
PHYSICAL REVIEW B 101, 245311 (2020)

Artificial graphene in a strong magnetic field:
Bulk current distribution and quantum phase transitions

Z. E. Krix * and O. P. Sushkov
School of Physics, University of New South Wales, Sydney 2052, Australia

(Received 23 February 2020; revised manuscript received 15 May 2020; accepted 5 June 2020;
published 29 June 2020)

We present calculations of the equilibrium current density and Chern numbers for a two-dimensional electron
gas in a sinusoidal periodic potential with infinite strip geometry and a perpendicular magnetic field. We consider
a triangular lattice of antidots with large (a = 120 nm) lattice spacing. Such a system is known as artificial
graphene (AG). To compute the current density we numerically diagonalize the AG Hamiltonian over a set of
Landau level basis states; this takes into account coupling between different Landau levels. Our calculations
show that, at magnetic fields typical for quantum Hall measurements, extended streams of current are present
in the bulk of the sample when the chemical potential lies within a bulk band gap. We investigate the scaling
of these streams with potential strength. Knowledge of the AG energy levels allows us to compute the Chern
number associated with each energy gap. We demonstrate that in tuning the height of the potential modulation
the Chern number can undergo a transition between two different values.
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I. INTRODUCTION

Artificial graphene (AG) is intended to simulate the elec-
tronic properties of graphene. The simulation must be con-
trollable, including the possibility of switching on the spin-
orbit interaction. Such systems can be realized by imposing
a supermodulation with triangular lattice symmetry on a two-
dimensional gas of particles since this symmetry necessarily
gives rise to Dirac cones. Artificial triangular arrays (super-
lattices) have been realized in semiconductor quantum wells
with strong [1–3] and weak [4,5] modulation, in twisted
bilayer graphene [6,7], and in optical lattices of cold atoms
[8,9]. For a review see Ref. [10].

In the current work, we consider, theoretically, AG pro-
duced via electrostatically gated GaAs quantum wells with
repulsive lattice sites and typical lattice constants of the order
of 100 nm. In principle, the band structure of such a system
should exhibit two sets of Dirac cones and a topological
flat band [11]. The latter work has established that arrays of
antidots (when produced electrostatically) are less susceptible
to disorder than arrays of dots. Due to the layered structure
and due to the low energy scale, spectroscopic methods such
as ARPES are not applicable to these devices. Therefore,
signatures of the superlattice potential are sought in transport
measurements. More information can be obtained from trans-
port properties when a perpendicular magnetic field is present
and Rxx and Rxy are measured as functions of this field.

The problem of electron dynamics in a superimposed
magnetic field and periodic potential has been considered
in numerous works. However, previously this problem was
considered in the weak modulation limit, with the amplitude
of the potential modulation much lower than the electron
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Fermi energy. For example, in the experiment by Geisler
et al. [4] the modulation amplitude was just a few percent of
the Fermi energy. Theoretically, the weak modulation limit
is addressed in Refs. [12–16]. However, for AG one needs
the amplitude of the potential modulation to be several times
higher than the Fermi energy [11], and this case has not
been considered before in a magnetic field. It is important to
stress that we address the case where the periodic potential
is produced by electrostatic gating. This always results in a
sinusoidal potential. AG corresponds to a regime that we call
a moderate potential strength to distinguish it from the case of
infinite antidots. A sinusoidal potential of very high amplitude
does not produce Dirac cones. Moderately strong potentials
can be addressed only numerically, and in the present work
we perform such a calculation considering an infinite stripe
of a finite width. The finite width is necessary to address the
edge states. In this work we perform calculations of the Hall
conductivity and current density in the bulk bandgaps of a
triangular lattice system with a perpendicular magnetic field.
The regime which we consider is directly relevant to experi-
mental work in progress [17] on AG in GaAs quantum wells.

In our work we observe two qualitatively new effects.
(i) Proper variation of the potential amplitude drives
topological phase transitions between states with different
Chern numbers. Hence, the sequence of quantum Hall
plateaus of Rxy depends on the modulation amplitude and
we predict this dependence. (ii) The superlattice generates
bulk current streams when the chemical potential lies
within a bulk bandgap. The effect cannot be observed in
standard terminal measurements, but it can be observed using
nitrogen-vacancy-center magnetometry.

The structure of the paper is the following: In Sec. II we
discuss the details of our calculation. Section III addresses
the structure of bulk bands and the edge states. In Sec. IV
we discuss the Hall conductivity and density of states for the
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case with a high density of bulk bands. Section V presents a
map of the Hall conductivity. Quantum phase transitions are
considered in Sec. VI, and streams of current in the bulk are
demonstrated in Sec. VII.

II. MATRIX ELEMENTS OF THE HAMILTONIAN
AND CALCULATION TECHNIQUES

The general approach used is the same as that in Refs.
[13,15]: A single-particle Hamiltonian with a triangular lattice
potential is diagonalized over the basis of Landau level eigen-
vectors. We extend the calculation by computing the matrix
elements of the Hamiltonian for arbitrary Landau levels and
by allowing transitions between them. A further extension is
the addition of a confining potential V (x) which defines the
edges of the sample along the x direction. This, together with
periodic boundary conditions along the y direction, imposes a
strip geometry with a very high aspect ratio (Fig. 1).

