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Charge Kondo effects in a quadruple quantum dot in spinless and spinful regimes
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We theoretically study charge Kondo effects in a quadruple quantum dot. This system has been realized in
a carbon nanotube [Nature (London) 535, 395 (2016)] by A. Hamo et al., while it can be also formed in a
two-dimensional electron gas (2DEG). The system is in a particular situation where a quadruple dot has twofold
degenerate ground states of (nA = 1, nB = 1, nC = 1, nD = 0) and (0,0,0,1) charge configurations, where nλ is
the electron occupation number of the individual dot λ = A,B,C,D of the quadruple dot. The two charge states
behave as the pseudospin-1/2 states of a Kondo impurity. In the spinless regime, where the real spin of electrons
is frozen, for example, by an external magnetic field, the quadruple dot can exhibit a single-channel charge
Kondo effect in which coherent charge fluctuations massively occur between the two charge states with the help
of electron tunneling between the quadruple dot and its electron reservoirs. The origin of the charge Kondo
effect is similar to that of a negative-U Anderson impurity. In the spinful regime, on the other hand, the real
spin and charge degrees of freedom couple each other due to interdot electron tunneling between the dots A and
B so that the spin singlet is formed in the charge state (1,1,1,0). In this regime, the low-energy Hamiltonian of
the quadruple dot system can be mapped onto a two-channel Kondo Hamiltonian having channel anisotropy. In
realistic situations of carbon nanotubes or GaAs 2DEGs, the channel anisotropy is so large that the quadruple dot
shows a single-channel charge Kondo effect also in the spinful regime at experimentally available temperatures.
We compute the temperature dependence of electron transport through the quadruple dot, which is useful for
identifying the charge Kondo effects.
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I. INTRODUCTION

Quantum dots have been used to study various aspects
of Kondo effects [1,2]. When a dot has an odd number of
electrons, the nonvanishing net spin 1/2 of the electrons
behaves as a Kondo impurity spin [3–5]. The Kondo effects
have been observed in quantum dots in two-dimensional
electron gas (2DEG) systems [6–8] and carbon nanotubes
(CNTs) [9]. Experimental tunability of the dots enables one
to access nontrivial features of the Kondo effects such as the
scattering phase shift [10–12] and the fractional shot noise
[13,14]. Furthermore, quantum dots have been used to realize
exotic two-channel [15–18] and three-channel Kondo effects
[19]. Quantum dots are also useful [20–23] for detecting a
Kondo screening cloud [24–26]. There has been a report on
experimental signatures of a Kondo cloud [27].

Kondo effects by charge or orbital degrees of freedom
(rather than the spin) can appear in multiple quantum dots
[28–37]. A charge Kondo effect can occur [36] in a triple
dot that has two degenerate ground states of (nA = 1, nB =
1, nC = 0) and (0,0,1) charge configurations, where nλ is the
electron occupation number in the individual dot λ = A,B,C
of the triple dot. The triple dot corresponds to a negative-
U Anderson impurity having negative charging energy [38];
repulsive Coulomb interactions between the dot C and the
others (A and B) generate effective attractive interactions
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between the dots A and B, although the bare Coulomb in-
teraction between A and B is repulsive [39]. Then at zero
temperature, there occur massive charge fluctuations between
(1,1,0) and (0,0,1) mediated by electron tunneling between the
dot and its electron reservoirs [36]. The charge fluctuations
are interpreted as the charge Kondo effect whose pseudospin
impurity states are (1,1,0) and (0,0,1); in the negative-U impu-
rity [40], the two charge states of zero and double occupancy
constitute pseudospin Kondo impurity states. The (1,1,0) and
(0,0,1) configurations [41] and signatures [42] of the effective
attractive interactions have been experimentally observed in
a triple quantum dot formed in a 2DEG, but the resulting
charge Kondo effect has not been measured yet. There have
been studies related to the negative-U Anderson impurity in
other systems such as vibrating molecules [43–45], Josephson
junctions [46,47], superconductivity in PbTe doped with Tl
[48–51], and a quantum dot formed in LaAlO3/SrTiO3 inter-
faces [52,53].

