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We consider a Hong-Ou-Mandel interferometer for Lorentzian voltage pulses applied to quantum Hall edge
channels at filling factor ν = 2. Due to interedge interactions, the injected electronic wave packets fractionalize
before partitioning at a quantum point contact. Remarkably enough, differently from what was theoretically
predicted and experimentally observed by using other injection techniques, we demonstrate that when the
injection occurs through time-dependent voltage pulses (arbitrarily shaped), the Hong-Ou-Mandel noise signal
always vanishes for a symmetric device and that a mismatch in the distances between the injectors and the point
of collision is needed to reduce the visibility of the dip. We also show that by properly tuning these distances
or by applying different voltages on the two edge channels in each arm of the interferometer, it is possible to
estimate the intensity of the interedge interaction. Lorentzian-type voltage pulses are chosen because of their
experimental relevance.
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I. INTRODUCTION

The progresses in the experimental control of individual
electronic degrees of freedom ballistically propagating in
mesoscopic devices led to the birth of a new branch of
condensed-matter physics known as electron quantum optics
(EQO) [1–3]. In this framework, intensity interferometers
such as the Hanbury Brown-Twiss (HBT) [4] and the Hong-
Ou-Mandel (HOM) [5] have been realized by partitioning
electronic wave packets [6] and making them collide with a
tunable delay [7] at a quantum point contact (QPC). These
seminal experiments realized with voltage-driven mesocopic
capacitors [8–10], proposed theoretically in Refs. [11–15],
have been realized by means of periodic trains of electrons
and holes with wave packets peaked in energy.

One of the main differences between the photonic and the
electronic cases is represented by the fact that electrons are
charged interacting particles. This leads to many-body effects
which strongly affect the dynamics of excitations and play
a major role in various experimental situations. In particular,
this is true when experiments are carried out in quantum Hall
(QH) edge channels at filling factor ν = 2, where interchannel
interactions cannot be neglected [16]. This emerges dramati-
cally in HOM experiments realized with a driven mesoscopic
capacitor in the nonadiabatic regime [12,14,17,18], where the
visibility of the predicted dip in the autocorrelated noise as
a function of the injection delay [12,14], a signature of the
antibunching of electrons, is strongly reduced due to electron-
electron interactions [19–21].

An alternative protocol for the injection of electrons con-
sists of the application of a train of well-designed time-
dependent voltage pulses [22]. According to what has been
discussed by Levitov et al. [23–25], in a noninteracting
system, a properly quantized Lorentzian drive leads to the

injection of purely electronic wave packets without any ad-
ditional electron-hole pair contribution. This prediction has
been validated experimentally [26,27] through the realization
of HBT and HOM collisional experiments in noninteract-
ing narrow constrictions realized in two-dimensional electron
gases. These low-energy excitations, usually called levitons,
are predicted to be robust with respect to interaction-induced
decoherence [28] and anomalous correlations among elec-
trons [29,30]. Moreover, this robustness also survives in very
strong interacting environments such as fractional QH states
[25,31–33]. Here, remarkable features related to crystalliza-
tion of levitons in the time domain have been reported by
some of the authors [34–36] and can be observed in HOM
interferometers.

As stated above, EQO in QH edge states at filling factor
ν = 2 has been investigated so far in the case of the emitted
excitations generated via driven mesoscopic capacitors (as ex-
periments in this regime typically involve this kind of source)
[16,19–21,37]. Some theoretical works have also addressed
the case of injection at ν = 2 via voltage pulses, focusing on
the evolution of excitations due to interactions on the HBT
noise signal [28,37–39]. Thus, a detailed theoretical analysis
of collisional HOM setups for voltage pulses and in particular
for Levitons in QH edge channels at ν = 2, even if relevant for
the interpretation of forthcoming experiments, is still missing.
This paper intends to fill this gap by studying the signatures of
interedge interactions in the profile of the HOM noise signal
emphasizing the difference with the mesoscopic capacitor
setup. We demonstrate that the visibility of the central dip is
always maximal (the dip goes to zero) when the excitations are
injected through time-dependent voltages of arbitrary shape
and the setup is symmetric, namely, the distance of the two
injectors from the QPC is the same for both sides of the in-
terferometer. This can be seen as a signature of the robustness
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of voltage signals against decoherence, different from what
observed for the driven mesoscopic capacitor [16,20,21]. Our
results will be discussed in detail for the particular case of
Lorentzian voltage pulses due to their great relevance from
the experimental point of view and in a single electron source
perspective.

We will also observe that the visibility can be strongly
reduced only in an asymmetric device, where a mismatch in
the lengths of the two arms of the interferometer is present.
Moreover, from the evolution of the visibility as a function of
this mismatch, it is also possible to extract information about
the strength of the electron-electron interaction. We will also
propose a more direct measurement of the interaction based
on the fact that when properly tuned voltages are applied on
both edge channels of the two arms of device, it is possible
to cancel all the interaction-dependent features of the HOM
noise, recovering the noninteracting case. Such kind of fine
tuning allows us to deduce the value of the interaction between
the channels.

The paper is organized as follows. Section II describes
the model for two interacting QH edge channels in terms
of the edge-magnetoplasmon scattering matrix formalism. In
Sec. III, we describe the general aspects of the HOM interfer-
ometry for electrons injected by means of voltage drives. In
Sec. IV, we focus on the injection of levitons discussing the
essential features of the HOM noise as a function of the delay
in the injection for both a symmetric and an asymmetric setup.
In Sec. V, we demonstrate that a collisional HOM experiment
allows us to measure the interedge interactions by studying the
evolution of side dips in the HOM signal when the two edge
channels are driven independently. Finally, Sect. VI is devoted
to the conclusions. Technical details of the calculations are
reported in the three Appendices.