While the matrix elements of the lattice Hamiltonian can
be computed exactly, the matrix elements of the confining
potential must be computed via numerical integration. We
can then numerically diagonalize this matrix to obtain energy
levels (in the form of a dispersion relation) and eigenvectors.
The remainder of this section clarifies some of the details of
this process.

Landau level eigenstates in the gauge A = (0, Bx, 0) are
given by

ψk,n(x, y) = Aneikye−ξ 2/2Hn(ξ ),

An = 1√
2nn!

(
mω

π

)1/4

, (1)

where k is the momentum along the length of the stripe,
xk = k/eB is the center coordinate, and ξ = (x − xk )/lB is

the position in units of the magnetic length (lB = 1/
√

eB).
The functions Hn(ξ ) are the Hermite polynomials. The single-
particle Hamiltonian is given by H = p2/2m + U (r) with

U (r) = 2W
3∑

i=1

cos(gi · r) (2)

for reciprocal lattice vectors gi,

g1 = g0(1/2,
√

3/2),

g2 = g0(1, 0),

g3 = g0(−1/2,
√

3/2),

g0 = 2g/
√

3, g = 2π/a. (3)

We wish to compute the matrix elements,

〈ki, n|H |k j, m〉 = δnmδi jωc(n + 1/2)

+
∫∫

ψ̄ki,n(r − xki )ψk j ,m(r − x j )

× (U (r) + V (x))dxdy,

with ψk,n(r) given in Eq. (1). The integral over U (r) can be
evaluated analytically for arbitrary n, m. To do this we first
write the potential, (2), in an alternate form,

U (r) = 2W cos(g0x) + 4W cos(gy) cos(g0x/2). (4)

The first of these terms is diagonal in y momentum and the
second is strictly off-diagonal in y momentum, only mixing
those states whose momenta are separated by ±g. Performing
the integration gives the following form for the matrix ele-
ments of U :

〈ki, n|Û |k j, m〉 = 2W δi jXnm(ki ) + 2W δ(ki − k j ± g)
[

cos(g0xk/2)F (1,±)
nm + sin(g0xk/2)F (2,±)

nm

]
, (5)

where these two terms correspond to the two terms in Eq. (4), respectively. We find the following equations for the matrices
X (k) and F (i,±):

Xnm(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)(m−n)/2 cos(g0xk )

×
√

2nn!√
2mm!

(g0lB)m−ne−(g0lB )2/4Lm−n
n ((g0lB)2/2), m + n even,

(−1)(m−n−1)/2 sin(g0xk )

×
√

2nn!√
2mm!

(g0lB)m−ne−(g0lB )2/4Lm−n
n ((g0lB)2/2), m + n odd,

(6)

F i,±
nm = AnAme−ξ 2

g /2
n,m∑

r,p=0

(
n

r

)(
m

p

)
(∓ξg)r (±ξg)p(An−rAm−p)−1Xn−r,m−p(Gi )|g0 �→g0/2, (7)

where Lm−n
n are the associated Laguerre polynomials and ξg =

xk=g/lB (the center coordinate in units of magnetic length).
In the second equation [Eq. (7)] we have used the notation
Gi=1 = ±g/2 and Gi=2 = ±g/2 + πeB/g0. We have written
the matrix F i,± in terms of X [Eq. (6)], with g0 replaced
everywhere by g0/2. In the limit of small coupling between
Landau levels, setting n = m = 0 reduces the Hamiltonian to
that given by MacDonald [15].

What remains is to compute the matrix elements of the con-
fining potential V (x), which defines the edges of the sample.

We define V (x) in terms of the Heaviside step function θ (x):

V (x) = E0θ (|x| − Lx/2). (8)

The sample geometry imposed by this edge potential is
sketched in Fig. 1.

In order to obtain a numerical solution for the energy levels
we need to consider a finite value of E0. The precise value of
E0 is not important but it must be chosen such that the height
of the edge potential is well above the energy of any of the
states considered in this work. In addition to this constraint,
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Lx

Ly

FIG. 1. A long stripe of width Lx = 10a used in the calculations,
Ly � Lx .

E0 cannot be too large since larger values of E0 require
a larger number of basis vectors. For the purposes of this
calculation we set E0 = 30 meV and Lx = 10a or 30a, where
a = 120 nm is the lattice constant. Matrix elements, (9), of
the confining potential cannot be computed analytically. We
therefore perform the integration numerically:

〈k, n|V |k, m〉 = E0

∫ xk−Lx/2

−∞
ψ̄k,n(r)ψk,m(r)dxdy

+ E0

∫ ∞

xk+Lx/2
ψ̄k,n(r)ψk,m(r)dxdy. (9)

This completes our calculation of the Hamiltonian matrix.
With the Hamiltonian given we can numerically diagonal-

ize this matrix to obtain all energy levels and eigenstates.
The energy levels evolve with magnetic field in the well-
known Hofstadter butterfly pattern [12], with corrections due
to having a triangular lattice (as opposed to a square one) and
due to inter-Landau-level coupling.