Very recently a signature of effective attractive Coulomb
interactions was observed in a quadruple quantum dot formed
in two crossed CNTs [54]. This implies the possibility of a
charge Kondo effect in a quadruple dot. It will be interesting
to study how the charge Kondo effect occurs, its stability
against deviation from the ideal setting, the resulting electron
transport, and the difference from the charge Kondo effect in
a triple dot.

In this work, motivated by the recent experiments [54], we
investigate the charge Kondo effects in a quadruple quantum
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FIG. 1. (a) A quadruple dot formed in (a) a 2DEG or in (b) two
crossing CNTs. Dots A, B, C, D capacitively couple to each other.
The quadruple dot has a subsystem AB of the dots A and B, and the
other subsystem CD of the dots C and D. In (b) a vertical dotted line
is drawn to represent the relative locations of the subsystems of the
CNT setup. In the subsystem AB (CD), interdot electron tunneling
between A and B (C and D) occurs with strength tAB (tCD). There is
no electron tunneling between the subsystems AB and CD. In (a), the
dot A (B) couples to its source reservoir SA (SB) and drain DA (DB)
via electron tunneling. In (b), each dot couples to their own reservoir
depicted as a cube. The system (a) can be realized in the way reported
in Refs. [34,42], while (b) was realized in Ref. [54].

dot (see Fig. 1) in the Coulomb blockade regime. We focus
on the particular situation that the quadruple quantum dot has
twofold degenerate ground states of (nA = 1, nB = 1, nC =
1, nD = 0) and (0,0,0,1) charge configurations. These degen-
erate charge states were experimentally realized [54]. We
consider a spinless regime and a spinful regime. In the spinless
regime, the real spin of electrons does not play any role in the
charge Kondo effect. The spinless regime is obtained when
there is no electron tunneling between the dots A and B and
an external magnetic field generates sufficiently large Zeeman
energy. In this regime, the electron interaction between A
and B is effectively attractive, although the bare interaction
is repulsive, because of the repulsive Coulomb interaction
between the subsystems AB and CD. As a result, the sub-
system AB behaves as a negative-U Anderson impurity, and a
single-channel charge Kondo effect occurs at low temperature.
We analyze the stability of the charge Kondo effect against
deviation from the fixed point and compare the charge Kondo
effect with that of a triple dot.

In the spinful regime, on the other hand, there is interdot
electron tunneling between the dots A and B, and no external
magnetic field is applied. In this regime, the real spin of
electrons plays a role such that a spin singlet is formed
in the subsystem AB in the charge configuration (1,1,1,0).
Then the low-energy properties of the system are interest-
ingly described by a two-channel Kondo Hamiltonian whose
pseudospin-1/2 impurity states are the (1,1,1,0) charge con-
figuration with the spin singlet and the (0,0,0,1) configuration.
The Hamiltonian has anisotropy between the channels. Under
realistic parameters of CNTs or GaAs 2DEGs, the channel
anisotropy is so large that the quadruple dot shows a single-
channel charge Kondo effect also in the spinful regime at
low temperature currently achievable in experiments. For both
the 2DEG and CNT systems in Fig. 1, we compute electron
transport through the quadruple dot in the spinless and spinful
regimes at a small source-drain bias voltage, using the Fermi
liquid theory, the bosonization method, and the Fermi golden
rule.

This paper is organized as follows. In Sec. II, we intro-
duce the setup and its effective Hamiltonian. In Sec. III,
we study the charge Kondo effect of a quadruple dot in the
spinless regime, compare it with that of a triple dot, discuss
the experimental feasibility, and compute electron transport
through the quadruple dot. In Sec. IV, we show that in the
spinful regime, the quadruple dot is described by a two-
channel Kondo Hamiltonian with channel anisotropy. The two
channels are identified and the anisotropy is estimated for
quadruple dots in realistic situations. In Sec. V, we discuss
summarize our findings.

