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The ability to actively control heat flows in the nanoscale can open up a plethora of opportunities for
applications that require thermal management and regulation. We show that it is possible to build a three-terminal
quantum thermal gating device which regulates the thermal conductivity between two of its terminals in response
to light incident upon the remaining terminal. We model our device as three mutually coupled two-level
systems which interact thermally and optically with their environment. To incorporate the thermal interactions
of our device, we adopt an open quantum systems framework under the Born-Markov approximation. We
subsequently use detailed quantum mechanical state analysis to illustrate its operating principle. Through
numerical simulations, we further explore the nonlinear relationship between the optical field amplitude and
the thermal conductivity of the device in the steady-state regime. Based on our investigations, we find that the
energy-gating behavior of our device is highly efficient in that it can control a significantly larger thermal energy
flow compared to the amount of energy it absorbs from the optical field in the process. The approach we have
taken to analyze the system, in particular the graphical representations we developed to intuitively and concisely
represent the quantum states, energy flows, and the relationships between them, could be of value in analyzing
other similar thermo-optical systems. Thus, we envision that both the device concept and its analysis technique
would be useful to researchers working in this area.
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I. INTRODUCTION

Considerable research effort in recent years has been de-
voted to synthesizing materials whose thermal conductiv-
ity can be regulated using an external control signal. Such
materials that can control the heat transfer through systems
can find a myriad of interdisciplinary applications [1,2]. For
example, these materials would be instrumental in developing
reconfigurable thermal routing networks, controllable thermal
insulators, thermal rectifiers, and improved waste heat man-
agement and energy harvesting systems for semiconductor
devices [3,4].

A polymer-based light-sensitive thermal conductivity-
adjustable material (TCAM) was recently reported in Ref. [5],
where absorption of ultraviolet radiation of a specific wave-
length induces a reversible phase change [6] in the polymer,
which in turn alters its thermal conductivity. Magnetic and
electric field sensitive materials reported in Refs. [1,7] sim-
ilarly alter their conductivity through changes to their internal
chemical structure. These and other similar works follow a
macroscale approach to developing TCAMs.

However, recent advances in nanotechnology has made
possible the development of devices which manipulate in-
dividual quantum systems such as quantum dots [8], quan-
tum emitters [9] and nanoparticles [10]. Rectification and
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switching devices for electrons [11,12], photons [13–16] or
phonons [17,18], electrically controlled phonon gating de-
vices [19], spasers [20,21], and single photon detectors [22]
or emitters [23] are some examples for such quantum tech-
nologies.

Important among these is the development of quantum
thermal rectifiers [24,25] and transistors [26–29]. A thermal
rectifier conducts heat along one preferred direction and in-
sulates heat along the opposite direction, while a thermal
transistor regulates the conductivity along two of its terminals
in response to the temperature of its third (gate) terminal. Both
these examples offer nanoscale mechanisms to control heat
flow and opens a new approach for developing TCAMs, where
we build macroscale thermal materials by systematically as-
sembling nanoscale thermal devices.

However, there are still serious challenges to overcome in
integrating a large number of such thermal devices within a
larger system. Foremost among them is the problem of giv-
ing accurate and localized control signals to each individual
device. This is especially difficult since almost all currently
proposed thermal devices are controlled by temperature sig-
nals, which are quite difficult to synthesize and efficiently
guide to relevant locations in nanoscale circuitry [30]. De-
veloping quantum thermal devices controlled by alternative
mechanisms, such as light or voltage, would circumnavigate
this problem.

In this work, we propose a three-terminal thermal gating
device whose thermal conductivity between two of its ter-
minals can be modulated via a light of specific wavelength
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FIG. 1. Quantum system demonstrating optically controllable
thermal gating behavior. TP is the temperature of the thermal bath
BP, JP is the energy flow rate from BP to S for P = L, M, and R,
and JF is the energy absorption rate of S from the field F .

shining on its third terminal. The operation is similar to that
of the quantum thermal transistor developed by Joulain et al.
[26], except that the device is now optically controlled as
opposed to temperature controlled. We believe by introducing
optical control, we will drastically expand the usability and
improve the accuracy of current thermal flow-control devices.
Furthermore, we believe the mechanism of optical control we
use here, and our methods for analysis and visual depiction of
the operating principle, would be readily adaptable for other
similar problems in quantum thermal science.

Our paper is organized as follows. In Sec. II, we introduce
our quantum system and the formalism we use for analyzing
its thermal behavior. In Sec. III, we discuss the time evo-
lution of the system quantum state and its thermal proper-
ties, concentrating particularly on the steady-state situation
after transients due to initial conditions have died out. We
numerically simulate and present the behaviors of the system
in Sec. IV, demonstrating that optically controlled thermal
gating behavior is indeed shown by our quantum device. The
mechanism of how our device operates is explained in detail
in Sec. V. Finally we summarize our findings and conclude
our discussion in Sec. VI.

II. MODEL

Our system is an extension of the quantum thermal tran-
sistor analyzed in Ref. [26] and consists of three mutually
coupled two-level systems (TLSs), three thermal baths inter-
acting with the TLSs, and an additional single-mode optical
field (Fig. 1). In our analysis, the three TLSs, labeled by L
(left), M (mid), and R (right), together form the system S, and
their three corresponding thermal baths (BL, BM and BR) form
its environment. The optical field (labeled F) is imposed on all
three TLSs of our system. However, as we shall discuss in the
subsequent section, we specifically tune the frequency of the
field ωF and the system parameters of S such that the optical
field strongly interacts only with the TLS M.

Our goal now is to analyze the bath-system energy
flows JL, JM , JR and field-system energy flow JF using the
strong-coupling formalism employed in Werlang et al. [24].
We concentrate specifically on the effect of the amplitude of
field F on the energy flows between the thermal baths and
the system. Joulain et al. [26] previously found that under
certain conditions the energy flow (i.e., thermal conductivity)
between thermal reservoirs BL and BR could be accurately
controlled by tuning the temperature of the reservoir BM , very
much like the operation of an electronic field effect transistor
(FET). Alternatively, in this work we show that by coupling an
optical field F and adjusting its amplitude, we can similarly
control the thermal conductivity between BL and BR. More-
over, we show that the energy absorption of S from F turns out
to be at least an order of magnitude smaller than the system-
bath energy flows it regulates. We thereby demonstrate that
our system acts as an energy-efficient optically controlled
thermal gating device.

A. System, bath, and field Hamiltonians

Each TLS can be in one of two possible energy eigenstates,
which we denote |↑P〉 and |↓P〉 for P = L, M, and R. The
Hilbert space of S then becomes the tensor product space of
the three individual TLSs.

We can now write the Hamiltonian of the system S as an
8 × 8 matrix

ĤS = h̄

2

(
ωLσ̂ L

z + ωM σ̂ M
z + ωRσ̂ R

z

+ ωLM σ̂ L
z σ̂ M

z + ωMRσ̂ M
z σ̂ R

z + ωRLσ̂ R
z σ̂ L

z

)
, (1)

where h̄ is the reduced Planck constant, h̄ωP is the energy
difference between the two eigenstates of TLS P, and h̄ωPQ

is the interaction energy between the TLSs P and Q for
P, Q = {L, M, R}. Here σ̂ P

z is the third Pauli matrix for TLS P
expanded into an 8 × 8 space by appropriate tensor products
with unit matrices [31]. For example, σ̂ L

z = σ̂z ⊗ Î ⊗ Î where
σ̂z is the 2 × 2 Pauli matrix and Î is the 2 × 2 unit matrix.