For the sake of convenience we measure the magnetic
field by the number of flux quanta per lattice unit cell. The
flux quantum [18] is φ0 = h/e and the flux per unit cell is

φ = Ba2
√

3
2 . For the lattice spacing a = 120 nm that we

consider,

φ = φ0 corresponds to B = 0.332 T. (10)

The Hofstadter butterfly has a fractal structure. This band
structure is simple when the flux is a rational number:

φ

φ0
= p

q
. (11)

In this case each Landau level is split into p subbands [13].
In addition to the energy levels, numerical diagonalization

of the Hamiltonian gives a set of eigenstates ψλ,k (r), where λ

enumerates energy bands of the combined magnetic field and
superlattice system and k is the y momentum modulo g. As
soon as the eigenstates are known we can compute the electric
current:

jx,y = ei

2m

∑
ελ(k)<μ

(ψ†
λ,k (r)[∂x,y + ieAx,y]ψλ,k (r)

− ψλ,k (r)[∂x,y + ieAx,y]ψ†
λ,k (r)). (12)

To find the total current density we sum the contributions
due to individual quantum states ψλ,k (r) below the chemical
potential [i.e., ψλ,k (r) such that ελ(k) < μ, where μ is the
chemical potential]. In practice we compute only the y com-
ponent of the current density, (12), from the eigenstates and
evaluate the x component using the continuity equation:

∂x jx + ∂y jy = 0 ⇒ jx(x, y) =
∫ x

−∞
∂y jy(x, y)dx.

Finally, this work also covers the Hall conductivity. It is
well known that the Hall conductivity within a bulk bandgap
is determined by the edge states and is hence universal [19].
Inside bulk bands the Hall conductivity is not universal; it
depends on the disorder. In this work we are interested only
in the universal properties of the system and we can calculate
the Hall conductivity and corresponding Chern numbers by
manually counting the edge states. This method, discussed
in the following section, is efficient when the flux takes on
simple rational values. However, it becomes difficult at values
of the flux for which the number of energy gaps is large. It is
also impractical to manually count edge modes over a range
of many magnetic fields. Computationally it is more efficient
to use the Streda equation [20,21],

σ (q)
xy = e

∂ns

∂B
, (13)

where ns is the total electron density and the derivative is
taken at a constant chemical potential. It is important to note
that this equation does not give the total Hall conductivity.
As detailed in Ref. [21] there are two terms which contribute
to σxy: a quantum term, which is given in Eq. (13), and a
‘classical’ term. The classical term corresponds to electron
drift and is nonzero only within a bulk subband. In Eq. (13)
we include only the quantum term and stress this point by
adopting the notation σ

(q)
xy . Equation (13) is thus only valid

when the chemical potential is within a bulk bandgap.
In Eq. (13) we calculate ns numerically by directly count-

ing the number of states below a fixed chemical potential. We
vary the magnetic field in steps of dφ = 2×10−3φ0. We find
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(a) (b)

(c) (d)

FIG. 2. Calculated dispersions within the n = 0 Landau level for the following values of magnetic flux: (a) φ/φ0 = 2 (two subbands),
(b) φ/φ0 = 3 (three subbands), (c) φ/φ0 = 7/2 (seven subbands), and (d) φ/φ0 = 4 (four subbands). The potential strength is W = 0.4 meV
and the sample width is Lx = 30a for a superlattice period a = 120 nm. The edge-state dispersions are shown in color, with the left edge blue
and the right edge magenta.

that large values of σ
(q)
xy computed using Eq. (13) correspond

to regions with a high density of bandgaps. Therefore, we also
use Eq. (13) to “truncate” the fractal map of the Chern number
over the (μ, φ) plane. We discuss this truncation procedure in
further detail below.

Within a bandgap it is generally true that

σxy = 2ν
e2

h
, (14)

where ν is an integral Chern number. The factor 2 is for spin
degeneracy, which we assume throughout this work.

To reiterate, Eq. (13) is completely equivalent to counting
the edge modes by hand. It is more convenient for computa-
tions to use Eq. (13).

III. BAND STRUCTURES AND EDGE STATES

In this section we aim to demonstrate how our technique
works. We do not present any qualitatively new results. Pre-
viously, similar calculations have been performed for the case
of a weak square-lattice potential [22].

Our calculations, shown in Fig. 2, were performed at
W = 0.4 meV. The bandwidth of this potential is

�E = 9W = 3.6 meV. (15)

For a magnetic field B = 1 T the cyclotron frequency
in GaAs is h̄ω = 1.74 meV and the capacity of a single
Landau level (including spin degeneracy) is nL = 2 B

φ0
=

0.48×1011 cm−2. Without a magnetic field this density would
correspond to a Fermi energy εF = 1.74 meV. Both h̄ω and
εF are significantly smaller than the bandwidth [Eq. (15)].
Previous work [11] has shown that at this potential a set of
Dirac cones is present at a low density (ns = 1.6×1010 cm−2).
A potential that is several times stronger is required to
observe a second pair of Dirac cones at a higher density
(ns = 6.4×1010 cm−2).