II. SETUP

We introduce the quadruple dot in Fig. 1. It has a subsystem
AB composed of dots A and B and the other subsystem CD
of C and D. The four dots are capacitively coupled in the
Coulomb blockade regime. There is no electron tunneling be-
tween the subsystems. In Fig. 1(a), electron tunneling occurs
between the dot A (B) and the reservoirs SA and DA (SB and
DB) of noninteracting electrons. In Fig. 1(b), A and B are
formed in a CNT, and C and D are in another CNT. In this
case, electron tunneling occurs between each of the four dots
and its reservoir (e.g., between the dot A and the reservoir A).

The quadruple dot is described by the Hamiltonian

Htot = HQQD + Hres + Hdot-res + HZ. (1)

The Hamiltonian HQQD describes the four dot,

HQQD =
∑

λ=A,B,C,D

∑
σ=↑,↓

ελd†
λσ dλσ

+
∑

λ

Un̂λ↑n̂λ↓ + 1

2

∑
λ �=λ′

∑
σ,σ ′

Uλλ′ n̂λσ n̂λ′σ ′

+
∑

σ

tABd†
Aσ

dBσ + tCDd†
Cσ

dDσ + H.c. (2)

H.c. stands for the hermitian conjugate. Each dot λ =
A,B,C,D is modeled as an Anderson impurity having a sin-
gle spinful level of energy ελ, considering strong intradot
Coulomb repulsion. The operator d†

λσ creates an electron with
spin σ in the energy level ελ. ελ can be tuned by gate voltages.
Uλλ′ > 0 and U > 0 are inter- and intradot Coulomb repulsion
energy, and n̂λσ ≡ d†

λσ dλσ is the electron number operator of
the level ελ and spin σ . For simplicity, the four dots have
the same intradot Coulomb energy, the intradot Coulomb
repulsion is much stronger than the interdot repulsion, U �
Uλλ′ , and the Coulomb repulsion between dots A and C and
between B and C is ignored, UAC = UBC ∼ 0, in comparison
with the other Coulomb energies. tAB (tCD) is the strength of
electron tunneling between the dots A and B (C and D). In
addition, we consider the A-B symmetric case,

εA = εB ≡ ε0, UAD = UBD ≡ V. (3)

Relaxing the above simplifications does not alter our results
qualitatively, provided that the twofold ground-state degener-
acy is maintained. The condition for the twofold degeneracy
will be discussed in Sec. III A.

The second term Hres of Eq. (1) is for the reservoirs of
noninteracting electrons. The reservoirs of the 2DEG setup
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in Fig. 1(a) are described by

H2DEG
res =

∑
η=S,D

∑
λ=A,B

∑
	k,σ

ε
ηλ	kc†

ηλ	kσ
c
ηλ	kσ

. (4)

The operator c†
ηλ	kσ

creates an electron with wave vector 	k, spin

σ , and energy ε
ηλ	k in reservoir ηλ. On the other hand, the CNT

setup in Fig. 1(b) has a different configuration of reservoirs
from the 2DEG setup. The reservoirs of the CNT setup are
described by

HCNT
res =

∑
λ=A,B,C,D

∑
	k,σ

ε
λ	k c̃†

λ	kσ
c̃
λ	kσ

. (5)

The operator c̃†
λ	kσ

creates an electron with wave vector 	k, spin
σ , and energy ε

λ	k in CNT reservoir λ.
The third term Hdot-res of Eq. (1) describes electron tunnel-

ing between the dots and the reservoirs. For the 2DEG setup
in Fig. 1(a), it is written as

H2DEG
dot-res = t0

∑
η=S,D

∑
λ=A,B

∑
	k,σ

d†
λσ c

ηλ	kσ
+ H.c.

