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Selective asymmetric gate control of the Rashba spin-orbit coupling in GaInAs/AlInAs stepped wells
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Resorting to ordinary GaInAs/AlInAs stepped quantum wells subjected to an external gate, which allows for
adjusting the well symmetry and electron occupancy, we demonstrate that the Rashba spin-orbit (SO) strengths of
the first (α1) and second (α2) subbands exhibit opposite gate dependence, triggered by the inner barrier, of which
the structural potential energy for electrons is sandwiched between energy levels of two subbands. This opens
a route towards selective and opposite SO control, greatly fascinating for spintronic applications. Moreover, we
find that α1 and α2 may have opposite signs, in favor of hosting topological matter of persistent skymion lattice in
conventional semiconductor heterostructures that we recently proposed [J. Y. Fu, P. H. Penteado, M. O. Hachicya,
D. Loss, and J. C. Egues, Phys. Rev. Lett. 117, 226401 (2016)]. Finally, while the interband Rashba term (η)
is found to be essentially gate independent, it may lead to the energy dispersion anticrossing or maintaining
crossing, depending on intraband Rashba couplings.
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I. INTRODUCTION

The spin-orbit (SO) interaction, which couples electron
spin and momentum via an effective magnetic field, is a
key issue in the field of spintronics, as it provides a unique
handle for electrical manipulation of the spin magnetic mo-
ment [1,2]. The SO coupling also lifts spin degeneracy and
may mix spin states, thus giving rise to spin hybridization
gaps and nontrivial spin textures [3,4]. Spin-orbit effects lie
at the core of topological phenomena in diverse fields of con-
densed matter, such as topological insulators [5], Majorana
fermions [6,7], and Weyl semimetals [8]. Moreover, the SO
coupling is a central ingredient leading to spin-valley locking
in 2D materials of transition metal dichalcogenides [9–11].
Our recent proposals of persistent skyrmion lattice [12] and
stretchable spin helix [13] and its symmetry breaking [14]
also indicate the important role of SO effects in semiconductor
nanostructures.

In semiconductor nanostructures, the SO effects usu-
ally have two dominant contributions, i.e., the Rashba [15]
and Dresselhaus [16] terms, arising from the structural and
bulk inversion asymmetries, respectively. While the Dres-
selhaus coupling mainly depends on the quantum confine-
ment [13,17,18], the Rashba coupling can be electrically
controlled by using an external bias, thus facilitating spin
manipulation [13,19–21]. As a consequence, the Rashba
effect is often used in proposed spintronic devices, e.g.,
spin-field [22–24] and spin-Hall effect [25,26] transistors.
Extensive studies have been devoted to the electrical spin
control by resorting to the Rashba effect in semiconduc-
tor heterostructures including single [13,27], double [27,28],
and even mutiple wells [29,30] with either one or two

*yongjf@qfnu.edu.cn

occupied electron subbands. Furthermore, semiconductors
such as GaAs, InAs, or InSb, offer various strengths of SO
couplings [13,19,27,31,32] and are thus suitable for a broad
range of spintronic applications, making this subject extraor-
dinarily profound.

Here we consider ordinary GaInAs/AlInAs stepped quan-
tum wells [Fig. 1(a)], in which the SO term is at least 1
order of magnitude larger than that in GaAs-based wells. The
stepped wells have diverse applications especially about inter-
band effects [33,34] and allow for considering an interesting
geometry in which the structural potential energy for electrons
due to the inner barrier is sandwiched between energy levels

FIG. 1. (a) Schematic diagram of a GaInAs/AlInAs stepped
quantum well, with w and (w − h) denoting the width of the
overall well [2DEG, two-dimensional electron gases] and of the
inner stepped barrier (GaxIn1−xAs), respectively. The dashed (blue)
regions inside the outer barriers (Al0.48In0.52As) stand for doping
layers with doping density ρa and ρb, and Vg refers to an external
gate potential. (b) Schematic illustration of the structural potential
profile of the stepped well in panel (a), where δc (δ) denotes the outer
(inner) band offset and E1 (E2) is the subband energy level below
(above) the inner barrier.
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of the first (E1) and second (E2) subbands [Fig. 1(b)]. Stepped
wells also embrace an intrinsic structural inversion asymme-
try (SIA) due to the inner barrier. With the help of an external
gate potential (Vg), which allows for a simultaneous tuning of
the electron occupancy and SO strength [13,14], we observe
selective asymmetric gate control of the Rashba SO couplings.