In Fig. 2 we present calculated dispersions for the split
lowest Landau level at φ/φ0 = 2, 3, 7/2, and 4. These values
of flux correspond to B = 0.663, 0.995, 1.160, and 1.326
Tesla. From these figures it can be seen that the number of
subbands is equal to the numerator of φ/φ0.
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For each case in Fig. 2 the effective width of the n = 0
Landau level is about 1 meV. The lowest subband of the n = 1
Landau level (not shown in Fig. 2) is about 1 meV above the
topmost subband of the n = 0 Landau level. Thus the effective
width of the Landau level is comparable to the separation
between the levels.

The dispersions in Fig. 2 consist of dense subbands of
bulk states with edge states in “gaps” between the subbands.
Since we know the wave functions we know to which edge,
left or right, the edge state belongs (see Fig. 1). In Fig. 2
the left edge dispersions are shown in blue and the right
ones in magenta. Counting, say, the left edge states one can
find the Chern number in Eq. (14): in a given gap every left
edge state with a positive slope gives �ν = 1, and every left
edge state with a negative slope gives �ν = −1. Hence the
sequences of Chern numbers corresponding to the labeled
chemical potential values in Fig. 2 are the following: Fig. 2(a),
1, 1; Fig. 2(b), 1, 1, 1; Fig. 2(c), 1, 2, 1, 0, 1, 2, 1; and Fig. 2(d),
1, 1, 1, 1.

IV. DENSITY OF STATES AND HALL CONDUCTIVITY
AT A HIGH DENSITY OF SUBBANDS

Here we comment on the statement that φ/φ0 = p/q im-
plies that there are p subbands—and what that means when
the flux is not a simple rational number. The purpose of this
discussion is to provide a background for understanding the
maps of Hall conductivity which we present in the following
sections.

Because of the fractal nature of the Hofstadter butterfly it
is instructive to see how the band structure changes in the
vicinity of φ

φ0
= p

q . In Fig. 3 we plot the Hall conductivity
[23] (black) and the density of states [24] (red) as a function
of the energy and consider fields close to three flux quanta.
The Hall conductivity is computed using Eq. (13) and the
density of states is given in arbitrary units. Figures 3(a) and
3(b) correspond to φ

φ0
= 3 [as in Fig. 2(b)], while Figs. 3(c)

and 3(d) correspond to φ

φ0
= 2.96 = 74

25 .
Figure 3(a) shows clearly that there are three subbands.

In the gaps between bulk bands when the density of states
goes to 0, the total Hall conductivity is σxy = 2e2/h. Inside
the bands σ

(q)
xy and the density of states take some fluctuating

values. The fluctuations in the density of states are due to
confinement along the x axis. Calculated values of σ

(q)
xy inside

the bands are not the total Hall conductivity and, hence, could
be unphysical.

Small changes in the magnetic field give a dramatic change
in the numerator of φ/φ0. Figure 3 illustrates how this is
possible. A change in the field of around 1% from Fig. 3(a)
to Fig. 3(c) changes the expected number of subbands from
3 to 74 (and the number of energy gaps from 2 to 73). While
this is true, the broad gaps in Figs. 3(a) and 3(c) are almost
identical. The new narrow gaps in Fig. 3(c) “arise” from the
continuous spectrum in Fig. 3(a). In this sense there is some
“continuity” in the fractal butterfly.

In addition to the broad plateaus in Fig. 3(d) there is also
some finer structure. For example, there is a plateau, ν = 0,
at μ = 0.9 meV. The plateau immediately next to this is
ν = −1. Beyond this the plateaus become poorly quantized

-8
-6
-4
-2
 0
 2
 4
 6
 8

 0.2  0.4  0.6  0.8  1  1.2

H
al

l C
on

du
ct

iv
ity

 (e
2  

/ h
)

Chemical Potential (meV)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0.2  0.4  0.6  0.8  1  1.2

D
en

si
ty

 o
f S

ta
te

s

Chemical Potential (meV)

-8
-6
-4
-2
 0
 2
 4
 6
 8

 0.2  0.4  0.6  0.8  1  1.2
H

al
l C

on
du

ct
iv

ity
 (e

2  
/ h

)
Chemical Potential (meV)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0.2  0.4  0.6  0.8  1  1.2

D
en

si
ty

 o
f S

ta
te

s

Chemical Potential (meV)

(a)

(b)

(c)

(d)

FIG. 3. Density of states as a function of the chemical potential
for (a) φ/φ0 = 3 and (c) φ/φ0 = 2.96, given in arbitrary units. Hall
conductivity as a function of the chemical potential for (b) φ/φ0 = 3
and (d) φ/φ0 = 2.96, computed using Eq. (13). As in Fig. 2 we have
W = 0.4 meV and Lx = 30a. The Hall conductivity is computed via
Eq. (13), which is valid within energy gaps (see discussion at the end
of Sec. II).

with ν ≈ −2, −3, etc. (see also the plateaus around μ =
0.6 meV). Nonquantization of σxy in the small energy gaps
is most likely due to our use of a finite sample size. Please
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note that the negative values of ν that we observe (e.g.,
near μ = 0.4 and 0.9 meV) are physical. They correspond
to the existence of edge modes which travel in the direction
opposite to that of a standard skipping orbit around the sample
boundary. These states can be visualized as skipping orbits
traveling along antidots close to the edge.