=
√

2t0
∑

λ=A,B

∑
	k,σ

d†
λσ c

λ	kσ
+ H.c., (6)

where t0 is the tunneling strength. For simplicity, the electron
tunneling strength from dot λ to its source reservoir Sλ is
the same as that to the drain Dλ, and its dependence on 	k is
ignored. In the second line of the above equation, we introduce
the symmetric combination

c†
λ	kσ

≡ 1√
2

(c†
Sλ	kσ

+ c†
Dλ	kσ

) (7)

of operators of the source and drain of dot λ. It describes
the reservoir electrons hybridized to the dot by the tunneling.
For the CNT setup in Fig. 1(b), on the other hand, electron
tunneling between the dots and the reservoirs is described by

HCNT
dot-res =

√
2t0

∑
λ=A,B

∑
	k,σ

d†
λσ c̃

λ	kσ
+ H.c.

+ t1
∑

λ=C,D

∑
	k,σ

d†
λσ c̃

λ	kσ
+ H.c. (8)

Here,
√

2 is put to make the form of Eq. (8) the same as that
of Eq. (6). t0 is the strength of tunneling between dot A and
reservoir A and between dot B and reservoir B, while t1 is the
tunneling strength between dot C and reservoir C and between
dot D and reservoir D. The last term HZ of Eq. (1) describes
the Zeeman spin splitting EZ of the energy level of each dot,
which appears in the presence of an external magnetic field,

HZ =
∑

λ=A,B,C,D

EZ
n̂λ↑ − n̂λ↓

2
. (9)

III. SINGLE-CHANNEL CHARGE KONDO EFFECTS IN
THE SPINLESS REGIME

In this section, we consider the spinless regime of tAB = 0
and sufficiently large Zeeman energy EZ. In this regime, we
can ignore the effects of spins, such as the ordinary spin

FIG. 2. Pseudospins of the quadruple dot in the spinless regime
of EZ �= 0 and tAB = 0. (a) The charge configuration (1,1,1,0) corre-
sponds to the pseudospin up. (b) The charge configuration (0,0,0,1)
corresponds to the pseudospin down.

Kondo effects of each of the dots A and B. We show below
that the twofold degenerate ground states of (1,1,1,0) and
(0,0,0,1) charge configurations of the quadruple dot behave
as pseudospin states and that the Hamiltonian in Eq. (1)
is transformed into an anisotropic Kondo Hamiltonian of
the pseudospin. We compute electron transport through the
quadruple dot for both the 2DEG and CNT cases.

A. Parameter regime and pseudospin

We consider large Zeeman energy EZ due to an external
magnetic field. When EZ is larger than |ε0 + UAB|, |ε0 + V |,
and V , the Zeeman energy is bigger than energy difference
between the ground states and the excited states such as
(nA = 1, nB = 0, nC = 1, nD = 0) and (0,0,1,0) charge con-
figurations. EZ is also larger than the Kondo temperature
TK,spin of the ordinary spin Kondo effect of the dot A or
B. Then spin effects are suppressed, and we can treat the
quadruple dot as a spinless system in its low-energy regime.
In the spinless regime, we replace the spinful operators of
the Hamiltonian in Eq. (1) by corresponding spinless ones,
dλσ → dλ, c

λ	kσ
→ c

λ	k , and c̃
λ	kσ

→ c̃
λ	k .

We discuss the conditions for the quadruple dot to have
the degenerate ground states of (1,1,1,0) and (0,0,0,1) charge
configurations. We need 2ε0 + εC + UAB = εD, with which
the two configurations have the same energy. We also need
0 < εC − εD < 2V and −V < ε0 < −UAB, with which the
two configurations have lower energy than the other con-
figurations such as (1,0,0,1) and (1,0,1,0). In addition, the
energy difference between the ground states and excited states
has to be larger than the level broadening � = πρt2

0 of the
states. � is induced by electron tunneling between the dots
and the reservoirs, and ρ is the density of reservoir states at
the Fermi level. The degeneracy conditions can be achieved
in experiments by exploring the charge stability diagram with
tuning gate voltages. Indeed, the degenerate ground states
have been achieved in a recent experiment [54] of a quadruple
dot in CNTs. For computational convenience, we choose
an additional condition of εD + V = εC. Relaxation of this
condition does not alter our results qualitatively.