We demonstrate that the strengths of the Rashba SO
couplings of the two subbands, i.e., α1 and α2, exhibit en-
tirely opposite gate dependence [Fig. 2(d) (dotted curves) and
Figs. 3(a) and 3(b)], because of the inner barrier, of which
the structural potential energy for electrons is sandwiched
between the two-band energy levels. This opens a route to-
wards selective and opposite SO control, greatly fascinating
for spintronic devices. Moreover, we observe that α1 and
α2 may have opposite signs, in favor of hosting topological
matter of persistent skyrmion lattice formed by conventional
2D electron gases (2DEGs) that we recently put forward [12].
As for the interband SO coupling (η), we find that it is
almost independent of the external gate [Fig. 4(a)], while it
may lead to the energy dispersion anticrossing [Fig. 4(c)]
or maintaining crossing [Fig. 4(b)], depending on intraband
Rashba terms.

This paper is organized as follows. In Sec. II, starting
from the 3D Hamiltonian for conduction electrons, we derive
its effective 2D form in our wells. In Sec. III, we show
expressions of the Rashba SO coefficents of both intraband
and interband terms. In Sec. IV, we present our self-consistent
results and discussion. We summarize our main findings in
Sec. V.

II. MODEL HAMILTONIANS FROM THREE DIMENSIONS
TO TWO DIMENSIONS

We consider stepped quantum wells grown along the
z||[001] direction. Starting from the 8 × 8 Kane model [36,37]
with both conduction and valence bands, one obtains via
the folding down procedure [18,27] an effective three-
dimensional (3D) Hamiltonian only for conduction electrons,

H3D = h̄2k2

2m∗ − h̄2

2m∗
∂2

∂z2
+ V (z) +H3D

R , (1)

where m∗ is the electron effective mass and k is the in-plane
electron momentum. The third term V = Vw + Vg + Vd + Ve

is the electron confining potential, which is determined self-
consistently within the Poisson-Schrödinger Hartree approxi-
mation, with Vw being the structural potential (band offsets),
Vg the external gate potential, Vd the doping potential, and Ve

the electron Hartree potential [12,13,18,27]. The last term,
H3D
R = η(z)(kxσy − kyσx ), describes the Rashba SO interac-

tion, with η(z) = ηw∂zVw + ηH∂z(Vg + Vd + Ve ) determining
the Rashba SO strength and σx,y,z the spin Pauli matrices.
The Rashba parameters ηw and ηH involve bulk quantities of
materials [18,27,38].

Now we are ready to define an effective 2D model from the
3D Hamiltonian above. We first determine (self-consistently)
the spin-degenerate eigenvalues εkν = Eν + h̄2k2/2m∗ and
the corresponding eigenspinors |kνσ 〉 = |kν〉 ⊗ |σ 〉 and
〈r|kν〉 = exp(ik · r)ψν (z) of the well in the absence of SO
interaction. Here we have defined Eν (ψν), ν = 1 and 2, as

the νth quantized energy level (wave function) and σ =↑
and ↓ as the electron spin component along the z direction.
Then the effective 2D Rashba model with two subbands in
the coordinate system [x||(100), y||(010)] under the basis set
{|k1↑〉, |k1↓〉, |k2↑〉, |k2↓〉} reads

H2D =
(

h̄2k2

2m∗ + E+

)
1 ⊗ 1 − E−τz ⊗ 1 +H2D

R , (2)

with E± = (E2 ± E1)/2, 1 being the 2 × 2 identity matrix in
spin or orbital (subband)] subspaces, and τx,y,z being the Pauli
(“pseudospin”) matrices acting within the orbital subspace.
The term H2D

R describes the Rashba SO contributions in
terms of intra- and intersubband SO fields �ν

SO and �12
SO,

respectively,

H2D
R =

∑
ν=1,2

[
τν ⊗ σ · �ν

SO + τx ⊗ σ · �12
SO

]
, (3)

with τ1,2 = (1 ± τz )/2. The intrasubband SO field reads

�ν
SO = ανk

[
sin(θ )x̂ − cos(θ )ŷ

]
, (4)

and the intersubband SO field is

�12
SO = ηk[sin(θ )x̂ − cos(θ )ŷ], (5)

with θ being the angle between k and the x axis.