Finally, there is a limit to the maximum number of sub-
bands a Landau level can split into. Consider the effect of a
finite sample size on the Hofstadter butterfly fractal structure.
Once a finite sample width has been defined there is a limit on
the maximum number of subbands that can be resolved (e.g.,
close to an integer flux). This limit is equal to the number of
energy bands (�) in a single Landau level. If N is the total
number of states within a Landau level, then

N = nsLxLy = 2�gLy/2π

= 2BLxLy/φ0

⇒ � = BLxa/φ0, (16)

where we have used the fact that a single energy band con-
tains a number of states equal to 2

∫
dkLy/2π = 2gLy/2π =

2Ly/a. In the case in Fig. 3 with Lx = 30a, Eq. (16) gives
� = 104. The implication is that all subbands in Figs. 3(a) and
3(c) should be resolvable, while at fluxes closer to φ/φ0 = 3
(which have larger numbers of subbands) the finer structure
of the Hofstadter butterfly will be not be resolved. While we
have this theoretical limit to the number of subbands (at φ

close to 3) it may still be impossible to resolve all of the
subbands, even when p < �. In Fig. 3(c) some of the energy
gaps are still too small to distinguish two bulk bands, hence
a counting of the bands gives around 70. In these ways some
of the fine structure in the spectrum is removed. Disorder will
also introduce a broadening of the density of states which also
obscures details of the fractal structure.

V. HALL CONDUCTIVITY MAP

We now present (in Fig. 4) the map of σxy over the flux-
energy plane. We perform this calculation using Eq. (13) as
in Figs. 3(b) and 3(d). Strictly speaking a fractal function
cannot be mapped because all features in the spectrum that
are smaller than some energy scale will not be represented.
However, due to disorder and a finite sample size, the Hofs-
tadter butterfly of any real sample will not be a true fractal.

Since Eq. (13) is not valid within bulk subbands, we wish
to eliminate points in Fig. 4 which correspond to bulk states.
We thus show all states with μ inside a bulk band or a region
with a high density of bulk bands in black [as in Fig. 3(d)].
We do this by comparing the map of Hall conductivity to
the computed band structure over the same region of the
(μ, B) plane. This coloring highlights the large continuous
energy gaps in the uniform Chern number with which we
are concerned in this work. These features are ‘robust’ in
the sense that they are not changed by the presence or type
of disorder. Hall conductivity within bulk bands is device
dependent and this nonuniversal behavior is not within the
scope of this work.

Thus, Fig. 4 shows the Hall conductivity of only the largest
energy gaps in color and shows the bulk subbands of the
Hofstadter butterfly in black. We make predictions for the

FIG. 4. Color map of σxy computed numerically using Eq. (13)
plotted as a function of the chemical potential and flux per unit cell.
As in Fig. 2(b) the potential strength is W = 0.4 meV and only the
lowest Landau level is shown.

sequence of σxy values at arbitrary fields in the range φ/φ0 ∈
[2, 4]. For example, we compute the following sequences (in
units of e2/h): at φ/φ0 = 5/2, σxy = 2, 4, 2, 0, 2; at φ/φ0 =
8/3 = 2.6̇, σxy = −2, 2, 6, 4, 2, 0, −2; and at φ/φ0 = 10/3 =
3.3̇, σxy = 2, −2, 6, 2, −2, 0, 2, 4, 6, 2. Previous work by
MacDonald [15] has computed these sequences in the small-
W limit and in the highly anisotropic limit [here, anisotropic
means that the second term in the potential, (4), is much
smaller than the first]. At small W there are discrepancies
with our results due to the change from an anisotropic to an
isotropic lattice. For example, the second gap at φ/φ0 = 7/3
from −2 to 4 changes during this transition. At the values
of W we consider (where first-order perturbation theory is
no longer applicable) there are additional discrepancies. For
example, the fourth gap at φ0/φ0 = 8/3 is 4 in our calculation
and −2 in Ref. [15]. There are also differences between our
calculations and the weak potential calculation that occur in
larger energy gaps. This is discussed in the next section.

All of the values for σxy = 2νe2/h that we observe are
solutions to the Diophantine equation introduced by Thouless
et al. [14]. If i is the energy gap index (i = 1, 2, . . . , p),
φ/φ0 = p/q, and w is an arbitrary integer, then

i = pν + qw (17)

for every gap we observe. For example, in gap 1 at φ/φ0 =
5/2 we find ν = 1 (Fig. 4). Equation (17) is satisfied with
ν = 1 and w = −2: 1 = 5×1 + 2×(−2). In this case Eq. (17)
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forbids solutions ν = 0, ±2, ±4, . . . since increasing ν = 1
by unity would give an odd change to the first term which
cannot be canceled by the second term (which is even).

It is relevant to the results below that different integer
solutions ν to the above equation are separated by q: Given
some solution (ν, w) to Eq. (17) we can write ν = (i − qw)/p.
A second integer solution, (ν ′, w′), can then be obtained by
taking w′ = w − p so that ν ′ = ν + q.