Diagonalizing the matrix HS provides the following energy
eigenvectors | j〉 and corresponding eigenvalues ε j

|1〉 ≡ |↑↑↑〉 ↔ h̄

2
(+ωL + ωM + ωR + ωLM + ωMR + ωRL ),

|2〉 ≡ |↑↑↓〉 ↔ h̄

2
(+ωL + ωM − ωR + ωLM − ωMR − ωRL ),

|3〉 ≡ |↑↓↑〉 ↔ h̄

2
(+ωL − ωM + ωR − ωLM − ωMR + ωRL ),

|4〉 ≡ |↑↓↓〉 ↔ h̄

2
(+ωL − ωM − ωR − ωLM + ωMR − ωRL ),

|5〉 ≡ |↓↑↑〉 ↔ h̄

2
(−ωL + ωM + ωR − ωLM + ωMR − ωRL ),

|6〉 ≡ |↓↑↓〉 ↔ h̄

2
(−ωL + ωM − ωR − ωLM − ωMR + ωRL ),

|7〉 ≡ |↓↓↑〉 ↔ h̄

2
(−ωL − ωM + ωR + ωLM − ωMR − ωRL ),

|8〉 ≡ |↓↓↓〉 ↔ h̄

2
(−ωL − ωM − ωR + ωLM + ωMR + ωRL ),

where |↑↑↑〉 = |↑L〉 ⊗ |↑M〉 ⊗ |↑R〉 and so on.
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FIG. 2. Energy eigenstates and eigenvalues for S with typical
system parameters for operating as an optically controlled thermal
gate (ωL = ωR = ωRL = 0, ωLM ≈ ωMR 	 ωM ). Arrows indicate al-
lowed energy transitions while their colors represent the external
entity the energy is exchanged with.

The energy level diagram of the system S for a typical set
of parameters ωP and ωPQ is shown in Fig. 2. Note that with
our convention, when ωP and ωPQ are positive, |↑P〉 has higher
energy than |↓P〉, and the interaction between TLSs P and Q
generates higher energy when both arrows align than when
they are opposite.

Following the methodology of the well-established
Caldeira-Leggett model [32], we consider all three thermal
reservoirs as collections of quantum harmonic oscillators.
Hence, we write their Hamiltonians as

ĤP
bath =

∑
k

h̄ωk âP
k

†
âP

k , (2)

where âP
k is the annihilation operator for the oscillation mode

with frequency ωk of reservoir P.
We model the interaction Hamiltonian ĤP

TLS-bath between
the TLS P and its respective thermal bath following the
arguments in Leggett et al. [33]. We therefore consider the
interaction to link the energy of the TLS P to the position of
each quantum harmonic oscillator in the respective bath. This
yields

ĤP
TLS-bath = h̄σ̂ P

x

∑
k

gk
(
âP

k + âP
k

†)
, (3)

where gk represents the coupling strength between the thermal
bath’s kth oscillation mode and the TLS, and is assumed to
be equal for all three reservoirs for simplicity. Note that as

a consequence of the TLSs only interacting with their corre-
sponding thermal reservoirs, an energy exchange between the
system and any one thermal bath can only flip the quantum
state of its corresponding TLS. This constraints the number
of allowed transitions within S to twelve, with four transitions
induced by each reservoir as shown in Fig. 2.

We model the external optical field F classically and write
its electric field component 
E (t ) incident on the system S at
time t as


E (t ) = 
E0 cos ωFt, (4)

where | 
E0| and ωF are respectively the amplitude and fre-
quency of the optical field. Under the dipole approximation
[34], the interaction Hamiltonian between the field and the
system is

ĤS-F = −
∑

P=L,M,R


̂DP · 
E (t )

= −
∑

P=L,M,R


d (σ̂ P
+ + σ̂ P

− ) · 
E0 cos ωFt

= −
∑

P=L,M,R

h̄
�

2
(σ̂ P

+ + σ̂ P
− )(e−iωF t + eiωF t ), (5)

where σ̂ P
+ = 1

2 (σ̂ P
x + iσ̂ P

y ), σ̂ P
− = 1

2 (σ̂ P
x − iσ̂ P

y ), and � = 
E0· 
d
h̄

is the Rabi frequency. It is important to note that in this work,
we will be changing the magnitude of the electric field | 
E0|,
while always keeping the dipole moment 
d constant. Since
this means that � ∝ | 
E0|, in the following sections we will be
frequently using � instead of | 
E0| to represent the amplitude
of the field, for ease of notation.

In this current form, the interaction ĤS-F drives all twelve
allowed transitions in the system S. However, we note that
since these transitions have different energy levels and there-
fore different resonant frequencies, a single frequency optical
field cannot resonate with all of them simultaneously. In
essence, if we fine-tune ωF to be resonant with one particular
energy transition, it will likely become nonresonant with all
other transitions with different frequencies. The field will
then strongly drive the resonant transition, while interacting
only weakly with other nonresonant transitions. By carefully
choosing our system parameters ωPs and ωPQs, we can exploit
this property to suppress most of the transitions in Eq. (5) and
significantly simplify ĤS-F.

For instance, in the energy level diagram Fig. 2, we
have specifically chosen system parameters so that the tran-
sitions |↑↑↓〉 ↔ |↑↓↓〉 and |↓↑↑〉 ↔ |↓↓↑〉 have consider-
ably lower resonant frequencies than any of the other ten
allowed transitions. Choosing ωF to be resonant with the
above two transitions by setting ωF = ωM + ωLM − ωMR =
ωM − ωLM + ωMR, we can then ignore the nonresonant high-
frequency transitions in ĤS-F. This leaves us with a simplified
interaction Hamiltonian,

ĤS-F =−h̄
�

2
(|↑↑↓〉〈↑↓↓| + |↑↓↓〉〈↑↑↓| + |↓↑↑〉〈↓↓↑|

+ |↓↓↑〉〈↓↑↑|)(e−iωF t + eiωF t ). (6)
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We can map this Hamiltonian to its interaction picture repre-
sentation ĤS-F(t ) as

ĤS-F(t ) = exp

{
i

h̄
ĤSt

}
ĤS-F exp

{
− i

h̄
ĤSt

}

= − h̄
�

2

((|↑↑↓〉〈↑↓↓|+|↓↑↑〉〈↓↓↑|)(1 + ei2ωF t
)

+ (|↑↓↓〉〈↑↑↓| + |↓↓↑〉〈↓↑↑|)(1 + e−i2ωF t
))

.

(7)

By performing the rotating wave approximation (RWA)
[31,35] we can remove the rapidly oscillating terms ei2ωF t and
e−i2ωF t to obtain

ĤS-F(t ) = −h̄
�

2
(|↑↑↓〉〈↑↓↓| + |↑↓↓〉〈↑↑↓|

+|↓↑↑〉〈↓↓↑| + |↓↓↑〉〈↓↑↑|). (8)

We note from Eq. (8) that both transitions driven by the field
F shifts only the quantum state of the TLS M. This aligns with
our earlier statement that our field strongly interacts only with
the TLS M.

The combined Hamiltonian of the system and its environ-
ment Ĥ is the sum of its components. Therefore we write

Ĥ = Ĥ0 + Ĥ1, (9)

where we define

Ĥ0 = ĤS +
∑

P=L,M,R

ĤP
bath (10)

to represent the sum of individual energies of the system and
its environment, and

Ĥ1 = ĤS-F +
∑

P=L,M,R

ĤP
TLS-bath (11)

to represent the energy of the interactions in between them. In
all subsequent sections, we will be working in the interaction
picture obtained with respect to Ĥ0 and Ĥ1.

