (THz) Qm fm (THz) Qm fm (THz)

Si (300 K) 7 12 3.5 3.6 1.75 1.8
Si (77 K) 27 3.5 15.2 2 11 1.65
GaN (300 K) 11 10 5.2 3.4 2.7 1.7
GaN (77 K) 47 2.5 28 1.5 18 1
InGaAs (300 K) 8 5 3.5 3 2.8 1.8
InGaAs (77 K) 18 2 7 1 4.5 0.8
p-diamond (300 K) 70 6 25 2 11 1
p-diamond (77 K) 180 3 100 1.5 80 1

As seen, it is possible to realize plasmonic crystals at
room temperature carefully choosing the operating regime
to ensure the minimum damping. (A more detailed analysis
of the quality factors is given in Ref. [33].) The estimated
maximum quality factor in Si at room temperature for 22-
nm and even 65-nm feature sizes might be sufficiently large
to implement a plasmonic THz oscillator. p diamond has
the best combination of parameters for THz applications. It
has promise of achieving sub-THz oscillations in the 300-
GHz range, which is important for beyond 5G WIFI appli-
cations.

In this calculation, we used the highest reported values
of the electron mobility for Si, GaN, and InGaAs and the
hole mobility for p diamond shown in Table II. Hence, the
values presented in Table I should be considered as being
close to the ultimate quality factors that could be obtained
and as the figures of merit of the materials properties for
the plasmonic crystal applications. The actual values of the
field-effect mobility might be lower because of the surface
scattering and the boundary conditions imposing the ballistic
mobility limitation [34,35]. This gap between the predicted
and measured values should be smaller in a plasmonic crystal,
where the combination of the plasmonic stubs and varying
width allows for a precise control of the plasmon propagation
and reflection.

VI. CONCLUSIONS

The lack of efficient and compact electronic sources of sub-
THz and THz radiation remains the main obstacle to a massive
deployment of THz technology with many applications in
industrial controls, medicine, biotechnology, homeland secu-
rity, and communications. Plasmonic crystals have the best
potential to solve this problem because they could combine

nano sizes of individual cells with macro sizes of the entire
crystal. This should lead to a dramatic power enhancement.
Our analysis shows that in order to achieve both Dyakonov-
Shur and plasmonic boom instability the plasmonic crystal
design should use the variable width geometry combining
the narrow protruding plasmonic regions—plasmonic stubs—
and wider longer sections. The stubs provide the proper
boundary conditions between the cells enabling the instability
by changing the plasma wave energy. The wider sections
allow for the phase-matched reflections from the boundaries
between the sections of different widths with the plasmons
gaining energy due to these reflections. The instability growth
will be limited by nonlinearities leading to shock waves and
solitons, in complete analogy with similar instabilities in wa-
ter flows. The necessary condition for achieving the instability
is having the plasmon quality factor exceeding unity. Our
numerical estimates show that this could be achieved in Si,
GaN, InGaAs, and p diamond even at elevated temperatures.
The geometry proposed and analyzed in this paper enables the
instability growth for both directions of the drive current. This
makes it possible to drive the plasmonic crystal wirelessly
by coupling an RF signal to the RF antennas coupled to
the plasmonic crystal. This alleviates an interconnect prob-
lem that might otherwise affect the conversion efficiency.
Also, using the separate tuning gates for the stub region
allows for the frequency tuning and for frequency to digital
conversion.
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APPENDIX

In this appendix, we illustrate our conclusion made in the
main text that the plasmonic crystal with periodically repeated
stubs in the channel of constant width does not support the
plasma instability due to lack of the necessary asymmetric
plasma wave reflections at the stub interfaces in the crystal
structure.

We calculated plasmonic band spectrum for the plasmonic
crystal structure with elementary cell shown in Fig. 10(a)
which contains two stubs of different length. The equivalent
electric circuit corresponding to this elementary cell is shown
in Fig. 10(b). Plasmonic spectrum of this crystal structure can
be found from Eq. (9) where T̂ matrix is defined as T̂ =
ŝ1t̂1ŝ2t̂2. Here, matrices ŝ1,2 defined by Eq. (15) describe two

TABLE II. Mobilities μ and effective electron masses m∗ used in the simulation at 300 and 77 K.

Si GaN InGaAs p diamond

77 K 300 K 77 K 300 K 77 K 300 K 77 K 300 K

μ (m2/Vs) 2 0.1450 3.1691 0.2 5.5 1.2 3.5 0.53
m∗ 0.19 0.23 0.041 0.663
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FIG. 10. Elementary cell of the plasmonic stub crystal (a) and its electric equivalent circuit diagram (b). (c) Plasmonic band spectrum at
different values of the Mach number M. The first three plasmonic bands are shown. In this calculation L1 = 0.2L, L2 = 0.8L, l1 = 0.63L, and
l2 = 021L.

different plasmonic stubs, and matrices t̂1,2 defined by Eq. (5)
correspond to the two sections of the channel of different
lengths as shown in Fig. 10(a). For the sake of simplicity, in
this calculation we assumed that the widths of both stubs and
that of the channel are the same.

Figure 10(c) shows the plasmonic band spectrum in the
crystal Brillouin zone for several values of the Mach number
M. This spectrum shows no instability (ω′′ = 0) and the
Doppler shift at M 	= 0 in agreement with the prediction made
in Ref. [29].
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