II. MODEL

We consider a QH bar at filling factor ν = 2. The two
copropagating edge channels are assumed to interact along
a region of finite length L via a screened (δ-like) Coulomb
repulsion [19,28,40–43] which correctly reproduces the ex-
perimental observations at low enough energies [16,44,45].
This mechanism is well described within the chiral Luttinger
liquid theory based on bosonic collective excitations called
edge magnetoplasmons [28,38,42,43]. Here, the Hamiltonian
density H describing the two copropagating channels along
each edge is the sum of a kinetic term H0 and an interaction
contribution Hint. Following Wen’s hydrodynamical model
[46], they are written as (h̄ = 1)

H0 =
∑
i=1,2

vi

4π
(∂xφi(x))2, (1)

Hint = u

2π
(∂xφ1(x))(∂xφ2(x)) , (2)

where the index i = 1, 2 labels inner and outer channels,
respectively [see Fig. 1(a)], while φi are chiral bosonic fields
satisfying the commutation relations,

[φi(x), φ j (y)] = iπ sign(x − y)δi j, (3)

FIG. 1. Schematic view of QH channels at integer filling factor
ν = 2. The shaded red area represents the interaction region, which
has a finite length L and is described by the scattering matrix S(L, ω).
(a) After passing this region, the incoming bosonic fields φ̃1,2(0, ω)
are transformed into the outgoing ones φ̃1,2(L, ω). (b) The input
voltages V in

1/2, applied to the edge channels. Due to interactions, the
excitations emerging after the propagation from x = 0 to x = L are
equivalent to those that would be generated by the output voltages
V out

1/2 applied to the channels directly at the end of the interaction
region. These output voltages are related to the incoming ones by
Eq. (15).

and are related to the particle density operator by [47]

ρi(x) = 1

2π
∂xφi(x), (4)

where the fermionic field ψi(x) is related to the bosonic one
φi(x) via

ψi(x) = Fi√
2πa

e−iφi (x), (5)

where a is a short-distance cutoff and Fi are the Klein factors
[46,47].

In Eqs. (1) and (2), vi are the bare propagation velocities
of the two edge channels (here, without loss of generality,
we assume v1 � v2) and u is the intensity of the interedge
coupling. The full interacting problem can be diagonalized
through a rotation in the bosonic field space by an angle θ

satisfying

tan(2θ ) = 2u

(v1 − v2)
. (6)

This parameter encodes the interaction strength, θ = 0 being
the noninteracting limit and θ = π/4 representing what in the
literature is usually indicated as the strong interacting regime
[16,19,41]. However, the stability of the model, namely, the
request that both eigenvelocities are positive [48], imposes a
constraint on the maximum admissible value of u (see below),
therefore, strictly speaking this limit can be properly obtained
only for v1 = v2 by keeping u fixed [49]. Experimentally,
values of θ ranging from θ ≈ π/6 [50,51] to θ ≈ π/4 [16]
have been reported, indicating that this parameter strongly
depends on the specific details of the considered setups.

The rotation leads to two new bosonic fields defined by

φρ (x) = cos θ φ1(x) + sin θ φ2(x), (7)

φσ (x) = − sin θ φ1(x) + cos θ φ2(x) , (8)
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in terms of which the full diagonalized Hamiltonian density
becomes

H =
∑

β=ρ,σ

vβ

4π
(∂xφβ (x))2 . (9)

These fields are associated with two new collective modes: a
slow dipolar and a fast charge mode propagating, respectively,
with velocities vσ and vρ , where

vρ/σ =
(

v1 + v2

2

)
± 1

cos(2θ )

(
v1 − v2

2

)
. (10)

The dynamics of the edge channels can be solved within
a scattering formalism [42,52]. As depicted in Fig. 1(a),
the fields outgoing from a scattering region of finite length
L are related to the incoming ones through the edge-
magnetoplasmon scattering matrix S (L, ω) as(

φ̃1(L, ω)
φ̃2(L, ω)

)
= S (L, ω)

(
φ̃1(0, ω)
φ̃2(0, ω)

)
. (11)

Here, φ̃1/2(x, ω) is the Fourier transform, with respect to time,
of φ1/2(x, t ) and [42,43]

S=
(

cos2 θ eiωτρ + sin2 θ eiωτσ sin θ cos θ (eiωτρ − eiωτσ )
sin θ cos θ (eiωτρ − eiωτσ ) sin2 θ eiωτρ + cos2 θ eiωτσ

)
,

(12)
where τρ/σ = L/vρ/σ are the times of flight associated with
fast and slow modes, respectively.

Following Refs. [26,27,53], we can consider an electron
source modeled as an ohmic contact coupling each channel
to a time-dependent voltage source and allowing us to control
the injection of electrons through voltages V1,in(t ) and V2,in(t )
applied to the inner and the outer channels, respectively,
according to the conventional coupling Hamiltonian

HU = −e
∫

ρi(x)Ui,in(x, t )dx , (13)

where i = 1 (2) labels the inner (outer) channel and −e (e >

0) is the electron charge and Ui,in(x, t ) describes the effect
of the voltage source connected to the channels. We write
it as Ui,in(x, t ) = �(−x)Vi,in(t ), where Vi,in(t ) is the time-
dependent voltage of the source and the Heaviside step func-
tion �(−x) specifies the region where this potential is applied
[32,33].

This classical potential, coupled to the charge density
along the edge according to the above equation, can then be
seen as an external classical forcing for a quantum harmonic
oscillator leading to the generation of a coherent state of
the edge magnetoplasmons along the edge channels. The
displacement parameter associated to this coherent state is
derived by solving the equations of motion for the bosonic
fields (considering the complete Hamiltonian H + HU ) and is
proportional to the Fourier transform of the voltages Ṽi,in(ω)
[39,54]. In the frequency domain, the interacting region acts
as a beam splitter for this coherent state through the edge-
magnetoplasmon S in exactly the same way as for the bosonic
modes in absence of voltage, namely,(

Ṽ1,out (ω)
Ṽ2,out (ω)

)
= S (L, ω)

(
Ṽ1,in(ω)
Ṽ2,in(ω)

)
. (14)

FIG. 2. Schematic view of the HOM interferometer. Two pairs
of copropagating and interacting edge states, on opposite sides of
a QH bar, meet at a QPC. The electron sources A and B are
modeled as ohmic contacts which are used to drive each edge
with time-dependent voltages [here VA/B(t ) is a compact notation to
indicate V A/B

1/2,in (t ), which are the voltages shown in Fig. 1(b) and that
are mixed by the interaction region indicated with the shaded red
area]. A detector D is placed just after the QPC to measure current
correlations. Notice that the region of the QPC is brighter to indicate
the fact that here the electron-electron interaction is screened.

In the time domain [see Fig. 1(b)], this leads to

V1,out (t ) = cos2 θ V1,in(t − τρ ) + sin2 θ V1,in(t − τσ )

+ sin θ cos θ [V2,in(t − τρ ) − V2,in(t − τσ )],

V2,out (t ) = sin θ cos θ [V1,in(t − τρ ) − V1,in(t − τσ )]

+ sin2 θ V2,in(t − τρ ) + cos2 θ V2,in(t − τσ ), (15)

clearly showing that, at the end of the interaction region, the
two incoming voltages are mixed.

III. GENERAL ASPECTS OF HOM INTERFEROMETRY

We now consider the effect of interaction in a HOM ex-
periment where electronic wave packets, generated by means
of applied voltage pulses, collide at a QPC with a controlled
delay in time. Unlike the injection with a driven mesoscopic
capacitor [7,8,20], this case still lacks of a detailed investiga-
tion from both the theoretical and experimental point of view.