B. Quantum master equation

The state of the system S at any time t is completely spec-
ified by its 8 × 8 density matrix ρ̂(t ), whose time evolution
obeys a quantum master equation. We derive this quantum
master equation following the procedure outlined in Appendix
A. Under Born, Markov, and RWA approximations [36],
this yields the following interaction picture quantum master
equation in Lindblad form:

dρ̂(t )

dt
= − i

h̄
[ĤS-F(t ),ρ̂(t )] +

∑
P=L,M,R

LP[ρ̂(t )]. (12)

The Lindblad superoperator LP[ρ̂] quantifies the influence of
the thermal bath BP on the system S and is written

LP[ρ̂] =
∑
ω>0

(
JP(ω)(1 + nP(ω))

(
ÂP(ω)ρ̂Â†

P(ω)

− 1

2

{
Â†

P(ω)ÂP(ω), ρ̂
}) + JP(ω)nP(ω)

×
(

Â†
P(ω)ρ̂ÂP(ω) − 1

2

{
ÂP(ω)Â†

P(ω), ρ̂
}))

. (13)

where ω runs through all allowed positive energy transitions
in the system. Here, nP(ω) represents the population of the
harmonic oscillator mode with frequency ω in BP and is given
by

nP(ω) = 1

exp
(

h̄ω
kBTP

) − 1
. (14)

Each bath BP is hence characterized by its spectral function
JP(ω) and its temperature TP. For simplicity we consider all
three reservoirs as having the same Ohmic spectral function
JP(ω) = κω.

The Lindblad operator ÂP(ω) is associated with a transition
of energy h̄ω induced in S by thermal bath BP and is given by

ÂP(ω) =
∑

ε′−ε=h̄ω

	̂(ε)σ̂ P
x 	̂(ε′) (15)

with 	̂(ε) being the projection operator for ĤS towards the
system energy eigenvalue ε (see Appendix B). Upon further
analysis, we find that most ÂP(ω) operators are zero, and that
the twelve remaining nonzero operators all correspond to bath
induced transitions shown in Fig. 2.

C. Conditions for model validity

At this point, we would like to briefly discuss the various
approximations we had to perform while modeling our system
and the corresponding conditions a physical system needs to
satisfy in order to align with them.

As discussed in Appendix A, we had to perform the
Born, Markov, and RWA approximations while deriving the
quantum master equation given in Eq. (12). Under Born
and Markov approximations, we respectively assume that the
thermal reservoirs are minimally affected by the dynamics of
the system, and that they are essentially memoryless within
the time-scales we are considering [31,37]. The corresponding
physical condition for these is that the thermal reservoirs BP

are large enough to supply the heat flows JP to the system
without their temperature or other thermal properties being
significantly affected.

Under RWA we assume that the timescale τS associated
with the energy levels of the system is much smaller than
the timescale τR associated with the thermal relaxation of
the system [31,37]. We can easily approximate τS by finding
typical values of 2π h̄/(εi − ε j ) for i �= j. However, to find τR

we have to first solve Eq. (12) for different initial conditions
and parameter sets, obtain the time evolution of the system
density matrix ρ̂(t ) for each case, and then approximate the
time taken by the system to reach its stationary condition. We
subsequently have to check the condition τR 	 τS to verify
the validity of RWA for our model.

Since our model has multiple thermal reservoirs, we nat-
urally have to ensure that direct thermal flows between the
reservoirs, except across our system, are physically inhibited.
Similarly, the thermal reservoirs should be shielded from the
external optical field to prevent direct optothermal interactions
between them.
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D. Thermal energy flows

Conservation of energy with respect to the system S leads
us to the following continuity equation [24]:

JF (t ) +
∑

P=L,M,R

JP(t ) = ∂〈ĤS〉
∂t

= ∂

∂t
Tr{ĤSρ̂(t )}

= Tr

{
ĤS

d ρ̂(t )

dt

}
, (16)

where Tr{Â} = ∑8
j=1〈 j|Â| j〉 is the matrix trace. Substituting

from Eq. (12)

JF (t ) +
∑

P=L,M,R

JP(t ) =Tr

{
− i

h̄
ĤS[ĤS-F(t ), ρ̂(t )]

}

+
∑

P=L,M,R

Tr{ĤSLP[ρ̂(t )]} (17)

and comparing similar terms, we conclude

JF (t ) = Tr

{
− i

h̄
ĤS[ĤS-F(t ), ρ̂(t )]

}
(18)

JP(t ) = Tr{ĤSLP[ρ̂(t )]}. (19)

Following the procedure in Appendix B, we derive the
following expressions for the energy inflows into S:

JF = −(ε24ϒ24 + ε57ϒ57),

JL = −(
ε51�

L
51 + ε62�

L
62 + ε73�

L
73 + ε84�

L
84

)
,

(20)
JM = −(

ε31�
M
31 + ε42�

M
42 + ε75�

M
75 + ε86�

M
86

)
,

JR = −(
ε21�

R
21 + ε43�

R
43 + ε65�

R
65 + ε87�

R
87

)
,

where ε jk = ε j − εk is the energy released in a single transi-
tion from | j〉 to |k〉,

�P
jk = JP(ω jk )((1 + nP(ω jk ))ρ j j − nP(ω jk )ρkk ) (21)

is the net transition rate from | j〉 to |k〉 induced by the
interaction of the system S with reservoir BP, and

ϒ jk = i
�

2
(ρ jk − ρk j ) (22)

is the net transition rate from | j〉 to |k〉 induced by the interac-
tion of the system S with the field F . Here, ω jk = ε jk/h̄, ρ jks
represent the matrix elements of the density matrix ρ̂, and for
clarity we have dropped the explicit time dependence. From
observing Eq. (20) and Fig. 2, we clearly see that each term
in the energy flows corresponds to a transition in the system
induced by that particular external entity.

III. CALCULATING SYSTEM DYNAMICS

Fully expanding Eq. (12) will provide a system of 64 first
order differential equations of motion, one for each density
matrix element. Given the initial state ρ̂(0), the system can
then be solved to obtain the time evolution of S, after which
we can use Eq. (20) to calculate the energy flows.

When solving Eq. (12) we find that most density matrix
elements ρ jk exponentially decays to zero, regardless of the

initial state. In the long term, the only nonzero terms happen
to be the diagonal elements ρ j j , and the off-diagonal elements
ρ24, ρ42, ρ57 and ρ75. The equations of motion for the diagonal
density matrix elements are given by

ρ̇11 = +�L
51 + �M

31 + �R
21,

ρ̇22 = +�L
62 + �M

42 − �R
21 − ϒ24,

ρ̇33 = +�L
73 − �M

31 + �R
43,

ρ̇44 = +�L
84 − �M

42 − �R
43 + ϒ24,

ρ̇55 = −�L
51 + �M

75 + �R
65 − ϒ57,

ρ̇66 = −�L
62 + �M

86 − �R
65,

ρ̇77 = −�L
73 − �M

75 + �R
87 + ϒ57,

ρ̇88 = −�L
84 − �M

86 − �R
87, (23)

and equations of motion for the nonzero off-diagonal elements
are given by

ρ̇24 = γ42 − 1
2

(
βL

62 + βL
84 + αM

42 + βM
42 + αR

21 + αR
43

)
ρ24,

ρ̇42 = γ24 − 1
2

(
βL

62 + βL
84 + αM

42 + βM
42 + αR

21 + αR
43

)
ρ42,

ρ̇57 = γ75 − 1
2

(
αL

51 + αL
73 + αM

75 + βM
75 + βR

65 + βR
87

)
ρ57,

ρ̇75 = γ57 − 1
2

(
αL

51 + αL
73 + αM

75 + βM
75 + βR

65 + βR
87

)
ρ75,

(24)

where αP
jk = J (ω jk )(1 + nP(ω jk )), βP

jk = J (ω jk )nP(ω jk ),

and γ jk = i �
2 (ρ j j − ρkk ). Note how each off-diagonal equa-

tion has a γ jk term which is proportional to the Rabi frequency
� and therefore, to the optical field amplitude | 
E0|. This
term originates from the field interaction ĤS-F(t ) in Eq. (8)
which couples together the states |2〉 ↔ |4〉 and |5〉 ↔ |7〉.
Without this extra term, the solutions of Eq. (24) would all
exponentially decay to zero. Incidentally, the absence of the
γ jk coupling term in the equations of motion of the other off-
diagonal elements is the exact reason why they all eventually
decay to zero.