The twofold degenerate ground-state charge configurations
(1,1,1,0) and (0,0,0,1) behave as pseudospin-up and -down
states, respectively (see Fig. 2),

|⇑〉 = d†
Ad†

Bd†
C|0〉, |⇓〉 = d†

D|0〉. (10)

245307-3



CHOI, YOO, HAN, AND SIM PHYSICAL REVIEW B 101, 245307 (2020)

|0〉 is the vacuum state of the quadruple dot. Accordingly, we
define pseudospin-1/2 operators, τ+ = |⇑〉〈⇓|, τ− = |⇓〉〈⇑|,
and τz = (|⇑〉〈⇑| − |⇓〉〈⇓|)/2 for later use.

B. Single-channel Kondo Hamiltonian

For the 2DEG setup [Fig. 1(a)], we transform, under the
conditions discussed above, the Hamiltonian in Eq. (1) into
a low-energy effective Hamiltonian Heff1, by applying the
Schrieffer-Wolff transformation [55] and using the pseudospin
operators τ ’s in Eq. (10),

H2DEG
eff1 =

∑
	k, 	k′

Jzτz(c†
A	kcA 	k′ + c†

B	kcB 	k′ )

+
⎛
⎝∑

	k, 	k′

J+τ+cB	kcA 	k′ + H.c.

⎞
⎠ + H2DEG

res ,

Jz = 4t2
0

ε0 + V
, J+ = − 4t2

0 tCD

ε0 + V

(
2

V
+ 1

ε0 + V

)
.

(11)

Then, we (i) apply the particle-hole transformation to elec-
trons in reservoirs ηB,

c
ηB	k → c†

ηB	k, ε
ηB	k → −ε

ηB	k, (12)

and (ii) assign pseudospin-up ⇑ to electrons in reservoirs ηA
and pseudospin-down ⇓ to those in reservoirs ηB, namely
ηA → ⇑, ηB → ⇓. Then Heff1 becomes the standard form of
the single-channel Kondo effect,

H2DEG
1ch = H2DEG

res + 2Jzτzsz + J+τ+s− + H.c.,

si=x,y,z =
∑

μ,μ′=⇑,⇓

∑
	k, 	k′

c†
μ	k

σ i
μμ′

2
c
μ′ 	k′ , s± = sx ± isy,

(13)

where σ i=x,y,z’s are the Pauli matrices for the pseudospins of
the reservoir electrons. This indicates that a Kondo effect of
the pseudospin can occur.

In the same way, we also obtain a low-energy effective
Hamiltonian H1ch for the CNT setup [Fig. 1(b)]. In the absence
of electron tunneling between the quadruple dot and the
reservoirs C and D [i.e., the case of t1 = 0 in Eq. (8)], the
low-energy effective Hamiltonian has the same form as that
of the 2DEG setup but with replacement of c

μ	k → c̃
μ	k and

H2DEG
res → HCNT

res , hence it shows the same pseudospin Kondo
effect. The case of t1 �= 0 will be discussed in Sec. III D.

The pseudospin Kondo effect means that coherent fluctua-
tions massively occur between the two charge configurations
(1,1,1,0) and (0,0,0,1) with the help of electron tunneling
between the dot and the reservoirs. It is reminiscent of the
charge Kondo effect [40] of a negative-U Anderson impu-
rity. The subsystem AB of the quadruple dot behaves as a
negative-U impurity, as it prefers double electron occupancy
nA + nB = 2 [for the ground-state charge configuration (nA =
1, nB = 1, nC = 1, nD = 0)] and zero occupancy nA + nB =
0 [for (0,0,0,1)]. This implies that electron interaction between
the dots A and B is effectively attractive, although the bare
interaction is repulsive; the effective attractive interaction

FIG. 3. Phase diagram of the anisotropic Kondo Hamiltonian in
Eq. (13). The renormalization group flows of the coupling strengths
Jz and J+ are drawn by thin arrows. The phase transition line between
the antiferromagnetic Kondo phase and the ferromagnetic phase is
shown by the green solid line. The shaded region is the anisotropy
domain achievable by tuning the tunneling strengths tCD (along the
thick blue arrow) and t0 (equivalently, � = πρt2

0 , along the thick red
arrow).

between the dots A and B occurs due to the repulsive Coulomb
interaction between the subsystems AB and CD.