Figure 2 shows the HOM interferometer. Here, excitations
emitted by the voltage sources A and B fractionalize when
going through the interacting regions and are then partitioned
at a QPC. For the moment, we assume that the injection only
occurs in the inner channels of each edge, postponing the
analysis of a more general case to Sec. V. Therefore, we set
V A/B

2,in (t ) = 0, where the notation now takes into account the
fact that one can apply a voltage both to the A and the B
sources. It is worth noting that, as far as QH edge states in the
integer regime are concerned, the different edge channels can
be addressed independently by means of additional upstream
QPCs [55,56] or quantum dots with high transparency [7].
Moreover, we assume that the partitioning at the QPC involves
the inner channels only, which we label as 1A (right moving)
and 1B (left moving), related to the incoming fermionic fields
ψ I

1A and ψ I
1B that are evaluated immediately before the QPC.

Such a situation can be implemented by properly tuning the
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QPC transparency in such a way that the outer channels are
completely transmitted, while the inner ones are also partially
reflected [7,19,20]. Thus, the brighter region of the QPC
(see Fig. 2) is not included in the interacting region and
fermions are locally free at this location. According to this and
assuming a local tunneling, the free fermionic fields, outgoing
from the QPC, are related to the incoming ones through a
scattering matrix(

ψ1A(t )
ψ1B(t )

)
O

=
( √

R i
√

T
i
√

T
√

R

)(
ψ1A(t )
ψ1B(t )

)
I

, (16)

where T and R = 1 − T are positive real parameters describ-
ing the probability for a particle to be transmitted or reflected,
respectively. These probabilities are assumed as energy inde-
pendent, a condition which is typically well fulfilled in experi-
ments [6,7,20]. This scattering approach for fermionic fields is
justified in our specific case of interacting channels at ν = 2,
as long as both the interedge interaction and the tunneling are
local (see, for example, Supplementary Material of Ref. [19]).
According to the chirality and locality of the coupling, we
can consider the interaction region extending from just after
the injection point to just before the QPC [28,42,43]. This
mathematical description is physically motivated by the fact
that both the contacts used to apply the voltage and the gates
that realize the QPC locally enhance the screening of the
interaction that can therefore be assumed as negligible in these
two regions. This theoretical approach already showed a very
good agreement with the experimental observation for HOM
interferometers realized using driven mesoscopic capacitors
as single electron sources [16,20].

Following what is usually investigated in EQO experi-
ments, we focus our attention on the zero-frequency autocor-
related noise SHOM, which we evaluate just after the QPC. This
quantity is defined as [57–59]

SHOM =
∫

[〈ID(t )ID(t ′)〉 − 〈ID(t )〉 〈ID(t ′)〉]dtdt ′, (17)

where ID(t ) is the total current arriving at the detector D (see
Fig. 2) and it is composed of the currents flowing in channels
2A and 1B:

ID(t ) = I2A(t ) + I1B(t ) . (18)

The current operator on a given channel j = 2A, 1B reads
I j (t ) = −evF : ψ

†
j (t )ψ j (t ) :, where : · · · : denotes the normal

ordering with respect to the Fermi sea and fermionic fields are
evaluated at the level of the detector D.

In full generality, the HOM noise can be expressed as

SHOM = S2A,2A + S2A,1B + S1B,2A + S1B,1B , (19)

where (i, j = 2A, 1B)

Si j =
∫

[〈Ii(t )I j (t
′)〉 − 〈Ii(t )〉 〈I j (t

′)〉]dtdt ′ . (20)

The notation SHOM is chosen to emphasize that we are
dealing with the zero-frequency noise in the HOM configu-
ration, i.e., when both sources are on. We note that in Eq. (19)
the first contribution S2A,2A consists only of the current au-
tocorrelations of the totally transmitted external channel but
this does not affect the measurements because its contribution
is zero. Also the terms S2A,1B and S1B,2A do not contribute,

due to the fact that averages involving current operators in
different channels factorize because no interaction occurs at
the level of the QPC. Therefore, the only relevant contribution
in Eq. (19) is S1B,1B, which involves terms referring to both
inner channels. This is because, according to Eq. (16), the
fermionic field ψO

1B at the output of the QPC is expressed in
terms of both incoming fields ψ I

1A and ψ I
1B. To simplify the

notation, in the following discussion we will refer to inner
channels 1A and 1B just as A and B.

By using Eqs. (16) and (17), we can express the total noise
SHOM as [60]

SHOM = −(evF )2RT
∫

�Q(t, t ′)dtdt ′, (21)

where

�Q(t, t ′) = �G (e)
A (t ′, t )�G (h)

B (t ′, t ) + �G (h)
A (t ′, t )�G (e)

B (t ′, t )

+�G (e)
A (t ′, t )G (h)

F,B(t ′, t ) + �G (h)
A (t ′, t )G (e)

F,B(t ′, t )

+G (e)
F,A(t ′, t )�G (h)

B (t ′, t ) + G (h)
F,A(t ′, t )�G (e)

B (t ′, t ).

(22)

In Eq. (22), �G (e/h)
A/B are the nonequilibrium excess first-order

coherence functions [15,61,62]

�G (e/h)
A/B (t ′, t ) = G (e/h)

A/B (t ′, t ) − G (e/h)
F,A/B(t ′ − t ) , (23)

where

G (e)
A/B(t ′, t ) = 〈ψ†

A/B(t )ψA/B(t ′)〉, (24a)

G (h)
A/B(t ′, t ) = 〈ψA/B(t )ψ†

A/B(t ′)〉 (24b)

are correlators evaluated over the nonequilibrium state in-
duced by the voltage injection, whereas G (e/h)

F,A/B are the corre-
lation functions for the equilibrium states (i.e., when no drive
is applied) and are evaluated over the Fermi sea. The channel
label (A/B) will be dropped in the following when referring
to the equilibrium correlation functions, as they are assumed
identical for both channels. The effect of the external voltage
drive can be properly taken into account with a phase factor
[39,60] in such a way that Eq. (23) is rewritten as

�G (e/h)
A/B (t ′, t ) = G (e/h)

F (t ′ − t )(e∓iϕA/B (t,t ′ ) − 1), (25)

where

ϕA/B(t, t ′) = e
∫ t

t ′
V A/B

1,out (τ )dτ (26)

is the phase contribution due to the time-dependent voltage,
carrying information about interaction effects according to
Eq. (15). It is worth noting that, limited to the injection
through voltage and under the assumption of local interaction
acting over a finite length, the coherence functions can be
written as the free fermionic ones times phase factors en-
coding the effect of the applied voltage and the interaction.
Therefore, our system can be mapped onto a free fermion
problem subject to a modified voltage which takes into ac-
count the fractionalization effects [39]. Incidentally, this fact
can be seen as a further validation of Eq. (16).
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By replacing Eq. (25) with Eq. (22), the correlation func-
tion �Q(t, t ′) can be expressed as