From analyzing Eqs. (23) and (24), it can be shown that
stationary solutions do exist for the density matrix, and that
the system eventually stabilizes to that solution from any
initial state. This existence of stationary solutions originates
from the RWA approximation we carried out when deriving
Eq. (8). Alternatively, converting Eq. (6) into the interac-
tion picture without RWA will result in a significantly more
complicated system of differential equations, whose solutions
will generally not converge to stationary values. However, we
found by simulating both formalisms that the thermal gating
behaviors we are interested in shows up regardless of whether
RWA is used or not. Therefore we have chosen to present the
model with RWA here due to its comparative simplicity.

In this work, we are mainly investigating the long-term
thermal conductivity through S, once the amplitude of the
optical field and the bath temperatures have been fixed at
certain values for a while. We are less interested in what
happens while the bath temperatures and field amplitudes
themselves are changing dynamically. In other words, we seek
the heat flows through S once the transient effects due to
the initial conditions have died out and the quantum state
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of the system settles to its steady state. We can obtain this
condition by searching for solutions of Eqs. (23) and (24)
while asserting d ρ̂

dt = 0.
We will not present the closed form solutions of Eqs. (23)

and (24) here due to space considerations. Rather, we opt
to present only the results and conclusions obtained by nu-
merically simulating our device for a wide range of system,
field and environment parameters. For the interested reader,
the full MATHEMATICA codes for the simulations are available
in Ref. [38].

IV. SIMULATIONS AND RESULTS

In this section, we present the results we obtained by
numerically simulating the behaviors of our quantum system
for different sets of system, optical field and environment
parameters. Note that in the following, we work in SI units
where h̄ = 1.055 × 10−34 J s and kB = 1.381 × 10−23 J/K.

A. Simulation parameters

We prepare the thermal reservoirs BL and BR so that the
temperature TL of BL is significantly higher than the tempera-
ture TR of BR. The thermodynamic tendency of S would then
be to conduct heat from hot reservoir BL to cold reservoir BR.
However, the actual amount of heat flow would depend on the
thermal properties of S.

Joulain et al. [26] previously analysed this system for the
special case when the field F was absent. They discovered
that for certain system parameters the heat flow between
BL and BR could be effectively controlled by adjusting the
temperature TM of bath BM between the minimum value TR

and the maximum value TL. They additionally discovered that
during this controlling action, the heat flow JM through the
control reservoir BM remained significantly smaller than the
heat flows JL and JR it regulated. In summary, they discovered
that the system operated analogous to an electronic FET, with
temperatures acting as voltages, heat flows as currents, BL and
BR as source and drain terminals, and BM as the gate terminal.

Since in this work we plan to move the control terminal
from BM to F , we have to fix TM to some constant value
beforehand. In our simulations, we set TM = TR to bias the
transistor to its fully insulating setting, so that it blocks heat
flow between BL and BR as much as possible in the absence
of F . This bias has the additional advantage of being easy
to realize practically since the reservoirs BM and BR have the
same temperature.

Our next task is to select the appropriate system param-
eters. For proper operation, the overall scale of the system
energy levels should be chosen to be around five times greater
than the energy levels associated with the thermal baths [26].
Mathematically, this condition can be written as

h̄ω ≈ 5kBT, (25)

where ω and T represent the typical frequency and the temper-
ature scales associated with the system and its environment.
We then specify the relationships between different energy
levels as ωL = ωR = 0, ωRL = 0, and ωLM = ωMR 	 ωM > 0
to obtain a system whose energy level diagram is similar to

Fig. 2. This provides us with a relatively simple system while
showcasing thermal gating behavior well.

The condition ωRL = 0 makes sure that thermal flows
through the system are always mediated through TLS M, and
must be satisfied at least approximately for proper thermal
gating operation. The condition ωLM = ωMR is necessary
to preserve the form of ĤS-F in Eq. (6) by making sure
both field-induced transitions are exactly resonant. This has
the additional effect of making the energy eigenstate pairs
|↑↑↓〉 − |↓↑↑〉 and |↓↓↑〉 − |↑↓↓〉 degenerate. It makes the
system symmetrical with respect to the thermal baths BL and
BR, and simplifies the mathematics considerably.

However, it is important to note here that, further sim-
ulations have shown that the condition ωLM = ωMR is not
strictly necessary for demonstrating thermal gating behavior.
As we shall see in Sec. V, only the optically induced |↓↓↑〉 to
|↓↑↑〉 transition, which absorbs energy from F , is critical for
thermal gating when TL > TR. As long as the field is chosen to
be resonant with that particular transition, changing the field
amplitude will regulate the heat flow between BL and BR, even
if the other transition |↑↑↓〉 ↔ |↑↓↓〉 is off-resonant. Con-
versely, the transition |↑↑↓〉 ↔ |↑↓↓〉 will become critical
if we interchange the thermal baths so that TL < TR. In this
paper, we have chosen to include both transitions in our model
for completeness and clarity.

In accordance with the above discussion, we select the
temperatures for our simulations as TL = 300 K and TM =
TR = 30 K. Note that we have set the ratio to 10 between
the high to low temperatures to mirror corresponding values
used in Ref. [26]. This allows us to perform a fair comparison
between the two systems in the next section. However, our
simulations have confirmed that thermal gating behaviors
can be observed even for higher values of TM and TR (see
Ref. [38]).

Using Eq. (25), we derive that the frequency scales in the
system need to be around � = 3.12 × 1013 Hz. Accordingly,
we set the system parameters as ωLM = ωMR = � and ωM =
0.1�. We further find that, to strongly drive the optical gating
action, we require the Rabi frequencies to be in the low ter-
ahertz range, which is typical for optical driving applications
similar to ours [39–41]. The frequency of the external optical
field is calculated to be ωF = 3.12 × 1012 Hz, which puts it in
the infrared spectrum.

B. Simulation results

We now simulate the steady-state conditions of our system
for different Rabi frequencies � (and hence optical field
amplitudes | 
E0|), and observe its effects on the system-bath
and system-field energy flows.

The solid lines in Fig. 3 show the energy flows JL, JM ,
JR, and JF observed when continuously increasing the Rabi
frequency �, starting from the case � = 0 when the optical
field is absent. In Fig. 4, we explore how sensitive these heat
flows are to small changes in the optical field amplitude by
plotting the field-sensitivity measures ηP(�) defined by

ηP(�) = dJP(�)

d�
(26)

for P = {L, M, R, F }.
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FIG. 3. (Solid) Total energy inflows at the steady state of our
optical-gate system simulated for the Rabi frequency range � =
[0, 3�] with system parameters ωL = ωR = ωRL = 0, ωLM = ωMR =
�, ωM = 0.1�, and environment parameters TL = 300 K and TM =
TR = 30 K. (Dashed) For comparison, the corresponding energy in-
flows of the thermal transistor system reported in Ref. [26] simulated
for the temperature range TM = [30 K, 300 K] with the same system
and environment parameters. The direction of the arrows on each
graph indicates the horizontal axis it corresponds to.

When the optical field is absent, or very weak, we observe
from Fig. 3 that the system S only allows a minuscule heat
flow between BL and BR, even though the temperature differ-
ence between them is considerable. This is in keeping with
the choice we made when choosing the bias temperature TM

previously. We further observe that we can increase the heat
flow to larger values as required, by appropriately increasing
the Rabi frequency �. However, as we keep increasing � we
find that the thermal conductivity of S eventually saturates
and becomes less and less sensitive to further increases of
optical field amplitude. From Fig. 4, we see in more detail
how the sensitivity of the heat flows reaches a maximum for
medium values of Rabi frequency, and falls off as � increases
or decreases beyond that region. We will discuss the reasons
for these behaviors further in Sec. V.