While our results conform to Eq. (17) we cannot use (17)
to predict σxy in an arbitrary energy gap. To make predictions
using (17) there needs to be a restriction on the values w

so that (17) has a unique solution. So far this has only been
achieved for a weak triangular lattice in the anisotropic limit
[15]. Our calculation, in addition to predicting the sequence
of σxy values in a moderately strong potential, also gives the
relative sizes of the energy gaps and shows which gaps are
connected by a continuous region of edge states.

Illustration of the Streda equation

As an illustration of Eq. (13) consider the following ex-
ample. When the chemical potential μ is in an energy gap
between two Landau levels [μ3 in Fig. 2(b)] the number of
states below μ is just an integer multiple, ν, of the Landau
degeneracy factor nL = 2B/φ0. Thus, ns = 2eνB/h. Comput-
ing σxy via Eq. (13) gives σxy = 2νe2/h, an integer multiple
of e2/h as expected. For energy gaps inside a Landau level
[e.g., μ1 and μ2 in Fig. 2(b)] the calculation can similarly be
done by hand.

Figure 4 shows the function σxy(μ, B) computed via
Eq. (13), with ns obtained from the set of energy levels that
come out of the numerical diagonalization procedure. Since
the density of states is dominated by bulk states this can
be considered a bulk calculation. This figure (in addition to
showing σxy) illustrates the evolution of the spectrum as the
magnetic field is varied. For example, it can be seen that at
φ/φ0 = 2, 3, and 4 there are two, three, and four subbands,
respectively. As an example of how Eq. (13) works within a
Landau level consider the gap in Fig. 4, which continuously
stretches from gap 1 at φ = 2 [μ1 in Fig. 2(a)] to gap 3 at
φ = 4 [μ3 in Fig. 2(d)]. Figure 4 shows that these two gaps
are connected by a continuous region in the (μ, B) plane that
contains only edge states. Looking only at the structure of the
energy levels the former gap has n1 states below and the latter
has n2 states below where

n1 = 1

3
nL = 2

1

3

B

φ0
= 2

1

3
n0

φ

φ0
= 2n0, (18)

n2 = 3

4
nL = 2

3

4

B

φ0
= 2

3

4
n04 = 6n0. (19)

We have used the proportionality constant n0 = (2/
√

3)a−2 =
8.02×109 cm−2 between B and φ. Crucial to the above
calculation is the fact that when φ = (p/q)φ0 the number of
states within a Landau level is evenly distributed between the
p subbands. This fact holds within our numerical calculation
and can also be demonstrated analytically (see, e.g., Ref. [25],
Chap. 12.9, for an argument using the square lattice which
applies equally well to triangular lattices). Thus the change
in density between these two points is �n = 4n0, while the

change in magnetic field is �B = n0�φ = 2n0φ0. This calcu-
lation gives a Hall conductivity of

σxy = e
�ns

�B
= e

4n0

2n0φ0
= 2

e2

h
,

which agrees with the numerical result in Fig. 4. It also
agrees with the results discussed above for Figs. 2(b) and 2(d),
obtained by counting edge modes.

VI. QUANTUM PHASE TRANSITIONS DRIVEN
BY POTENTIAL STRENGTH

We now move on, in the following two sections (VI and
VII), to the central results of this work. In calculations of Hall
conductivity (Fig. 4) at different potential strengths we have
observed energy gaps whose Chern numbers change as W is
increased. Previous numerical work [26] has found changes
in the Chern number for a square lattice in a magnetic field
as coupling between Landau levels is introduced. Topological
quantum numbers change when a given energy gap closes
and then reopens as a function of some parameter [27]. In
our case the parameter which changes the topology is the
strength of the potential W . An example of such a transition
is given in Fig. 5, which focuses on gap 2 at φ/φ0 = 4. In
that figure we present a calculation identical to that in Fig. 4
except over the field range φ/φ0 = 3.5 to 4.5 and for a larger
potential, W = 0.5, 0.6, and 0.7 meV. Figure 5(a) corresponds
to W = 0.5 meV and there is one large continuous gap with
Chern number 1 (dark blue). There are also two large discon-
nected gaps with Chern number 0 (light blue). Increasing the
potential to W = 0.6 meV in Fig. 5(b) leads to closure of the
energy gap with Chern number 1 at φ = 4φ0, resulting in four
disconnected regions. Increasing W further, to W = 0.7 meV,
reopens the energy gap at φ = 4φ0 in such a way that the
Chern number within the gap is now 0. The two light-blue
regions from Fig. 5(a) have become connected and the single
dark-blue region has become disconnected.

Figures 5(a) and 5(c) are represented schematically in
Fig. 6. In this case σ1 = 0 and σ2 = 1. The top panel in
Fig. 6 shows a region of the (μ, B) plane for a value of W
before the transition [Fig. 5(a)], while the bottom panel shows
the same region after the transition [Fig. 5(c)]. We find that
changes in the Chern number are accompanied by changes in
the band structure which mirror that sketched in Fig. 6. We
also find that, throughout the spectrum, bandgaps with this
structure have Chern numbers σ1 and σ2, which are separated
by multiples of q; σ2 − σ1 ∈ qZ.