�Q(t, t ′) = 2G (e)
F (t ′ − t )G (h)

F (t ′ − t )

× [1 − cos(ϕA(t, t ′) − ϕB(t, t ′))]. (27)

If one of the two sources is switched off, the above formula
simplifies and the HBT noise associated with the partitioning
of excitations incoming in only one arm of the interferometer
is recovered (i = A, B) [60]:

SHBT,i = −2(evF )2RT
∫

dt dt ′G (e)
F (t ′ − t )G (h)

F (t ′ − t )

× [
1 − cos(ϕi(t, t ′))

]
. (28)

In the following, according to what is usually done in
conventional HOM experiments with voltage pulses [26,27],
we consider the two sources A and B to be driven by identical
signals apart from a controlled time delay δ, namely,

V B
1,in(t ) = V A

1,in(t + δ). (29)

An important consequence arises when we consider the inter-
action strengths and the distances between the sources and the
QPC to be equal in both arms of the interferometer (symmetric
configuration with θA = θB = θ and LA = LB = L). In this
case, the voltages V A/B

1,out after the interacting regions are the
same for both arms. This can be easily seen from Eq. (15)
where it is clear how these voltages depend on the interaction
strength θ and on the interaction length L (via the times of
flight τρ/σ ). As a result, at zero injection delay δ = 0 one
has ϕA(t, t ′) = ϕB(t, t ′), leading to �Q(t, t ′) = 0. Therefore
we arrive at the consequence that, even in the presence of
interactions, the HOM noise in a symmetric configuration
always vanishes for a synchronized emission in the two in-
coming channels (δ = 0), regardless of the particular form
of the signal used for the time-dependent voltage injection.
Notice that these considerations still hold also in the case of
a long-range interaction [21,37,39] as long as it preserves the
symmetry of the setup.

The injection via the mesoscopic capacitor occurs at a
well-defined energy above the Fermi level and it has been
shown [28] that in this case the emitted wave packets undergo
a relaxation toward low-energy degrees of freedom before
the process of fractionalization takes place. On the contrary,
voltage-generated excitations are robust in this respect, as the
energy relaxation does not occur for them [28,37] and they
are only affected by the fractionalization process during their
propagation through the interacting region.

This qualitative difference is consistent with our results,
showing that the excitations injected via voltage pulses are
robust and do not display any suppression of the HOM dip at
zero delay.

We recall that a standard experimental procedure consists
of normalizing the measured HOM signal with respect to the
HBT ones [16], thus defining the ratio

R(δ) = SHOM(δ)

SHBT,A + SHBT,B
, (30)

where we have taken into account the fact that the HOM
noise contribution is the only one which depends on the time

delay δ. The noise in Eq. (21) can be rewritten in terms of
the average time t̄ = (t + t ′)/2 and of the time difference
τ = t − t ′ as (adapting the definition to the case of a periodic
drive [53])

SHOM = −(evF )2RT
∫ T

2

−T
2

dt̄

T

∫ +∞

−∞
dτ�Q

(
t̄ + τ

2
, t̄ − τ

2

)
.

(31)
These integrals are performed analytically in Appendix A by
introducing the Fourier series

e−ie
∫ t

0 V (t ′ )dt ′ = e−iq�t
+∞∑

l=−∞
pl (q) e−il�t , (32)

where � = 2π/T and the photoassisted coefficients pl are
linked to the probability amplitude for photon absorption (l >

0) or emission (l < 0) [26].
By using this approach, the ratio Eq. (30) can be written as

R(δ) =
+∞∑

l=−∞

|Pl (q; δ)|2|�l|
| p̃l,A(q)|2|�(l + q)| + | p̃l,B(q)|2|�(l + q)| ,

(33)
where p̃l,A/B(q) and Pl (q; δ) are new photoassisted coeffi-
cients defined in Appendix A [Eqs. (A4) and (A6)] and they
can be expressed as functions of amplitudes pl defined in
Eq. (32). They are related to the phases ϕA − ϕB and ϕA/B,
respectively, and fully take into account the effects of inter-
actions. It is worth noting that Eq. (33) as well as all the
following results are obtained in the zero-temperature limit,
thermal corrections being marginal in realistic experimental
conditions [16,20,26,27].

In the next section, we specify the above general analysis
to the case of Lorentzian pulses, a particularly relevant drive
in the context of EQO [25,26], considering symmetric and
asymmetric configurations. Both of them are analyzed by
relying on the general expression Eq. (33), where the proper
photoassisted coefficients of Lorentzian pulses [see Eq. (A5)]
will be used.

IV. HOM INTERFEROMETRY FOR LEVITONS

In the previous section, we have proved that the excess
noise in a symmetric HOM configuration is always zero for
simultaneous injection from the the sources, independently
of the shape of the voltage and of the interactions occurring
along the channels. In this section, we will focus on a specific
form for the voltage drive which is particularly relevant in
the context of experimental EQO and we present the results
for the ratio R as a function of the time delay δ between
the two sources. To properly describe realistic experimental
configurations, we consider the two sources to be periodically
driven in time. The injection of a periodic train of single
electrons, without hole contributions, is possible by applying
properly quantized Lorentzian voltage pulses [23,25,26] of the
form

V A
1,in(t ) ≡ V (t ) = V0

∑
j∈Z

τ0

τ 2
0 + (t − jT )2

, (34)

where V0 = −2q/e (h̄ = 1), with q ∈ N. When q = 1, one
electron per period T is emitted, realizing a train of so-called
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FIG. 3. Ratio R in Eq. (33), for Lorentzian pulses, as a function
of time delay over period (δ/T ) for a symmetric setup. The HOM
noise generated by the collision of periodical trains of Lorentzian
pulses is shown for different interaction parameters: θ = 0 (black
curve), θ = π/6 (blue curve), and θ = π/4 (red curve). Gray dots
represent the analytical prediction in Eq. (35) for the noninteracting
case. Other parameters are τ0/T = 0.05, vρ = 4 × 105 m/s and
vσ = 1.8 × 105 m/s, with LA = LB = 2 μm. Notice that the posi-
tions of side dips occur at δsd = ±|τρ − τσ | (gray dotted vertical
lines).

levitons [26,27]. In Eq. (34), τ0 represents the width in time
of each Lorentzian pulse of the periodic train.

A. Symmetric setup

In this section, we analyze what happens to the noise
ratio R, in Eq. (33), when identical Lorentzian voltage pulses
with unitary charge (q = 1) are applied to both contacts. We
consider a symmetrical configuration for the interferometer,
meaning that the lengths of the two interacting regions are
equal (LA = LB = L), as well as the interedge interaction
strength (θA = θB = θ ) in the two incoming channels. It is
worth noticing that in this situation the photoassisted coeffi-
cients p̃l,A(q) and p̃l,B(q) entering in Eq. (33) are equal.