The energy efficiency of the above gating action can be
quantified by the amplification ratio JL/JF , which measures
the thermal energy flow controlled by the device in com-
parison to the amount of optical energy absorbed in doing

0 20 40 60 80

− 4

− 2

0

2

4

(1012 Hz)

10
−
23

P

L

M

R

F

FIG. 4. Sensitivity of heat flows in our optical-gate system to
changes in Rabi frequency, simulated with the same parameters as
that of Fig. 3.

so. We present this efficiency measure by the solid line in
Fig. 5, from which we see that JF is one to two orders of
magnitude smaller than JL for all simulated field parameters.
This basically means that the device is very energy efficient,
in that it absorbs only a small amount of energy from F even
when regulating significantly larger heat flows between BL

and BR.
We can observe from Fig. 3 that JM is significantly smaller

than both JL and JR for these parameters. This allows us to
consider only JL and JR as important when analyzing how
the Rabi frequency � of the optical field affects the system.
Thereby we can get a simplified model for our system as a
device whose thermal conductivity between two of its thermal
terminals is controlled by the optical field imposed on its
third optical terminal. However, it must be stressed that BM

is still an essential component for the proper operation of
our device since it sets the base heat flow over which the
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FIG. 5. (Solid) Ratio between the regulated thermal flow JL

and optical-field energy absorption JF of our optical-gate system
simulated for the Rabi frequency range � = [0, 3�]. (Dashed) For
comparison, the corresponding energy inflows of the thermal transis-
tor system reported in Ref. [26] simulated for the temperature range
TM = [30 K, 300 K]. The simulation parameters for both systems are
the same as that of Fig. 3. The direction of the arrows on each graph
indicates the horizontal axis it corresponds to.
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optically induced flows build upon, and since it ensures that
the local temperature of the terminal M does not drift during
its operation.

Additional time-domain simulations (see Ref. [38]) have
shown that relaxation times τR for our simulated system are
generally around 5 × 10−11 s when � = 0, and reduces to
around 5 × 10−12 s when � = 3�. For the same parameter
set, the maximum value of τS can be calculated to be around
2π/ωM = 3 × 10−13 s by considering the smallest energy
transitions |↓↓↑〉 ↔ |↓↑↑〉 and |↑↑↓〉 ↔ |↑↓↓〉. We observe
from these values that τR is always over an order of magnitude
larger than τS for the � range we consider, verifying the
validity of our initial approximations.

In summary, these results show that our system regulates
the heat flow JL ≈ JR between thermal baths BL and BR in
response to the amplitude of the radiation field F , while
absorbing a significantly smaller amount of energy from F .
We can clearly see that our system is capable of acting as an
energy efficient optically controlled thermal gating device.

C. Comparison with temperature based control

In this section, we briefly compare the performance of
our optically controlled thermal gate with the temperature-
controlled thermal transistor reported in Ref. [26].

The control parameter of the previous device was the tem-
perature TM , which was adjustable within the range [TR, TL].
In the new device, we have moved the control parameter to the
Rabi frequency �, which corresponds to the driving strength
of the external optical field. The controllable range of � has
a lower bound of zero, but does not have a hard upper bound.
However from Fig. 3 we can see that for large � values
the heat flow eventually saturates, and increasing � beyond
this point provides no advantage. We can use this saturation
behavior to obtain an approximate upper bound for �, which
turns out to be around 3� for our simulation parameters.
Hence, we define the approximate control-parameter range of
our device to be [0, 3�].

We can now compare the energy flows and amplification
factors of these two devices by varying the control-parameter
of each device within its corresponding range. We demon-
strate our results in Figs. 3 and 5, where we have used solid
lines to represent the values from our system, and dashed lines
to represent the values reproduced from the device of Joulain
et al. [26] for the same parameter set.

From Fig. 3, we observe that within their respective
control-parameter ranges, the controlled thermal flows JL and
JR of our device are several times larger than those of the
previous device. While the heat flows of the previous system
could be enhanced further by raising TM beyond TL, we note
that this would also exponentially increase JM to the point
that the system no longer performs as a transistor. We hence
conclude that, compared to the previous system, our system
can control heat flows over a significantly larger range.

By observing values for JF and JM in Fig. 3, we find that
the energy absorbed from the optical field F in our system
is significantly higher than the energy absorbed from the
control-bath BM in the previous system. In other words, even
though our device controls comparatively larger heat flows, it
also consumes a larger amount of energy while doing so. To
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FIG. 6. Leakage heat flows (i.e., flows at � = 0) of the optical
gating system while varying ωM within the range [0, 0.2�]. All other
system and environment parameters are the same as that of Fig. 3.

investigate what this means for the energy efficiency of these
two devices, we plot their energy amplification factors JL/JF

and JL/JM in Fig. 5. We observe that the increased energy
consumption of our device has made it generally less energy
efficient than the previous temperature-controlled device. We
further observe that the behavior of the amplification factors
in response to their respective control parameters is quite
different in these two devices.

From our results, we conclude that our device is favoured
in situations where the superior controllable range of heat
flows is more important than the reduction in energy
efficiency. However, we stress that the main contribution of
this work is to shift the control terminal of the device from the
thermal bath BM to the optical field F . The easier localization
and control of optical fields in the nanoscale would make our
device useful in a wider range of applications than the original
temperature-controlled device.

D. Effect of system parameters on heat flows

Simulations have shown that different ωP and ωPQ pa-
rameters allow for widely different gating behaviors and
performance measures such as saturation heat flow, leakage
heat flow, efficiency, field sensitivity, etc. Hence tuning these
parameters allow us to optimize our device for different usage
requirements, just like for an electronic transistor. We consider
a detailed discussion of such optimization beyond the scope of
this paper.

However, for completeness, we will briefly discuss in this
section the effects of changing the two nonzero parameters
ωM and ωLM = ωMR of the simplified system we simulated
previously. We will specifically concentrate on how these pa-
rameters affect the leakage and saturation heat flows through
the system. We define leakage and saturation heat flows as
the amount of heat conducted when the system is at its
fully insulating setting (when � = 0) and its fully conducting
setting (when � ≈ 3�), respectively.

From Fig. 6, we observe that increasing ωM causes a
significant decrease in the leakage current flows in the system.
However, since we have to set ωF = ωM for resonance, this
also means that we have to use a higher frequency optical
field. This subsequently increases the energy absorption from
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FIG. 7. Saturation heat flows (i.e., flows at � = 3�) of the
optical gating system while varying ωLM = ωMR within the range
[0.8�, 1.2�]. All other system and environment parameters are the
same as that of Fig. 3.

the optical field JF for 0 < � < 3�, leading to a degradation
of the energy efficiency of the system. Further simulations
have shown that increasing ωM does not significantly change
the saturation heat flows JL and JR of the system.

On the other hand, increasing ωLM = ωMR has a similar
negative effect on all the heat flows of the system for all values
of �. We present the effect of ωLM on the saturation heat
flows in Fig. 7. The effect on the leakage heat flows follow
a similar profile, albeit at lower overall magnitudes. Since
all heat flows in the system are affected similarly, the device
energy efficiency is not significantly affected.

The causal relationships between these parameters and the
thermal properties of the device will become clearer in the
following section when we discuss the underlying operating
principles of our device.

V. MECHANISM OF OPERATION

In the previous section, we have demonstrated through
numerical simulations the thermal gating behaviors of our
device. In this section, we illustrate its mechanism of oper-
ation and discuss how it could be manipulated to suit different
performance parameters. For this, we primarily use the dia-
grams in Figs. 8 and 9 as visual aids.

A. State and transition rate diagrams

We use the state diagrams in Fig. 8 to present the steady-
state situation of S in a compact and intuitive manner. Each
diagram fully describes the state population densities, energy
levels, transition rates, and heat flows at the steady-state
condition for a given set of parameters.