III. RASHBA COEFFICIENTS

The Rashba SO coefficients αν and η, Eqs. (4) and (5),
can be cast as the expectation values 〈...〉 of the weighted
derivatives of the potential contributions,

ηνν ′ = 〈ψν |ηw∂zVw + ηH∂z(Vg + Vd + Ve)|ψν ′ 〉, (6)

with αν ≡ ηνν and η ≡ η12. Note that the intraband
Rashba term αν can be written in terms of several
constituent contributions, i.e., αν = α

g
ν + αd

ν + αe
ν + αw

ν ,
with α

g
ν = ηH〈ψν |∂zVg|ψν〉 being the gate contribution,

αd
ν = ηH〈ψν |∂zVd|ψν〉 the doping contribution, αe

ν =
ηH〈ψν |∂zVe|ψν〉 the electron Hartree contribution, and
αw

ν = ηw〈ψν |∂zVw|ψν〉 the structural contribution. Similarly,
the interband Rashba term η = ηg + ηd + ηe + ηw.
For convenience, we also use α

g+d
ν = α

g
ν + αd

ν and
ηg+d = ηg + ηd. Even though αν and η comprise seemingly
independent contributions, we note that each of them depends
on the total potential via the self-consistent wave function;
see the Supplemental Material [39].

IV. RESULTS AND DISCUSSION

We first introduce our system and relevant parameters
adopted. Then, we show our self-consistent calculation on
SO couplings. The random Rashba SO contribution is also
discussed.

A. System and parameters

We consider ordinary [001]-grown AlInAs/GaInAs
stepped wells, as shown in Fig. 1(a), similar to the
experimental samples of Ref. [40], with an inner barrier
(GaxIn1−xAs layer, x � 0.47) inserted in the well (2DEG)
region. The overall 2DEG width is w = 14 nm, containing the
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TABLE I. Correspondence between the inner offset δ [Fig. 1(b)]
considered in Figs. 2–4 and the concentration x of the inner barrier
(GaxIn1−xAs) layer [42]. A mapping between δ and the effective
electron mass m∗ of the GaxIn1−xAs layer is also listed [42]. The
units of δ and m∗ are in eV and m0 (bare electron mass), respectively.

δ x m∗

0 0.47 0.043
0.02 0.50 0.044
0.1 0.59 0.048

Ga0.47In0.53As layer of width h = 7 nm and the inner barrier
of width (w − h) = 7 nm. Two doping layers of width 6 nm
sit 18 nm away from either side of the well, with the doping
densities ρa = ρb = 2.5 × 1018 cm−3 for a symmetric doping
condition. The temperature is 0.3 K, and the Fermi level in our
self-consistent simulation is pinned at EF = 200 meV [41].
An external gate potential (Vg) is adopted for adjusting the
electron occupancy and the symmetry of the well profile, and
therefore the strength of the Rashba SO coupling.

Figure 1(b) shows a schematic of the structual poten-
tial of the layered system in Fig. 1(a). The outer offset
is chosen as δc = 0.52 eV [27,42], while the inner one
δ is treated as a tunable parameter, equivalent to varying
the composition (x) in the GaxIn1−xAs layer. This allows
for considering an interesting geometry, in which the struc-
tural potential energy for electrons due to the inner bar-
rier is sandwiched between the energy levels of the two
subbands [Fig. 1(b)]. For realistic considerations, we fol-
low Ref. [42] and determine a mapping between the inner
offset δ and the concentration x of the GaxIn1−xAs layer
for several values of δ involved in Figs. 2–4, as shown in
Table I.

B. Self-consistent outcome

In Fig. 2(a), we show the zero-bias self-consistent potential
and the two-subband wave function profiles of a stepped well
in the sandwich geometry with δ = 0.1 eV, for which the
energy levels E1 and E2 are below and above the structural
potential energy for the inner barrier, respectively, as indicated
by the horizontal red and green lines inside the well [cf.
Figs. 2(a) and 1(b)]. Due to the intrinsic SIA induced by the
inner barrier, the first-subband electrons are apt to be localized
on the left side of the well, while the second-subband electrons
preferably reside in the right side (inner-barrier layer), as
indicated by the electron distributions ψ1 and ψ2.