Due to interactions, as the time delay δ between the right-
and the left-moving electrons is varied, we find three charac-
teristic features in the noise profile (see Fig. 3). At δ = 0, a
central dip appears while two symmetrical side dips emerge
at positions δsd = ±|τρ − τσ |. The shape of these three dips is
Lorentzian, reflecting the overall form of the applied voltage
pulses, while their width depends on the timescale τ0. Accord-
ing to this, the dips are more pronounced for a smaller ratio
τ0/T .

This interference pattern is interpreted in terms of the
different excitations emerging after the interacting region.
Indeed, after the injection, the electronic wave packet fraction-
alizes into a slow and a fast mode carrying different charges.
According to Eq. (27), the central dip, which corresponds to
the situation of simultaneous injection from the two sources,
goes exactly to zero because these identical excitations in-
terfere destructively. This is in striking contrast with what
has been observed in a HOM experiment at ν = 2 where

the injection was achieved by means of driven mesoscopic
capacitors [16,20], where the visibility of the central dip is
always reduced by interactions [19].

The destructive interference is also responsible for the
side-dip structures appearing when fractionalized excitations
with different velocities collide (see Fig. 3). For instance, at
a delay δsd = τσ − τρ the fast right-moving excitation and
the slow left-moving one reach the QPC at the same time.
Furthermore, Fig. 3 also shows as a reference the behavior
of the noise ratio in absence of interactions (θ = 0) which
always reaches zero (at δ = 0) but does not show any side
dip because no fractionalization occurs in this case. Our nu-
merical curve (black) perfectly coincides with the theoretical
analytical formula (gray dots) derived for the HOM noise ratio
R of colliding levitons with unitary charge in the absence of
interactions (θ = 0) [32,34,53]:

R0(δ) = sin2
(
π δ

T
)

sinh2
(
2π τ0

T
) + sin2

(
π δ

T
) . (35)

We have used this reference result as a check for the validity
of our numerical calculations.

In view of possible future experimental validations of our
theoretical analysis, the plots of R as a function of δ/T
for different values of θ have been obtained by fixing the
ratio between the pulse width and the period to be τ0/T =
0.05, compatible with state-of-the-art measurements carried
out in narrow constrictions [26,27], while the time of flight
of both slow and fast modes are of the order of 10 ÷ 100
ps, as interaction lengths are L ∼ μm and velocities are
vρ/σ ∼ 104 ÷ 105 m/s. This makes our prediction observable
nowadays in EQO experiments.

B. Asymmetric setup

We now examine the HOM noise ratio in Eq. (33) for
an asymmetric configuration where the distances between
the injection contacts and the QPC are different (LA �= LB),
still assuming the same interedge interaction on both arms
(θA = θB = θ ). Notice that our general result in Eq. (33) can
be directly used to also investigate the case θA �= θB, even if
this condition is more difficult to be controlled experimentally.
We did not include this situation in the paper to keep the
discussion more focused. In any case, we expect different
interaction strengths to give a similar qualitative behavior as
the presence of different lengths.

Differently from the symmetric case, when LA �= LB, the
photoassisted coefficients in Eq. (33) are no longer equal
( p̃l,A �= p̃l,B) because of the different interaction lengths. A
new scenario thus emerges in this case as now the right-
moving modes and the left-moving ones do not have the same
times of flight even if they have the same velocities because of
the same interaction strengths. For this reason, we denote the
times of flight of right-moving modes as τA

ρ,σ = LA/vρ,σ and
those of the left-moving ones as τB

ρ,σ = LB/vρ,σ .
As before, we consider the noise ratio R as a function

of the time delay δ, focusing on the strong coupling regime
(θ = π/4) and considering different values of the length ratio
LB/LA. From Fig. 4 (upper panel), one can outline that the
three dips described before are still present but now the overall
profiles are very different with respect to the symmetric case.
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FIG. 4. Ratio R in Eq. (33), for Lorentzian pulses, as a function
of time delay over period (δ/T ) for an asymmetric setup. In the upper
panel, the two curves refer to the strong coupling regime (θ = π/4)
for two different length ratios: LB/LA = 1.2 (red curve), LB/LA = 1.5
(blue curve). In the lower one, the curves refer to the noninteracting
case (θ = 0) for the same length ratios as before (red and blue). It is
worth noticing that, if no interaction occurs, the ratio R goes to zero
and the positions of the minima depend on both the length ratios and
the velocity propagation of the free fermions along the channel of the
injection (here assumed to be v1 = vρ). Other parameters are τ0/T =
0.05, vρ = 4 × 105 m/s, and vσ = 1.8 × 105 m/s, with LA = 2 μm.
Notice that the positions of the central dip are indicated, respectively,
by the red and blue dashed vertical lines.

Indeed, here the central dip does not reach zero anymore (loss
of visibility) and its position is shifted with respect to the
origin by a time delay

δcd = τB
σ + τB

ρ − τA
σ − τA

ρ

2
, (36)

which increases proportionally to the length ratio LB/LA. This
means that the total suppression of HOM noise is not achieved
because the different interaction lengths result in different
times of flight (τA

ρ,σ �= τB
ρ,σ ) in such a way that the charge and

neutral parts of the incoming signals do not reach the QPC at
the same time. The distances of the side dips from the central
one satisfy

|δcd − δsd| = τB
σ − τB

ρ + τA
σ − τA

ρ

2
, (37)

FIG. 5. Behavior of R(δcd ) as a function of the length ratio
LB/LA. The red curve is obtained for a periodic Lorentzian pulse
(τ0/T = 0.05) while the green inset shows the case of a single pulse.
Other parameters are θ = π/4, LA = 2 μm, vρ = 1.5 × 105 m/s,
and vσ = 2 × 104 m/s. Notice that here we have chosen propagation
velocities different with respect to the other figures with the only aim
of magnifying the features discussed in the main text.

clearly showing the effect of the asymmetric lengths of inter-
acting regions on the noise ratio R.

Notice that in absence of interactions (lower panel of
Fig. 4) we recover the same behavior of the symmetric case in
Fig. 3 up to a simple shift in the delay direction. This is a direct
consequence of the lack of fractionalization of the incoming
excitations.