The Kondo Hamiltonian in Eq. (13) has pseudospin
anisotropy Jz �= J+ due to the fact that pseudospin flip and
nonflip processes have different amplitude, Jz > J+. The pseu-
dospin flip (1, 1, 1, 0) ↔ (0, 0, 0, 1), contributing to J+, is
accompanied by three electron-tunneling events, one between
the dots C and D, another between the dot A and its reservoirs
A, and the other between the dot B and its reservoirs B. By
contrast, pseudospin nonflip, contributing to Jz, involves two
tunneling events, one from dot λ (=A,B) to reservoirs λ and
the other from reservoirs λ to dot λ.

It should be mentioned that Jz is always positive, as shown
in Eq. (11). Hence the quadruple dot approaches the strong
coupling Kondo fixed point of antiferromagnetic screening for
any values of t0, ε0, V , and tCD in the spinless regime (see
Fig. 3). It cannot show the ferromagnetic phase of the usual
anisotropic Kondo Hamiltonian [2,56]. So the charge Kondo
effect is stable at low temperature.

We compare these findings with the charge Kondo effect
[36] of a triple quantum dot. The charge Kondo effect in a
triple dot is also pseudospin anisotropic, as its pseudospin-
flip processes are of higher order in electron tunneling than
pseudospin nonflip, similarly to the quadruple dot. However,
the coupling strength Jz can be negative in the triple dot, so
that the ferromagnetic phase and the phase transition between
the ferromagnetic phase and the antiferromagnetic Kondo
phase can be explored in the triple dot. This happens because
the anisotropic charge Kondo effect of the triple dot is accom-
panied by three different electron species (corresponding to
the dots A, B, C of the triple dot). By contrast, in the quadruple
dot, only two species of electrons (corresponding to the dots
A and B) are involved, and only the antiferromagnetic Kondo
phase can emerge.

C. Electron transport in the 2DEG setup

In this subsection, we consider the quadruple dot of the
2DEG setup in Fig. 1(a) and study electron transport through
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the quadruple dot in the single-channel charge Kondo regime
of the spinless case. By using the scattering T-matrix method,
the Fermi liquid theory and the Poorman’s scaling, we com-
pute electron current through the dot A from its source SA
to its drain DA both in the strong Kondo coupling regime at
low temperature and the weak Kondo coupling regime at high
temperature. We also estimate the Kondo temperature TK of
the charge Kondo effect at the end of the subsection.

The current IA through the dot A is computed when bias
voltages VA/2 and VB/2 are applied to the sources SA and SB,
respectively, while −VA/2 and −VB/2 to the drains DA and
DB, respectively. It is expressed [57] as

IA = ie

h̄

∫
dε

2π
πρt2

0

[
Gr

A(ε) − Ga
A(ε)

]
( fSA(ε) − fDA(ε))

= −e

h

∫
dε

[
πρIm

(
T c

A (ε)
)]

( fSA(ε) − fDA(ε)). (14)

fηA is the Fermi-Dirac distribution of reservoir ηA. Gr(a)
A (ε)

is the retarded (advanced) Green function of the dot A in the
energy ε domain. T c

A (ε) is the T matrix of reservoir electrons
c†

A	k , satisfying Gr
A	k (ε) = G0r

A	k (ε) + G0r
A	k (ε)T c

A (ε)G0r
A	k (ε). Gr

A	k
(G0r

A	k) is the Green function of the reservoir electrons in the
presence (absence) of electron tunneling between the dot A
and reservoirs ηA. In the last step of Eq. (14) we use T c

A (ε) =
(
√

2t0)2Gr
A(ε) derived by using the equation of motion.