When the external bias is switched on, an external SIA,
which electrons of the first and second subbands feel in stark
contrast, is induced [see Fig. 2(b) for our self-consistent
solutions at Vg = 0.15 eV]. First, with increasing Vg, the first-
subband electrons experience an enhancement of SIA, while
for the second subband the situation is the opposite [cf. dotted
(black) and solid (blue) curves for the potential profile at Vg =
0 and 0.15 eV, respectively]. Second, the overall force fields
due to the electron Hartree and gate plus doping potentials,
i.e., Fe + Fg+d with Fg+d = Fg + Fd, felt by the electrons of
the two subbands have opposite signs, as indicated in Fig. 2(c)
with black circles 1 and 2.

These self-consistent features of our wells in the sandwich
geometry are helpful in elucidating our main findings. To
systematically analyze our results, we first have a look at the
usual scenario.

C. Usual scenario of Rashba control

The usual scenario corresponds to two trivial cases, in
which the energy levels E1 and E2 are both below or both
above the structural potential energy for the inner barrier.
Without lack of generality, we look into the limit case of zero
inner offset, as shown in Fig. 2(d) for δ = 0. This configura-
tion represents a trivial single well, thus the well is symmetric
at Vg = 0, leading to vanishing zero-bias Rashba couplings
for both subbands. When Vg differs from zero, we find that α1

and α2 exhibit similar gate dependence. Namely, they have the
same sign and both increase in magnitude with growing Vg, as
anticipated. Different strengths of α1 and α2 are attributed to
the electron Hartree potential across the 2DEG region, which
has the opposite effect in contributing to α1 and α2.

D. Opposite Rashba control

Now we turn to the sandwich geometry aforementioned
in Figs. 2(a) and 2(b). In this scenario, the gate dependence
of Rashba terms is shown in Fig. 2(d) with dotted curves for
δ = 0.1 eV. At Vg = 0, either α1 or α2 differs from zero due
to the intrinsic SIA induced by the inner barrier, as opposed
to the case of δ = 0 (cf. dotted and solid curves). Remarkably,
as Vg grows we observe that α1 increases while α2 decreases,
indicating that α1 and α2 exhibit entirely opposite gate de-
pendencies. This is in stark contrast to the usual scenario
and opens a route towards opposite and selective Rashba
control, greatly fascinating for spintronic applications. This
feature may also bring about the concept of spin-subband
locking, despite the lack of direct protection from the time
reversal symmetry. Moreover, α1 and α2 have opposite signs
and tend to become matched in magnitude with increasing
Vg, favoring the formation of topological matter of persistent
skyrmion lattice [12]. The inset shows in this scenario the
second subband becomes empty at around Vg = 0.16 eV, as
marked by the vertical (dotted) line.

The outcome of opposite Rashba control entirely comes
from our self-consistent solutions: (i) the gate potential en-
hances the SIA felt by the first-subband electrons while it
quenches the SIA for electrons of the second subband; (ii)
the overall force fields felt by electrons of two subbands have
opposite signs. From Eq. (6), it is straightforward that solution
(i) leads to the opposite gate dependence of Rashba couplings
and solution (ii) gives rise to opposite signs between α1

and α2.
To analyze further these features, in Fig. 3(a) [Fig. 3(b)],

we show the Rashba couplings of the two subbands and the
corresponding constituent contributions as a function of Vg.
For the gate plus doping contribution, we find α

g+d
1 = α

g+d
2

[cf. Figs. 3(a) and 3(b)]. This is because the force field Fg+d

remains constant across the whole 2DEG region [Fig. 2(c)].
As opposed to α

g+d
ν , the electron Hartree contributions αe

1
and αe

2 instead have opposite signs since Fe on the left side
of the well is opposite to that on the right side [Fig. 2(c)].
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FIG. 2. (a) Self-consistent potential (V ) and the corresponding
wave function profiles of the first (ψ1) and second (ψ2) subbands
for a AlInAs/GaInAs stepped well with δ = 0.1 eV (see Fig. 1), at
Vg = 0 (a) and 0.15 eV (b). The horizontal red (green) line inside
the well indicates the energy level E1 (E2). The black (dotted) curve
in panel (b) represents the potential in panel (a) for an eye-guiding
comparison. (c) Force fields of Fe, Fg+d (=Fg + Fd), and the sum.
Black circles 1 and 2 indicate corresponding force fields on the left
and right sides of the well, respectively. (d) Rashba coefficients α1

and α2 as functions of Vg at δ = 0, 0.02, and 0.1 eV. The vertical
(dotted) line at Vg = 0.16 eV marks a transition from double- to
single-electron occupancy. The inset shows how subband occupation
varies with Vg.