An additional comment on Eq. (36) is worthwhile. In the
symmetric setup, the central dip corresponds to the situation
where the two charged (or dipolar) modes incoming from
the two sources arrive simultaneously at the QPC. In the
asymmetric case, at a delay δ1 = τB

ρ − τA
ρ (δ2 = τB

σ − τA
σ ) the

charged (dipolar) modes reach the QPC at the same time, but
the dipolar (charged) ones do not. As a result, instead of a
single central dip as appearing in Fig. 4, two distinct dips
located at δ1 and δ2 should be expected (for additional details
see Appendix B). However, for realistic values for τ0/T , these
two dips are not resolved (because the wave packets are not
narrow enough) and merge into a broader one, located at an
average delay δcd = (δ1 + δ2)/2.

In Sec. IV A, we have shown that the HOM noise goes
exactly to zero when we are in a symmetric situation and
the excitations are injected simultaneously in the QH edge
channels. This time, one may wonder whether the signal
periodicity affects the visibility of the central dip [R(δcd )]
in an asymmetric setup when the length ratio is varied. In
Fig. 5, we show the behavior of the minimum of the HOM
ratio [R(δcd )] as a function of LB/LA in the presence of a
periodical Lorentzian source (main plot) and compare it to
the single Lorentzian pulse case (inset). Also, in this case we
focus on the strong coupling θ = π/4 regime. The biggest
difference between the two situations lies in the fact that for
the periodic drive the red curve goes to zero three times in
the considered range of the ratio LB/LA, including the starting
point (where LB/LA = 1), while for the single pulse no other
zero occurs apart from the one corresponding to equal lengths.

245310-7



REBORA, ACCIAI, FERRARO, AND SASSETTI PHYSICAL REVIEW B 101, 245310 (2020)

Therefore, the occurrence of additional zeros is a remarkable
consequence of the periodicity of the drive and can be used to
extract information about the interaction parameter θ .

To better understand the behavior in Fig. 5, we must start
from Eq. (27), for a generic case with δ �= 0. Therein, the
phases ϕA and ϕB must be equal to have a perfect superposition
of colliding excitations and a consequent maximal visibility of
the HOM central dip. The expression giving the length ratios
at which the central dip is maximally visible in the case of a
periodical injection is

LB

LA
= 2(k − k′)T

τA
σ − τA

ρ

+ 1, (38)

with k, k′ ∈ N and k > k′ (see Appendix C for more details).
The previous relation describes the zero located at LB/LA ≈
7.6 in Fig. 5, for k − k′ = 1. We also point out that the
presence of a second zero, located at LB/LA ≈ 5.6, is a direct
consequence of the maximal coupling θ = π/4. Indeed, as
shown in Appendix C, in this condition additional zeros
appear for a length ratio:

LB

LA
= 2(k − k′)T

τA
σ − τA

ρ

− 1 . (39)

However, as soon as the coupling departs from the maximal
value (θ < π/4), the second zero is lifted and turns into
a local minimum (see Appendix C for more details). This
is a signature of the different weight of charge and dipole
contributions to the fractionalized wave packet and can be
used to extract information about the mismatch in the time
of flight and consequently about the interedge coupling θ .

The possibility for the HOM central dip to reach zero at
different values of the length ratio is a direct consequence of
the periodicity of the applied signal. In terms of electronic
density, we can think of what is happening as follows: One
leviton is injected for every period; it crosses the interacting
region where it fractionalizes into two modes with different
velocities. If the interacting region has the proper length, the
fast mode of a given period will reach the slow mode of
the previous one. By properly calibrating the ratio between
the lengths into the two arms, it is possible to achieve a
situation where the colliding objects, the fast and slow modes
coming from both arms, at the QPC are identical, leading to a
vanishing HOM noise.

V. MEASURING INTERACTIONS

Until now, we have considered a setup where the injection
takes place on the inner channels of a QH bar only. A more
general analysis consists of considering a case where the
excitations are also injected in the outer channels. This config-
uration can be achieved, for example, by further exploiting an
open quantum dot coupled to the outer channels [16]. As we
will demonstrate, in this case a collisional HOM experiment
allows us to extract information on the interaction strength
between the edge channels as long as it can be assumed as
short range. In Sec. IV B, we have shown how the dependence
of the visibility of the central dip as a function of the length
ratio can be used to indirectly estimate interactions. Here, we

consider a more direct way to measure the interaction intensity
encoded in the parameter θ .

Let us start by considering two different input voltages
V A/B

1/2 at the entrance of the interaction region, where 1 stands
for the inner channels and 2 for the outer ones. Without loss
of generality, we consider the two drives to be proportional,
namely, V A/B

2,in = αV A/B
1,in . In what follows, we only consider a

symmetric configuration for the interferometer even if similar
results can be obtained for an asymmetric case. This implies
that Eq. (15) can be written as

V A/B
1,out (t ) = cos2 θ V A/B

1,in (t − τρ ) + sin2 θ V A/B
1,in (t − τσ )

+α sin θ cos θ
[
V A/B

1,in (t − τρ ) − V A/B
1,in (t − τσ )

]
,

V A/B
2,out (t ) = sin θ cos θ

[
V A/B

1,in (t − τρ ) − V A/B
1,in (t − τσ )

]
+α sin2 θ V A/B

1,in (t − τρ ) + α cos2 θ V A/B
1,in (t − τσ ).

(40)

From the above equation, we can identify two relevant sit-
uations involving two different values of the proportionality
parameter: α = tan θ and α = − cot θ . For these two values,
(V A/B

1,in , αV A/B
1,in )T is an eigenvector of the scattering matrix S in

Eq. (12). In the time domain, this results in(
V A/B

1,out (t )
V A/B

2,out (t )

)
=

(
V A/B

1,in (t − τρ )
V A/B

2,in (t − τρ )

)
for α = tan θ (41)

and(
V A/B

1,out (t )
V A/B

2,out (t )

)
=

(
V A/B

1,in (t − τσ )
V A/B

2,in (t − τσ )

)
for α = − cot θ . (42)

Therefore, for these values of α, the input voltages are not
mixed by interactions and are transferred unaffected to the
output of the interacting region. This feature is quite surpris-
ing because it means that by properly tuning α, one can inject
two input excitations which effectively propagate freely along
the edge channels without undergoing any fractionalization
process, despite the presence of an interacting region in the
system. Therefore, it is possible to regard α as a tunable
parameter with which one can switch off interaction effects
on the HOM noise ratio R. As a possible experimental way to
implement such kind of voltage configuration, one can apply
the same voltage V A/B

1,in (t ) to both channels, further adding a

voltage (α − 1)V A/B
1,in (t ) properly synchronized with the first

one only to channel 2 by means of a quantum dot [16].
To illustrate this effect, we compare in Fig. 6 the case

where the injection only occurs in the inner channels (α =
0) with the situation when both inner and outer channels
are driven (α �= 0). The former scenario is represented by
the dashed curves, showing the side dips structure already
discussed in Sec. IV A. The latter case is represented by
full lines and clearly shows that for the particular value α =
tan θ , the side dips disappear and one perfectly recovers the
same behavior as in the absence of interactions, described by
Eq. (30) and shown by black dots in Fig. 6.