The eight system eigenstates | j〉 are ordered in the vertical
axis according to their energy eigenvalues. The area of each
blue eigenstate marker is proportional to its corresponding
density matrix element ρ j j (and therefore its population den-
sity at the steady-state condition).

By observing Eq. (23), we see that field-induced transition
rate ϒ jk and bath-induced transition rate �P

jk both correspond
to a flow of population density from eigenstate | j〉 to eigen-
state |k〉. We represent these transition rates in our diagrams by
arrows between their corresponding start-state and end-state
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FIG. 8. Numerically simulated state and transition rate diagrams of the system S at the steady state for different Rabi frequencies �. For
all three cases shown, ωL = ωR = ωRL = 0, ωLM = ωMR = �, ωM = 0.1�, ωF = ωM + ωLM − ωMR, TL = 300 K, and TM = TR = 30 K.
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FIG. 9. Total energy inflows JL , JM , JR, and JF to the system S
for the situations in Fig. 8. Increasing � significantly increases JL

and JR, while keeping JM and JF at a comparatively lower level.

nodes. Green, orange, red, and blue arrows correspond to
transitions induced by BL, BM , BR, and F respectively. Arrow
thickness is proportional to the magnitude of the transition
rate, while arrow direction represents the direction of popula-
tion density flow. The steady-state condition, which says that
the population densities are time-invariant, is represented in
the diagram by the flows to and from each eigenstate node
summing to zero.

From Eq. (20) we see that each transition rate is associated
with an energy absorption/emission from S to BL, BM , BR, or
F . Accordingly, an upward arrow in Fig. 8 indicates that S
absorbs energy from the field/bath corresponding to its color.
A downward arrow similarly indicates an emission of energy.
The length of the arrow in the vertical axis represents the
amount of energy absorbed/emitted per unit transition rate.
This means that the energy flows from each external field/bath
can be directly read from the diagram by observing the thick-
nesses, vertical lengths and directions of all the arrows with
the appropriate color. However, we have separately calculated
and graphed them in Fig. 9 for clarity.

B. Effect of bath interactions on the system

From the definition for �P
jk in Eq. (21), we observe that the

bath-induced transition rate from | j〉 to |k〉 is a complicated
function of the bath temperature TP, the transition energy
difference h̄ω jk , and state population densities ρ j j and ρkk .
For a given TP and ω jk , we find that the transition rate becomes
zero only when the population densities satisfy

ρ j j

ρkk
= nP(ω jk )

1 + nP(ω jk )
. (27)

If the population densities deviate from this ratio, we find that
�P

jk generates an opposing flow between | j〉 and |k〉 in a man-
ner to restore the population densities back to its original ratio.
The steady-state condition of multibath quantum systems such
as S arises from the complex interplay between the different
thermal baths trying to balance the state populations to suit
their own ratios.

However, some very simple rules of thumb can be extracted
from observing Eq. (21), which can then be used to analyze

any complicated system. Firstly, for a given ω jk > 0, Eq. (27)
implies ρ j j = ρkk for very large TP, and ρ j j � ρkk for very
small TP. Secondly, for a given TP, Eq. (27) implies ρ j j = ρkk

for very small ω jk , and ρ j j � ρkk for very large positive ω jk .
From the first observation, we conclude that high tem-

perature baths tend to equalize the populations between the
high-energy state | j〉 and low energy state |k〉, while low
temperature baths tend to drive the system populations to-
ward the low-energy state. From the second observation, we
conclude that a bath with a given temperature better equalizes
populations between states with similar energy levels, than
between states with large energy differences. An immediate
consequence is that increasing the temperature of the bath
enhances its ability to equalize populations between larger
energy differences.

We can now apply these rules for the system we simulate in
Fig. 8, for which we have previously chosen the environment
temperatures such that TL 	 TM = TR. This choice of temper-
atures means that only the four transitions induced by the hot
reservoir BL (marked in green) can strongly drive populations
in low-energy states towards higher energy states. During this
process BL has to feed energy into the system S.

In contrast, the four transitions induced by the cold reser-
voir BR (marked in red) can only drive populations from
high-energy states towards lower energy states, absorbing the
excess energy from the system S. However, it can do so only
if some other mechanism first generates a population in one
of the high-energy states accessible to it (i.e., in states |↓↓↓〉,
|↑↑↑〉, |↑↓↓〉, or |↓↑↑〉).

Since TM = TR the capabilities of BM is similar to that of
BR. However, the transitions induced by BM and those of BR

are quite different. We see from Fig. 8 that while all four
transitions associated with BR have large energy differences,
two of the four transitions associated with BM (marked in
orange) are quite short in the energy axis. The energy tran-
sition |↓↓↑〉 ↔ |↓↑↑〉 in particular, is small enough that even
with its low temperature BM is capable of providing enough
energy to sustain a tiny population flow from |↓↓↑〉 to |↓↑↑〉,
provided the population in |↓↓↑〉 is large enough compared
to that of |↓↑↑〉. As we shall see later, this transition is the
critical part for generating the thermal gating behavior we
require.

C. Effect of field interactions on the system

From the definition for ϒ jk in Eq. (22), we observe the
expression for the field induced transition rate is dependent
on the off-diagonal elements ρ jk and ρk j . For the steady-state
case, we can use Eq. (24) to replace the off-diagonal terms in
Eq. (22) to obtain

ϒ jk = �2

ζ jk
(ρ j j − ρkk ), (28)

where ζ24 = ζ42 = βL
62 + βL

84 + αM
42 + βM

42 + αR
21 + αR

43, ζ57 =
ζ75 = αL

51 + αL
73 + αM

75 + βM
75 + βR

65 + βR
87, and ϒ jk = 0 any-

way for any other j and k.
By analyzing this expression we conclude that the tendency

of the external field F is always to equalize the populations
between its start and end states. The higher the amplitude
| 
E0| of the field, the greater the strength with which F tries
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to equalize the populations. The temperatures of the thermal
reservoirs also affect this interaction through ζ jk , but we can
ignore it for now because we are keeping the thermal baths
constant while changing only �.

D. Mechanism of thermal conduction

We are now ready to analyze the state diagram in Fig. 8(a)
which shows the equilibrium state of the system when the
external field F is absent (i.e., � = 0).

Since all three temperatures are finite, it is natural for the
system S to mostly occupy the lowest energy level |↑↓↑〉.
The hot reservoir BL can then establish a small population at
|↓↓↑〉 by providing to S the necessary energy to push out of
the ground-state |↑↓↑〉.

From |↓↓↑〉 the system cannot take the red transition
towards |↓↓↓〉, since the bath BR does not have a high enough
temperature to provide the large amount of energy required.
Therefore the only path from |↓↓↑〉 we need to consider
is the BM induced transition towards |↓↑↑〉. As discussed
previously, BM is capable of establishing a small population at
|↓↑↑〉 despite its low temperature since the transition is quite
small in the energy axis. However, it is important to stress here
that this transition is very weak because it involves absorbing
energy from a low temperature reservoir.

Once the system is at |↓↑↑〉, it has the option of either
absorbing more energy from BL to go up towards |↑↑↑〉, or
releasing the currently absorbed energy to BR to go down
towards |↓↑↓〉. The natural tendency of S to gravitate towards
low energy levels makes sure that the red transition towards
|↓↑↓〉 is almost always taken. In this way, the transition chain
|↑↓↑〉 → |↓↓↑〉 → |↓↑↑〉 → |↓↑↓〉 drives a small popula-
tion from the lowest energy level |↑↓↑〉 to the second lowest
energy level |↓↑↓〉.

Using a similar approach, we can now trace another tran-
sition chain starting from |↓↑↓〉, going through |↑↑↓〉 and
|↑↓↓〉, to arrive again at the initial ground state |↑↓↑〉.
However, we see that the transitions induced by BM and BR in
this second chain are both downwards (i.e., energy-releasing).
Since the low temperature reservoirs BL and BR can readily
drive such transitions, this means that all three transitions in
the second transition chain are strongly driven.