Regarding the structural constituents, we find that αw
1 and αw

2
also have opposite signs, following from the combined effects
of three interfaces of stepped wells. These analyses indicate
the electron Hartree and structural contributions are the key
constituents giving rise to the opposite Rashba control.

We should emphasize that we have assumed three inter-
faces share a common value for ηw, which in general should
differ [13,18]. Moreover, although electrons are distributed
throughout the well region [Figs. 2(a) and 2(b)], here we have
assumed the same effective electron mass m∗ across the inner
barrier, following from a small distinction of it for the two
materials inside the quantum well in the parameter range con-
sidered. Even at the largest inner offset of δ = 0.1 eV that we
consider [Fig. 2(d)], which corresponds to the inner barrier of
Ga0.59In0.41As, the effective electron masses of the two layers
forming the inner offset are m∗ (Ga0.59In0.41As) = 0.048m0

and m∗ (Ga0.47In0.53As) = 0.043m0 [42], respectively, with
m0 being the bare electron mass [see Table I and Fig. 1(b)].
By solving the Ben Daniel–Duke model [43], which takes
into account layer-dependent m∗ for our stepped wells, we
obtain at δ = 0.1 eV the zero-bias Rashba SO strengths
α1 = 0.2 meV Å and α2 = 2.1 meV Å, as compared to 0.2
and 1.8 meV Å of the same effective mass approximation
[Fig. 1(d)]. Note that for relatively larger values of δ that are
not shown here, our calculations based on the Ben Daniel–

Duke model [43] ensure that the fundamental feature of
selective asymmetric gate control of the Rashba SO coupling
remains the same.

E. Intermediate scenario: α1 �= 0, α2 = 0

From the SO features of the usual scenario and of the
sandwich geometry aforementioned, it is rational to conjec-
ture that there may exist another interesting situation such that
the inequality (α1 
= 0) and equality (α2 = 0) simultaneously
hold. We first proposed this condition in Ref. [18]. This is in
fact an intermediate scenario, as shown in Fig. 2(d) for δ =
0.02 eV, corresponding to the inner barrier of Ga0.5In0.5As
with x = 0.5 (see Table I). We find that α1 is negative and
consistently increases in magnitude with increasing Vg, as ex-
pected. In contrast to α1, it is found that α2 exhibits features of
the sandwich geometry when Vg < 0.135 eV while it displays
characteristics of the usual scenario when Vg > 0.135 eV.
Note that α2 identically vanishes at Vg = 0.135 eV, which can
in principle be used as a handle for suppressing SO-induced
spin relaxations for electrons of the second subband [44–46].

To explore further the underlying physics, in Fig. 3(c)
[3(d)], we show α1 (α2) and its constituent contributions as
functions of Vg. Ehrenfest’s theorem [37,47] ensures 〈∂zV 〉ν =
0 = 〈ψν |∂z(Vw + Vg + Vd + Ve)|ψν〉, from which the Rashba
SO strength given in Eq. (6) can be rewritten as αν = (1 −
ηH/ηw)αw

ν . This indicates that if αw
ν is zero αν must vanish,

cf. αw
2 and α2. Physically, we attribute the vanishing of α2 to

the seeming inversion symmetry seen solely by the second-
subband electrons, due to a delicate cancellation of intrinsic
and external SIAs induced by the inner barrier and the external
gate, respectively. The inset of Fig. 3(d) shows that ψ2 is
essentially symmetric, even though ψ1 is not.

F. Interband SO coupling

Figure 4(a) shows the gate dependence of the interband
Rashba coupling. We find that η essentially remains constant
with Vg. Note that the gate plus doping contribution (ηg+d)
identically vanishes because of the orthogonality condition
between ψ1 and ψ2. On the other hand, in the presence
of the interband term, it is found that the spin branches
of the two subbands may remain crossing [Fig. 4(b)] or
become anticrossing [Fig. 4(c)], when the intraband α1 and α2

have the same and opposite signs, respectively. In either the
crossing or the anticrossing scenario, the spin hybridization
is not allowed, leaving the usual Rashba chiral spin texture
unaltered; see the size (spin-polarization degree) and color
(spin orientations) of markers in Figs. 4(b) and 4(c). For more
details about the band dispersion and the spin texture, see the
Supplemental Material [39]. Note that this is in contrast to the
SO entanglement in the Rashba surface states of Bi/Ag(111)
and Bi/Cu(111) [3,4], where physical phenomena related to
orbital mixing occur, and is opposed to intriguing spin textures
in 2DEG with both Rashba and Dresselhaus terms [12], where
interband terms mix the two SO contributions.