As a final remark, we mention that, for α > tan θ (not
shown), the side dips become side peaks as a consequence of
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FIG. 6. Ratio R as a function of time delay over period (δ/T ).
The full lines describe HOM collisions at finite values of α. In
(a), we set θ = π

6 and α = tan ( π

6 ) ≈ 0.58 while in (b) θ = π

4 and
α = tan ( π

4 ) = 1. The dashed lines describe the corresponding curves
for an injection only in inner channels (α = 0) for both (a) θ = π

6
and (b) θ = π

4 ). The black dots show the ratio R in the absence
of interactions (θ = 0). Other parameters are τ0/T = 0.05, vρ =
4 × 105 m/s, and vσ = 1.8 × 105 m/s, with LA = LB = 2 μm.

the fact that excitations with opposite charge reach the QPC
[14,19].

According to the above considerations, it is clear that the
study of the evolution of the side dips as a function of α

can be used as a way to estimate the value of the interedge
interaction. Indeed, by tuning α in such a way to eliminate
the side dips in the HOM signal, knowing that this occurs
precisely at α = tan θ , the mixing angle can be obtained from
this relation.

VI. CONCLUSIONS

We have theoretically investigated a HOM experiment
where periodic time-dependent voltage drives are injected
with a tunable delay into QH edge channels at filling factor
ν = 2 and collide at a QPC. In particular, we have focused
on Lorentzian voltage pulses carrying unitary charge, usually
dubbed levitons. As a consequence of the screened Coulomb
interactions between the edge channels, the injected electrons
fractionalize leading to an interesting phenomenology. In-
deed, the noise measured just outside the QPC is characterized
by the emergence of side dips as a function of the delay
in the injection. Moreover, differently from what happens in
the case of injection using driven mesoscopic capacitors, the
visibility of the central dip remains maximal independently of
the interaction for a symmetric device regardless of the form

of the voltage used for the injection. This fact is a signature
of the robustness of voltage drives with respect to interaction
effects. Our results are even more interesting in the case of
Lorentzian voltage pulses because of their relevance as on-
demand single-electron sources. Only by inducing an asym-
metry in the device, for example, by considering different
distances between the injectors and the QPC, the visibility can
be reduced. In addition, from the peculiar dependence of the
visibility on the ratio between these distances, it is possible to
extract information about the intensity of the interaction along
the edge. Along this direction, we have also proposed a more
direct measurement of the interaction based on the application
of different voltages on the two edge channels along each
arm of the interferometer. In this case, by properly tuning
the ratio between these voltages, it is possible to prevent the
fractionalization with a consequent disappearance of the side
dip in the HOM noise profile. Therefore, the study of the
evolution of the side dips in this configuration can provide
a direct measurement of the strength of interedge interactions.
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APPENDIX A: PHOTOASSISTED AMPLITUDES AND HOM
NOISE RATIO

In this Appendix, we evaluate the photoassisted amplitudes
p̃l,A/B(q) and Pl (q; δ) in terms of amplitudes pl (q) and we
show how to obtain Eq. (33). The coefficients we want to
determine, for a periodic voltage pulse source V (τ ) = V (τ +
T ), are defined by the Fourier series ( j = A, B),

e−ie
∫ t

0 V j
1,out (τ )dτ = e−iq�t

∑
l

p̃l, j (q)e−il�t , (A1)

where � = 2π/T and

e−ie
∫ t

0 [V A
1,out (τ )−V B

1,out (τ )]dτ =
∑

l

Pl (q; δ)e−il�t . (A2)

The explicit expressions of these coefficients in terms of pl

are then obtained by inverting the previous relations. Let us
start with p̃l, j (q). From Eq. (A1), we have

p̃l, j (q) =
∫ T

0

dt

T ei(l+q)�t e−ie
∫ t

0 V j
1,out (τ )dτ . (A3)

Next, with the help of Eqs. (29) and (40), the voltages V j
1,out (t )

are expressed in terms of the source drive V (t ) given in
Eq. (34). In doing that, four different phase factors involving
V (t ) are obtained, each of which contain a time shift and are
differently weighted due to interactions. It is then possible to
repeatedly use Eq. (32) to express these factors as a Fourier
series involving the photoassisted coefficients pl . Finally, after
performing the time integration in Eq. (A3), we obtain the
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FIG. 7. Ratio R in Eq. (36), for Lorentzian pulses, as a function
of time delay over period (δ/T ) for an asymmetric setup. The length
ratio of the two arms is LB/LB = 1.5, the channel coupling strength
is maximal (θ = π/4) and one fixes T = 100τ0. Vertical solid lines
correspond, respectively, to δ1 = τB

ρ − τA
ρ and δ2 = τB

σ − τA
σ and the

dotted vertical one to δcd [in Eq. (36)]. Other parameters are τ0/T =
0.05, vρ = 4 × 105 m/s, and vσ = 1.8 × 105 m/s, with LA = 2 μm.

result (neglecting unimportant phases),

p̃l, j (q) =
∑
nrs

pl−n−r+s(q1)pn(q2)pr (q3)p∗
s (q3)

× ei�τ
j
ρ (l−n+s)ei�τ

j
σ (n−s), (A4)

where q1 = cos2 θ , q2 = sin2 θ , and q3 = α sin θ cos θ . Thus,
the coefficients p̃l, j (q) are completely specified once the
expression of pl (q) is known. For a Lorentzian drive, it is

FIG. 8. Behavior of R(δcd ) with respect to length ratio LB/LA

for three different fixed values of the interaction angle: θ = π

4 (red
curve), θ = π

6 (cyan curve), and π

8 (brown curve). Other parameters
are τ0/T = 0.05, LA = 2 μm vρ = 1.5 × 105 m/s, and vσ = 2 ×
104 m/s.