By looking at the six element cycle of transitions described
above from an energy perspective, we see that it provides the
main mechanism of heat transport through S. The upward
transitions |↑↓↑〉 → |↓↓↑〉 and |↓↑↓〉 → |↑↑↓〉 absorb
thermal energy from BL, while the transitions |↑↓↓〉 →
|↑↓↑〉 and |↓↑↑〉 → |↓↑↓〉 release most of that energy to
BR. The other two transitions |↓↓↑〉 → |↓↑↑〉 and |↑↑↓〉 →
|↑↓↓〉 induced by BM are significantly smaller in the energy
axis, and therefore exchanges only a small amount of energy.

We can calculate that when the system travels through this
cycle once, an energy of ε73 + ε26 is taken from BL and an
energy of ε56 + ε43 is subsequently given to BR, while the
difference between the two is borne by BM . We therefore
see that the amount of power transported from BL to BR is
determined by the transition rate of this cycle.

The effective transition rate of such a cycle is decided
entirely by its weakest link, which we found in the previous
discussion to be the BM induced transition |↓↓↑〉 → |↓↑↑〉.

The main reason for this weakness is that the temperature of
the thermal bath BM is not sufficient to provide even the small
amount of power required to drive this transition. This stifles
the energy flows in S for � = 0 as seen in Fig. 9, and therefore
we say that S acts as an insulator.

E. Thermal conduction enhancement

We demonstrated in the previous discussion that the heat
conduction through S is limited by the relative weakness of
the transition |↓↓↑〉 → |↓↑↑〉. In this section, we discuss the
different ways we could enhance this transition and thereby
improve the heat conductivity through S.

In Sec. V B, we demonstrated that raising the temperature
of a bath enhances its tendency to equalize the start-state
and end-state populations of each transition induced by it.
Therefore, the most obvious way to enhance the |↓↓↑〉 →
|↓↑↑〉 transition would be to increase the temperature TM of
the reservoir BM . However, we also found that higher temper-
atures tend to make the baths drive higher energy transitions.
This means that we must take care not to raise TM high
enough to affect the high-energy transitions |↓↑↓〉 ↔ |↓↓↓〉
and |↑↓↑〉 ↔ |↑↑↑〉.

The thermal transistor reported in Ref. [26] employs this
mechanism to control the heat flows through JL and JR,
by adjusting the temperature TM appropriately within the
[TR, TL] range. Alternatively in this work, by introducing the
optical field F we provide an additional mechanism which
complements BM’s effort to drive the critical |↓↓↑〉 → |↓↑↑〉
transition.

In Sec. V C, we demonstrated that the tendency of the
external field F is to equalize the populations of its end-states
and that the strength of this effort depends on the � (and
therefore, on the amplitude of the field). By observing
Fig. 8(a), we see that the population of the lower energy state
|↓↓↑〉 is considerably greater than the population of the higher
energy state |↓↑↑〉. Therefore we can infer that introducing
the field F and increasing its amplitude would generate and
enhance a new transition rate ϒ75 from |↓↓↑〉 to |↓↑↑〉.
Similar to the thermal transistor case, this enhancement
should correspondingly increase the energy flows JL and JR.

The simulations in Figs. 8(b) and 8(c), indeed verifies our
hypothesis. Introducing F and increasing its amplitude con-
siderably enhances all the transition rates of the six-element
heat transport cycle. In Fig. 9, we see how the increased transi-
tion rates have caused a corresponding increase in the thermal
energy flows. We also note that the equilibrium populations
have changed considerably, owing to the enhanced transition
rates. We further observe that the presence of F has shifted
BM from being an energy donor to its more natural state of
being an energy receiver.

The eventual tapering off of the optical sensitivity of the
system observed in Figs. 3 and 4 for high Rabi frequen-
cies can be attributed to the optical field achieving its goal
of equalizing the populations of |↓↓↑〉 and |↓↑↑〉. At low
� values, when the two populations are still significantly
different, increasing � correspondingly increases the abil-
ity of the field F to equalize them. In contrast, at high �

values the field has already equalized the populations to a
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large extent. Hence, further increases in � have diminished
effect.

From ĤS-F, we derived in Eq. (8), we see that the transition
between |↑↑↓〉 and |↑↓↓〉 is also driven by the field F . Yet
from our simulations we see that this field-induced transition
ϒ24 is dwarfed by the bath-induced transition rate �M

24. The
presence of this additional transition does not effect the gating
action in a major way. However, by releasing some of the
absorbed energy back to the field it increases the energy
efficiency of the device. Additionally, it makes the device
symmetrical, so that it operates the same even if the tempera-
tures TL and TR are interchanged.

We noted earlier in Fig. 3 that the controlled thermal
flows in our optically controlled system are generally larger
than those reported in Ref. [26]. This can be attributed to
the completely different underlying mechanisms these two
systems employ. In the previous device, the raised tempera-
ture TM enhanced the transition rate �M

75 only indirectly via
Eq. (14). Therefore it required a high temperature to properly
equalize the two populations at |↓↓↑〉 and |↓↑↑〉. In contrast,
our optical field was designed specifically to drive the ϒ75

transition directly via Eq. (28), allowing it to equalize the two
populations with greater efficacy.

As a concluding remark, we note that the relative posi-
tioning of the system eigenstates in the energy axis could
be adjusted by changing the ωP and ωPQ parameters of S.
Properly tuning these parameters will allow us to obtain
different thermal gating behaviors from the system. For in-
stance, reducing ωM will correspondingly reduce the energy
difference between the states |↓↓↑〉 and |↓↑↑〉. This will
increase the ability of BM to drive our critical transition even
if the optical field is absent, leading to the increased leakage
heat flows we saw in Fig. 6. On the other hand, reducing
ωLM = ωMR increases the initial population at state |↓↓↑〉,
which enhances both the field-induced transition ϒ75 and
bath-induced transition �M

75. This again helps to enhance the
heat flows through S as we saw in Fig. 7. As a final example,
adjusting the ωPQ parameters to break the degeneracy of
|↑↑↓〉 − |↓↑↑〉 and |↓↓↑〉 − |↑↓↓〉 will allow us to choose
ωF so that only one of the transitions are driven by F . This
will break the symmetry of the device with respect to BL

and BR, which may be useful in certain applications. There
are many other parameter changes we can perform on the
system to adjust its behaviors. However, most such cases can
be analysed and optimized in a simple manner, by following a
similar approach to interpret the energy diagrams as we have
done here.

VI. CONCLUSIONS

In this paper, we presented a quantum system made up of
three interacting two-level systems placed in an environment
consisting of a single-mode optical field and three thermal
reservoirs. We modelled the interactions between the system
and its environment within an open quantum systems frame-
work. We thereby derived the expressions for the density
matrices, transition rates, and energy flows for the steady-state
condition of the system.

Our detailed theoretical analysis revealed that the thermal
conductivity of the quantum system could be significantly

altered by slightly varying the amplitude of the optical field
incident upon it, and that the optical energy absorbed by
the system in this process is over an order of magnitude
smaller than the regulated heat flows. Using detailed numer-
ical simulations, we further investigated the device operation
for a wide range of material and system parameters. All these
studies confirmed that the proposed device could function as
an efficient thermal gating device within certain parameter
ranges.

We subsequently illustrated the mechanism of operation of
our gating device and developed graphical representations to
help visualize the dynamics of the system. These diagrams
were capable of intuitively and compactly representing the
energy eigenstates, population densities, transition rates and
energy flows in the steady-state of our quantum system. Along
with several rules of thumb for qualitatively analyzing the
effects of thermal baths and optical fields on the system,
these diagrams allowed us to develop a simple procedure
for analyzing and modifying our thermal gating device to fit
different performance requirements.