In Fig. 5 q = 1 and the statement that σ2 − σ1 ∈ qZ = Z is
trivial. There are nontrivial examples, however. The structure
sketched in Fig. 6 can be seen elsewhere in the spectrum
(Fig. 4) at nonunit values of q. For example, at φ/φ0 =
2.3̇ = 7/3, 2.6̇ = 8/3, 3.3̇ = 10/3, and 3.6̇ = 11/3 we have
σ1 = −1 (green) and σ2 = 2 (purple). In each case q = 3 and
σ2 − σ1 = 3. As another example take φ/φ0 = 2.75 = 11/4
and 3.75 = 15/4. Here q = 4 and σ1 = −1 (green), σ2 = 3
(pink), and σ2 − σ1 = 4 = q. We have also verified this for
φ/φ0 = 2.4 = 12/5 and 2.6 = 13/5 (difficult to see in Fig. 4),
where σ1 = −2 (yellow) and σ2 = 3 (pink), so that σ2 − σ1 =
5 = q.
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FIG. 5. Maps of σxy over the (μ, B) plane in the region around
gap 2 at φ/φ0 = 4. Each plot shows this region at a different
potential strength W . (a) W = 0.5 meV, (b) W = 0.6 meV, and
(c) W = 0.7 meV.

The Diophantine equation, (17), in Ref. [14] provides some
context for this observation. As shown above, for a given
energy gap the possible values of ν are separated by multiples

σ1

σ1

σ2

σ2

σ1

σ1

σ2

σ2

σ2 - σ1 = nq 

φ  = p/q

W

FIG. 6. Schematic of the evolution in band structure on the
(μ, B) plane which leads to a change in the Chern number. Black
bands represent bulk states and white and blue regions represent
connected regions of edge states. As W is increased the central
energy gap (at φ/φ0 = q/p) closes and then reopens with a different
Chern number. Chern numbers in each energy gap are labeled σi.
We note that if the central gap occurs at a flux φ/φ0 = p/q, then the
difference in the Chern number between the two gaps shown is an
integer multiple of q.

of q. Therefore, if the Chern number were to change as in
Fig. 6, then the original value, σ2, would have to be separated
from the final value, σ1, by a multiple of q. Seeing only the
initial or the final configuration depicted in Fig. 6 (i.e., with
σ2 − σ1 = nq) suggests that a transition is possible.

Characterizing the dependence on the modulation strength
of experimentally relevant parameters is useful for under-
standing actual AG devices. We have computed Hall conduc-
tivity values which depend not only on the lattice symmetry
but also on the height of the superlattice potential. This could
provide a means of experimentally determining the superlat-
tice strength in real devices. As demonstrated in Ref. [11] the
presence of a second set of Dirac cones is directly dependent
on the potential strength. In principle, it would be possible
to measure the value of W at B > 0. One could then make a
statement about the band structure at B = 0.

VII. CURRENT STREAMS IN BULK

In this section we present our results for the spatial distri-
bution of the current density. We consider the current density
only for chemical potentials within bulk bandgaps. The central
message is that extended current streams exist in the sample’s
bulk whenever μ is within a bulk bandgap.

Figure 7 shows our results for the current density. The left
column in Fig. 7 presents color maps of the y component of
the current density in bulk bandgaps μ1, μ2, and μ3 for W =
0.4 meV and φ = 3φ0 [as in Fig. 2(b)]. We stress, again, that
the chemical potentials are within the bandgap. Zero-current
contours are shown in light blue. We have labeled each antidot
center with a white circle and have placed the boundaries of
the plot at the walls of the confining potential, Eq. (8)]. Each
plot in the right column in Fig. 7 shows a horizontal cut of the
color map to its left taken along y = 0.5a. All calculations we
performed with Lx = 10a = 1.2 μm.

Our first observation is that the current in the bulk of the
sample is arranged into a set of extended streams which pass
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(a) µ = µ1 (b) µ = µ1

(c) µ = µ2 (d) µ = µ2

(e) µ = µ3 (f) µ = µ3

FIG. 7. Overview of computed jy data at each value of the chemical potential shown in Fig. 2(b). The first column contains color maps of
jy(x, y) at W = 0.4 meV, a = 120 nm, and φ/φ0 = 3 for (a) μ = μ1, (c) μ = μ2, and (e) μ = μ3 [see Fig. 2(b)]. Solid blue lines indicate the
points for which jy(x, y) = 0 and white circles indicate antidot lattice sites. Each plot in the second column [(b), (d), (f)] shows a cut of the
data to its left taken at y = 0.5a [i.e., jy(x, 0.5a)]. In addition, we include the data for W = 0.1, 0.2, 0.3, and 0.5 meV. The labels O and X in
(a) and (b) indicate the circulating and extended parts of the current, respectively. In each calculation we fix Lx = 10a = 1.2 μm.

through the entire sample. This follows from the fact that
zero-current contours form open regions which connect the
top and bottom of the plotted area and that the current is
periodic along the y direction. Each stream that carries current
along a particular direction is balanced by a stream carrying
current along the opposite direction. We observe that these
streams are present in every bulk bandgap at all magnetic
field values tested. As discussed below, the magnitude of the
extended streams of current is reduced when moving from a
fractionally filled Landau level to a fully filled Landau level.