In the strong Kondo coupling regime at low temperature
T � TK and at small bias voltages eVA, eVB � kBTK , the
current in Eq. (14) is computed using the Fermi liquid theory,
where kB is the Boltzmann constant. According to Nozieres
[58], the Fermi liquid near the Kondo fixed point is described
by quasiparticles b†

μ	k of pseudospin μ, momentum 	k, and

energy ε	k . The fixed-point Hamiltonian is

Hfp = Hres − α

πρTK

∑
	k,	k′,μ=⇑,⇓

(
ε
μ	k + ε

μ	k′

2

)
b†

μ	kb
μ	k′

+ β

πρ2TK

∑
	k1,	k2,	k3,	k4

b†
⇑	k1

b⇑	k2
b†

⇓	k3
b⇓	k4

. (15)

The α terms describe elastic scattering of the quasiparticles
and the β terms are for inelastic scattering due to interactions
between the quasiparticles. The coefficients satisfy α = β =
1, according to the Nozieres theory. We restore the index λ =
A,B and perform the inverse of the transformation in Eq. (12),
b⇑	k → bA	k , b⇓	k → b†

B	k , and ε⇓	k → −εB	k . The transformation
results in

Hfp → Hres − α

πρTK

∑
	k,	k′;λ=A,B

(
ε
λ	k + ε

λ	k′

2

)
b†

λ	kb
λ	k′

− β

πρ2TK

∑
	k1,	k2,	k3,	k4

b†
A	k1

bA	k2
b†

B	k3
bB	k4

,

bA	k = 1√
2

(bSA	k + bDA	k ), bB	k = 1√
2

(bSB	k + bDB	k ).

(16)

The last equations for b
λ	k and ε

λ	k = εSλ	k = εDλ	k are naturally
chosen, based on the one-to-one correspondence between b

λ	k

and c
λ	k [see Eq. (7) for c

λ	k]. The minus sign in front of the β

terms implies [36] effective attractive interactions of electrons
between reservoirs ηA and ηB.

The T-matrix T c
A of the cA	k reservoir electrons in Eq. (14) is

related to the corresponding T-matrix T b
A of the bA	k quasipar-

ticles at their Fermi level [59], defined by Gr
A	k (ε) = G0,r

A	k (ε) +
G0,r

A	k (ε)T b
A (ε)G0,r

A	k (ε), where Gr
A	k (G0,r

A	k ) is the retarded Green
function of the bA	k quasiparticles in the presence (absence) of
the scattering by the α and β terms of Hfp. The T matrices
have the form of exp(2iδb,c(ε)) = 1 − 2π iρT b,c

A (ε), accord-
ing to the scattering theory, and the scattering phase shift δc(ε)
of the cA	k reservoir electrons is different from the scattering
phase shift δb(ε) of the bA	k quasiparticles by constant π/2,
δc(ε) = δb(ε) + π/2. These lead to

−Im
[
πρT c

A (ε)
] = 1 + Im

[
πρT b

A (ε)
]
. (17)

Using the fixed-point Hamiltonian Hfp and applying the equa-
tion of motion method to Gr

A	k , we compute the T-matrix T b
A of

the bA	k quasiparticles up to the second order terms of α and
β, in terms of Fλ(ε) ≡ ( fSλ(ε) + fDλ(ε))/2,

Im
[
T b

A (ε)
] = − α2

πρT 2
K

ε2

− β2

πρT 2
K

∫
dε	k1

dε	k2

[(
1 − FA

(
ε	k1

))
FB

(
ε	k2

)
× (

1 − FB
(
ε − ε	k1

+ ε	k2

)) + FA
(
ε	k1

)
× (

1 − FB
(
ε	k2

))
FB

(
ε − ε	k1

+ ε	k2

)]
. (18)

Combining Eqs. (14), (17), (18), and α = β = 1, we obtain
the electron current IA through the dot A at zero temperature
as a function of the voltages VA and VB,

IA = e2

h
VA

[
1− 1

4

(
eVA

kBTK

)2

− 1

4

(
eVB

kBTK

)2

+ O

((
VA,B

TK

)3)]
.