G. Random Rashba term

Fluctuations of the concentration of dopant ions could
lead to a random electric field along the growth direction
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FIG. 3. Distinct contributions to Rashba SO strengths of the first
(α1) and second (α2) subbands as functions of Vg, at δ = 0.1 eV
[panels (a) and (b)] and 0.02 eV [panels (c) and (d)]. In panel (a),
the vertical dashed line at Vg = 0.16 eV marks a transition of the
electron occupancy from two subbands to one subband. In panel (d),
the inset shows a self-consistent outcome at Vg = 0.135 eV for which
α2 vanishes.

of quantum wells [48] and hence to a random Rashba cou-
pling [48–52]. We follow Ref. [48] and evaluate the averaged
random Rashba SO strength

√
〈α2

R〉=e2ξ
√
πnd /4πεRd , with the

subscript R indicating the random contribution. Here e is the
electron charge, ε denotes the dielectric constant, Rd refers
to the distance from the doping region to the well center,
and ξ = ηH − ηw [13,18]. As electrons of the two subbands
see the same doping conditions, fluctuations of the Rashba
couplings are assumed to be the same in both subbands, i.e.,√
〈α2

1,R〉=
√
〈α2

2,R〉. For our stepped wells, the areal doping den-

sity reads nd ∼ ρd ld = 15 × 1011 cm−2, where ρd = 2.5 ×
1018 cm−3 is the three-dimensional doping concentration and
ld = 6 nm stands for the length of doping layers. This yields

a variation of the Rashba SO couplings
√
〈α2

ν,R〉∼0.3αν . The
random Rashba contribution may in reality modify the overall
gate dependence of SO terms, while the basic feature of
the opposite Rashba SO control in the sandwich geometry
remains unaltered. Depending on specific applications, one
can enhance (quench) the random Rashba effect by increasing
(decreasing) the doping concentration and/or by setting the
doping region near (distant from) the 2DEG region [Fig. 1(a)].

V. CONCLUDING REMARKS

We have considered ordinary GaInAs/AlInAs wells, which
are widely adopted in experiments, and have in their stepped
geometry captured fascinating SO features. In the scenario
that the inner barrier is sandwiched between the two-subband
energy levels, we have demonstrated opposite Rashba con-

FIG. 4. (a) Intersubband Rashba coefficient η and its constituent
contributions as functions of Vg. (c) Energy dispersions (scaled by
a factor of 50 for visibility) along kx ‖ [100] of a AlInAs/GaInAs
stepped well with δ = 0.1 eV, for α1 and α2 having the same (c) and
opposite (d) signs. The size of marker scales with the degree of spin
polarization and the colors refer to spin orientations up (red, light)
and down (blue, dark) indicated by up (down) arrows. The black
lines correspond to the uncoupled (η = 0) bands which cross at kc0.
For η 
= 0, these bands remain crossing (a) with the crossing points
shifted (cf. kc1 and kc0) or exhibit anticrossing (b). The SO constants
are chosen at Vg = 0.1 eV [see Fig. 2(d)] [35].

trol. This opens a route towards selective and opposite SO
control, greatly fascinating for spintronic applications, e.g.,
spin filters, the spin Hall effect, and spin transistors, with
an extra pseudospin (subband) degree of freedom. This may
also bring about the concept of spin-subband locking, despite
a lack of direct protection from the time-reversal symmetry
for spin-valley locking in 2D materials [9] and for spin-
momentum locking in quantum-spin-Hall topological insu-
lators [5]. Moreover, stepped wells with the sandwich ge-
ometry are expected to be preferable candidates of hosting
topological matter of persistent skyrmion lattice [12] with the
SO features conveniently controllable and Elliott-Yafet-like
spin relaxation largely suppressible [53–55], due to a larger
subband separation having the inner barrier in between. As
a final remark, our recent report on stretchable spin helices
demonstrated electrical control of the Dresselhaus term [13].
Additional work is needed to explore the feasibility of oppo-
site Dresselhaus SO control.
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