We found that the graphical representations we developed
are capable of representing the steady state of a wide range
of different thermo-optical systems. We therefore believe the
methods employed in this paper would be applicable for many
other problems in quantum thermal science.

In summary, the main objectives of this paper were to
expand the current models of quantum thermal devices to
include optical interactions, to demonstrate that our specific
quantum system shows optical gating behaviors, and to in-
troduce simple, intuitive visual representations which could
be used to understand and analyze complex quantum thermo-
optical systems.

Finally, we remark on how the findings of this paper may
be utilized towards creating materials with controllable ther-
mal conductivity. We could envision a two-dimensional array
of our quantum thermal gating devices, sandwiched between
two graphene layers. The exceptional thermal conductivity
of the graphene layers would ensure each individual gating
device gets the proper temperature bias. A low-power laser
with a properly chosen wavelength incident on the assembly
would provide the external optical field for each device. Such
an assembly could regulate the thermal energy flow between
its two graphene layers in response to the amplitude of the
laser field.
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APPENDIX A: DERIVING THE QUANTUM
MASTER EQUATION

The procedure for deriving the quantum master equation
is quite similar to that followed in Chap. 3 of Breuer and
Petruccione [31] for a single thermal bath case. Due to
space limitations we will only present here the outline of the

245402-12



OPTICALLY CONTROLLED QUANTUM THERMAL GATE PHYSICAL REVIEW B 101, 245402 (2020)

derivation, concentrating mostly on the deviations arising
from the presence of multiple baths and the external field.

We start from the interaction picture von Neumann equa-
tion

d ρ̂T(t )

dt
= − i

h̄
[Ĥ1(t ), ρ̂T(t )], (A1)

where ρ̂T(t ) is the interaction picture density matrix for the
combined system and environment, and Ĥ1 is defined in
Eq. (11). This differential equation has the formal solution

ρ̂T(t ) = ρ̂T(0) − i

h̄

∫ t

0
ds[Ĥ1(s), ρ̂T(s)]. (A2)

This equation describes the full dynamics of the system and its
environment, while we are interested only in the dynamics of
the system S. Therefore the unwanted dynamics of the thermal
baths have to be averaged out by taking a partial trace through
BL, BM and BR. Substituting Eq. (A2) back in Eq. (A1) and
taking the partial trace through the thermal baths yields

d ρ̂(t )

dt
= − i

h̄
[ĤS-F(t ), ρ̂(t )] − 1

h̄2 TrL,M,R{∫ t

0
ds

[∑
P

ĤP
TLS-bath(t ), [Ĥ1(s), ρ̂T(s)]

]}
(A3)

where TrL,M,R{ρ̂T (t )} = ρ̂(t ) and we have assumed without
loss of generality that

TrL,M,R

{[∑
P

ĤP
TLS-bath(t ), ρ̂T(0)

]}
= 0. (A4)

We now perform the Born and Markov approximations to
derive [36]

d ρ̂(t )

dt
= − i

h̄
[ĤS-F(t ), ρ̂(t )] − 1

h̄2 TrL,M,R{∫ ∞

0
ds

[ ∑
P

ĤP
TLS-bath(t ),

[ ∑
Q

ĤQ
TLS-bath(t − s)

+ ĤS-F(t − s), ρ̂(t ) ⊗ ρ̂L ⊗ ρ̂M ⊗ ρ̂R

]]}
. (A5)

To proceed, we require the explicit form of the interaction
picture Hamiltonian ĤP

TLS-bath(t ) to substitute in Eq. (A5).
Therefore we use Eqs. (3) and (15) to decompose ĤP

TLS-bath(t )
into eigenoperators of the system Hamiltonian ĤS ,

ĤP
TLS-bath(t ) =

∑
ω

e−iωt ÂP(ω) ⊗ B̂P(t ), (A6)

where B̂P(t ) = ∑
k gk (e−iωkt âP

k + e+iωkt âP†
k ). Additionally it is

important to note that Eq. (A4) implies

〈B̂P(t )〉 = TrP{B̂P(t )ρ̂P} = 0. (A7)

Next we prove the following relations:

TrL,M,R
{[

ĤP
TLS-bath(t ), [ĤS-F(t − s),

ρ̂(t ) ⊗ ρ̂L ⊗ ρ̂M ⊗ ρ̂R]
]} = 0, (A8)

TrL,M,R
{[

ĤP
TLS-bath(t ),

[
ĤQ

TLS-bath(t − s),

ρ̂(t ) ⊗ ρ̂L ⊗ ρ̂M ⊗ ρ̂R
]]} = 0, (A9)

for P, Q = L, M, R and P �= Q by using Eq. (A6) to substi-
tute for ĤP

TLS-bath(t ), then expanding both commutators, and
finally using Eq. (A7). This allows us to significantly simplify
Eq. (A5) and obtain

d ρ̂(t )

dt
= − i

h̄
[ĤS-F(t ), ρ̂(t )] − 1

h̄2

∑
P

TrL,M,R

{ ∫ ∞

0
ds

[
ĤP

TLS-bath(t ),

[
ĤP

TLS-bath(t − s), ρ̂(t ) ⊗ ρ̂L ⊗ ρ̂M ⊗ ρ̂R
]]}

.

(A10)

From observing Eq. (A10), we clearly see that the terms
mixing two different thermal bath interactions, and the terms
mixing the field interaction with thermal bath interactions
have all become zero. We are left with a quantum master
equation with four distinct terms, each term only concerned
with a single external entity. This means that we can consider
the system’s interaction with each thermal bath independently
from the other two thermal baths and the field.

Therefore obtaining Eq. (12) from Eq. (A10) is now a
simple process of following the standard procedure for a
single thermal reservoir (as discussed extensively in Ref. [31])
separately for BL, BM , and BR. It is important to note that in
this process we carry out two other major approximations.
First, we perform RWA by neglecting the high frequency
terms when simplifying the double commutators in Eq. (A10).
Second, we assume the harmonic oscillators of bath P is
thermally distributed, which means that its density matrix ρ̂P

is given by

ρ̂P = exp
[−βĤP

bath

]
TrP

{
exp

[−βĤP
bath

]} , (A11)

where β = 1
kBTP

is the thermodynamic beta. This second as-
sumption is the eventual source of Eq. (14).

APPENDIX B: DERIVING ENERGY FLOWS
AND LINDBLAD OPERATORS

The energy eigenvalue decomposition of Eq. (1) gives us
an alternate form for the system Hamiltonian,

ĤS =
8∑

j=1

ε j | j〉〈 j|. (B1)

The density matrix ρ̂(t ) can be written in terms of its matrix
elements as

ρ̂(t ) =
8∑

j=1

8∑
k=1

ρ jk| j〉〈k|. (B2)

We can directly obtain the expression for JF in Eq. (20) by
using above two definitions and Eq. (8) to substitute the terms
in Eq. (18). However, obtaining expressions for bath energy
flows JP first requires evaluating the Lindblad superoperator
LP[ρ̂].

The first step is to evaluate the projection operators 	̂(ε) of
ĤS , considering the energy degeneracies of ĤS . For instance,
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if all energy eigenvalues are unique, we obtain

	̂(ε) =
{| j〉〈 j| if ∃ j s.t. ε = ε j

0 otherwise. (B3)

Now Eq. (15) can be used to derive the Lindblad operators
ÂP(ω) for the ω > 0 case. For the unique eigenvalue case,

we get 28 different possibilities for ε′ − ε, requiring us to
evaluate 28 × 3 Lindblad operators for the three reservoirs.
However, doing so will show that only 12 among them are
nonzero. We subsequently evaluate LP[ρ̂] in Eq. (13) for
P = L, M, R, and substitute them in Eq. (19) to obtain the
expressions for JP in Eq. (20).
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