Besides the extended currents there is a second component
which circulates around antidots. In Figs. 7(a) and 7(c) this
current is counterclockwise. We have verified this interpreta-
tion by looking at the x component of the current. These two
components are labeled in Fig. 7(b). An example of extended
streams in this plot are the two peaks centered around x = 0
and labeled X. And an example of circulating currents is
the two larger peaks centered at x = −3

√
3a/2 ≈ −2.6a and

labeled O. This value of x corresponds to an antidot center.
The current profile evolves as the chemical potential is

moved through a Landau level. A current distribution, shown

in Fig. 7(b), is established when the chemical potential is in
the first gap, μ = μ1 in Fig. 2(b). When μ increases to μ2

the amplitude of the streams increases slightly [Fig. 7(d)]. A
further increase in μ, to μ3, so that all states within the Landau
level are occupied, leads to an overall reduction in the current
density, both the circulating and the extended parts [Fig. 7(f)].
This evolution between μ2 and μ3 applies at all the magnetic
field values tested. Moving the chemical potential across the
final subband always reduces the amplitude to a fraction of its
original value. In spite of this reduction, both the streams and
the circulating currents are nonzero even when the chemical
potential is between Landau levels. For large potentials the
remaining bulk current amplitude is not negligible compared
to the edge current.

Scaling of currents with potential strength

The bulk distribution of the current density is dependent
on the potential strength W . In Figs. 7(b), 7(d) and 7(f) we
consider the current density at W = 0.1, 0.2, 0.3, 0.4, and
0.5 meV.
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The bulk current density scales with W in different ways
depending on the value of μ. At μ = μ3 [Fig. 7(f)], corre-
sponding to a fully filled Landau level, the entire bulk current
density scales roughly in proportion to W . This is consistent
with the bulk current density being 0 in the W → 0 limit.
This proportionality was observed at all magnetic fields tested
when μ covers the entire Landau level. For values of μ inside
a Landau level but between two magnetic bulk subbands,
scaling is more complicated. In Fig. 7(b) (μ = μ1) both the
extended and the circulating parts of the bulk current density
are independent of W . When μ is increased to μ2 [Fig. 7(d)]
the circulating part of the current density remains independent
of W while the extended streams scale weakly with W . At
other magnetic field strengths the scaling of the bulk current
density with W follows similar patterns.

In the limit W → 0 the bandwidth of the Landau level
goes to 0 and μ1, μ2, and μ3 approach the same value.
It then becomes unclear how to define a fractional filling
of the Landau level. For small (but finite) W , however, we
observe little or no scaling in the bulk current at μ1 and in the
circulating part of the current at μ2. Of course, at very small
W disorder wins over the periodic potential and our analysis
becomes invalid.

We have shown that fully filled bulk bands of the Hof-
stadter butterfly lead to a current density which contains
extended streams of current. The amplitude of these streams
scales with the height of the lattice potential.

It is well known that in the conventional quantum Hall
effect there are bulk percolation currents when the chemi-
cal potential is within the bulk band formed by a disorder-
broadened Landau level (Ref. [25], Chap. 12.7). The streams
that we discuss here have some analogy with this effect.
Nevertheless, the two effects are very different. Here we
highlight the two most important differences. (i) Our streams
exist when the chemical potential is in the gaps between
bulk subbands. On the other hand, percolation currents in the
conventional quantum Hall effect exist when the chemical
potential is within a bulk band. (ii) The streams exist even
if the chemical potential is in the gap between Landau levels.
The amplitude of the stream current in this case is proportional
to the potential amplitude. There is no analogy to this in the
conventional case.

To avoid misunderstanding we stress that the total current
that we observe is 0 since all of the streams compensate

each other. Thus, in standard terminal measurements, the
streams cannot be observed. The equilibrium and nonequilib-
rium current streams in the bulk can be detected, however,
via the magnetic field they produce using nitrogen-vacancy-
center magnetometry [28,29]. We estimate magnetic fields
of the order of 0.1 mG at 100 nm above the 2DEG, which
is well within the sensitivity of this method. The factor that
complicates the measurement is the external magnetic field:
one would need to detect a 0.1-mG signal in the presence of a
background field of the order of 1 T.

VIII. CONCLUSIONS

We have analyzed the dynamics of electrons in a triangular
lattice of antidots in the presence of a strong magnetic field.
The periodic triangular potential is “moderately strong.” This
means that the amplitude is comparable to that necessary to
produce artificial graphene. There are two key theoretical find-
ings in the work. (i) Proper variation of the potential amplitude
drives topological quantum phase transitions between states
with different Chern numbers. (ii) The superlattice generates
bulk current streams for values of the chemical potential
within a bulk bandgap. The effect cannot be observed in
standard terminal measurements, but it can be observed using
nitrogen-vacancy-center magnetometry.

Besides the theoretical findings, our work could be of
use in experimental studies of AG. The presence of Dirac
cones in antidot AG depends on the strength of the potential
modulation. Our results allow for calibration of the potential
modulation strength via observation of the quantum Hall
plateaus.
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