FIG. 9. Visualization of single-electron charge-density propaga-
tion along an edge channel. In (a), a leviton enters the interacting
region x > 0; in (b) it is clear how the Coulomb coupling mechanism
works: The fast mode and the slow one start separating. In (d),
the green curve describes the case when a second leviton enters
the interacting region: Its fast mode reaches the slow mode of the
previous period, recreating a purely electronic wave packet. By
repeating this mechanism for all periods, one can justify Eq. (38)
and the relations between the length ratio and the periodic windows.

given by [26,32,39,63]

pl (q) = q
+∞∑
s=0

(−1)s�(q + l + s)e−2πτ0(2s+l )/T

�(q + 1 − s)�(1 + s)�(1 + l + s)
. (A5)

Once p̃l, j are known, it is easy to obtain the photoassisted
coefficients Pl (q; δ) that take into account the time delay δ

between the two sources. Indeed, by inverting Eq. (A2) and
using Eq. (A1) to express the phase factors involving the
voltages V j

1,out (t ), we readily arrive at the expression

Pl (q; δ) =
∑

m

p̃l+m,A(q) p̃∗
m,B(q) eim�δ, (A6)

where, again, unimportant phases have been neglected.
Now we have all the ingredients to evaluate the HOM ratio

defined in Eq. (30). Recall that SHOM is obtained by evaluating
Eq. (31) and the contributions SHBT, j are particular cases when
one of the two sources is switched off. The first step is to
express the phases ϕ j (t, t ′) by relying on the photoassisted co-
efficients we have determined in this Appendix. For instance,

e−iϕA(t̄+ τ
2 ,t̄− τ

2 ) =
( ∑

l

p̃l,A(q) e−il�(t̄+ τ
2 )e−iq�(t̄+ τ

2 )

)

×
( ∑

l ′
p̃∗

l ′,A(q) eil ′�(t̄− τ
2 )eiq�(t̄− τ

2 )

)
=

∑
ll ′

p̃l,A(q) p̃∗
l ′,A(q) ei�t̄ (l ′−l )e−i� τ

2 (l+l ′+2q),

(A7)
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and similarly for e−iϕB , where the time delay δ has to be
taken into account. This expression is then used in Eq. (27)
to obtain the function �Q(t + τ/2, t − τ/2). Finally, the two
time integrations in Eq. (27) can be performed, yielding (in
the limit of zero temperature)

SHOM = −(evF )2RT

(
π

∑
l

|Pl (q; δ)|2|�l|
)

(A8)

for the general HOM case and

SHBT, j = −(evF )2RT

(
π

∑
l

| p̃l, j (q)|2|�(l + q)|
)

(A9)

for the HBT contributions. From these expressions, the noise
ratio R in Eq. (33) follows straightforwardly. All the above
(infinite) sums are convergent and their value has been ob-
tained numerically by summing over a finite number of coef-
ficients until the desired precision is obtained.

APPENDIX B: CENTRAL DIP RESOLUTION IN THE
ASYMMETRIC LENGTH CASE

In this Appendix, we want to comment the resolution of the
central dip in the asymmetric case θA = θB and LA �= LB.

In principle, when the interferometer is asymmetric, one
should expect four dips, whose positions would be indeed
determined by two delay times only. At δ1 = τB

ρ − τA
ρ , the two

charged modes arrive at the QPC simultaneously but the dipo-
lar ones do not. Similarly, at δ2 = τB

σ − τA
σ , the two dipolar

modes arrive at the QPC at the same time while the charged
ones do not. However, the proper visualization of those dips
requires enough resolution, namely the wave packets have to
be narrow enough. This feature is simply not resolved in Fig. 4
(upper panel), where we have chosen a value for τ0 (width of
the Lorentzian voltage) and T (period of the source) in the
typical range accessible for the experiments. As a result, the
two expected dips at δ1 and δ2 merge into a broader one, lo-
cated at δcd [Eq. (36)], which is the average delay between the
previous two: δcd = (δ1 + δ2)/2. In Fig. 7, we show how the
ratio R should be if we consider unrealistically narrow pulses
(for a period T = 100τ0). Here the two dips are well resolved
respectively at positions δ1 and δ2 symmetrically with respect
to δcd, bringing the number of observed dips in the HOM ratio
from three (as in Fig. 4) to four. Concerning the sideband dips,
they are located at δ = τB

σ − τA
ρ (coincidence between the

dipolar mode incoming from B and the charged one incoming
from A) and δ = τB

ρ − τA
σ (coincidence between the charged

mode incoming from B and the dipolar one incoming from A).
Therefore, their positions are determined by two times only.
In Eq. (37), we have expressed the location of these side dips
relative to the broad central one.

It is worth noticing that in the symmetric situation when
LA = LB, we have δ1 = δ2 = δcd = 0 as expected.

APPENDIX C: CENTRAL DIP VISIBILITY IN THE
ASYMMETRIC LENGTH CASE

The result in Eq. (38), relating the length ratio to the
periodicity of the signal used for explanation of the minimum
value for R(δcd ) in Fig. 5, is obtained starting from the
equality in Eq. (29) that is still true also for the phases ϕ j (t ).
The phases are (considering the injection only in one channel)

ϕA(t ) = cos2 θ ϕ
(
t − τA

ρ

) + sin2 θ ϕ
(
t − τA

σ

)
,

ϕB(t + δ) = cos2 θϕ
(
t − τB

ρ + δ
) + sin2 θϕ

(
t − τB

σ + δ
)
,

(C1)

where ϕ(t ) = ∑
k∈Z arctan ( t−kT

τ0
) for Lorentzian periodic

pulses. To solve ϕA(t ) = ϕB(t + δ), we have to specify the
interaction angle. First, considering 0 < θ < π

4 (Fig. 8), we
know that sin θ �= cos θ and this means that Eq. (29) is satis-
fied when

ϕ
(
t − τA

ρ/σ

) = ϕ
(
t − τB

ρ/σ + δ
)
. (C2)

These two conditions lead to the same result, therefore we
can focus on the first one,∑

k

tan−1

[
t − kT − τA

ρ

τ0

]
=

∑
k′

tan−1

[
t − k′T − τB

ρ + δ

τ0

]
,

(C3)
which yields

(k′ − k)T = τA
ρ − τB

ρ + δ. (C4)

Because we want to study how the minimum of the central dip
varies, the delay δ has to be fixed by

δcd = τB
ρ + τB

σ − τA
ρ − τA

σ

2
. (C5)

By substituting this expression into Eq. (C4) and recalling that
τB
ρ/σ = τA

ρ/σ LB/LA, we arrive at the result in Eq. (38).
An interesting additional feature for R(δcd ) is obtained

when θ = π/4. Due to the fact that in this case sin θ =
cos θ , there is another possibility to fulfill ϕA(t ) = ϕB(t + δ),
namely,

ϕ
(
t − τA

ρ/σ

) = ϕ
(
t − τB

σ/ρ + δ
)
. (C6)

Again, these two conditions lead to the same result, which
reads

LB

LA
= 2(k′ − k)T

τA
σ − τA

ρ

− 1. (C7)

This analysis clearly shows that the zeros in R(δcd ) described
by Eq. (38) are stable with respect to the change of the
interaction strength, while those described by Eq. (C7) are
only present at maximal coupling (see also Fig. 8). To further
characterize the physics behind this phenomenology, we have
reported in Fig. 9 some snapshots of the evolution of the
particle density, showing how levitons emitted in different
periods of the drive can recombine due to the interaction-
induced fractionalization process.
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