(19)
The zero-bias differential conductance through the dot A at
temperature T (when VA = VB → 0) is found,

dIA

dVA
= e2

h

[
1 −

(
T

TK

)2]
. (20)

The power-law exponent 2 is a feature of the Fermi liquid.
In the weak coupling regime at high temperature T � TK ,

on the other hand, the current in Eq. (14) can be computed by
treating Jz and J+ in Eq. (11) perturbatively. From the relation
Gr

A	k (ε) = G0r
A	k (ε) + G0r

A	k (ε)T c
A (ε)G0r

A	k (ε) at electron energy ε,

we compute the T-matrix T c
A (ε) of reservoir electrons c†

A	k in
Eq. (14).

Im
[
T c

A (ε)
] = −πρ

4

[
J2

z (ε) + 2J2
+(ε)

]
. (21)

We express Jz(ε) in terms of the Kondo temperature TK , using
the Poorman’s scaling at ε � TK ,

Jz(ε) = J


(1 + (ε/TK )−4ρJ
 )

(1 − (ε/TK )−4ρJ
 )
, (22)

where J
 ≡
√

J2
z − J2+ is the bare anisotropy strength [see

Eq. (11)], and J+(ε) satisfies J2
+(ε) = J2

z (ε) − J2

. Using

245307-5



CHOI, YOO, HAN, AND SIM PHYSICAL REVIEW B 101, 245307 (2020)

Eqs. (14), (21), and (22), we obtain the electron conductance
through the dot A in the zero-bias limit of VA = VB → 0 at
high temperature T � TK ,

dIA

dVA
= e2π2ρ2

4h
J2



[
3

(
(1 + (T/TK )−4ρJ
 )

(1 − (T/TK )−4ρJ
 )

)2

− 2

]
. (23)

This result has the same form as that of an anisotropic
Kondo model in Ref. [36]. When the anisotropy strength
becomes zero (J
 → 0), the conductance shows logarithmic
behavior as in the case of usual Kondo effects; dIA/dVA ∝
1/(ln(T/TK ))2.

We estimate the Kondo temperature TK of the charge
Kondo effect in a quadruple dot of the 2DEG setup [Fig. 1(a)].
It follows the standard expression of the anisotropic Kondo
effects [36],

TK = D0

(
Jz + J


Jz − J


)−1/4ρJ


. (24)

Here, D0 is the bare bandwidth of the reservoirs. We find
that TK can reach about 100 mK. This is estimated with
the realistic parameters [34,42] of V ∼ 0.2–0.4 meV, UAB ∼
0.05–0.2 meV, tCD ∼ 5–70 μeV, and � ∼ 1–50 μeV.

D. Electron transport in the CNT setup

In this subsection, we consider the quadruple dot of the
CNT setup [see Fig. 1(b)] in the single-channel charge Kondo
regime of the spinless case. We compute electron current ICD

from the reservoir D to C through the dots C and D in the limit
of zero bias, by using the bosonization and refermionization
method as well as the Fermi golden rule when the tunneling
strength t1 between the dot C and the reservoir C and between
the dot D and the reservoir D is sufficiently weak. We also
estimate the Kondo temperature TK of the charge Kondo effect
of the CNT setup at the end of the subsection. We note that the
current ICD can be measured as in Ref. [54].

For the CNT setup, the low-energy effective Hamiltonian
has more terms than the Hamiltonian of the 2DEG setup in
Eq. (13), when the tunneling strength t1 is nonzero. Using
the Schreiffer-Wolff transformation, we find that the effective
Hamiltonian is decomposed into

HCNT = HCNT
eff1 + HPz + HP+,

HCNT
eff1 = HCNT

res + 2Jzτzsz + J+τ+s− + H.c.,

HPz =
∑
	k, 	k′

JPzτz(c̃†
C	k c̃C 	k′ − c̃†

D	k c̃D 	k′ )

HP+ =
∑

	k1,	k2,	k3,	k4

JP+τ+c̃B	k1
c̃A	k2

c̃†
D	k3

c̃C	k4
+ H.c.,

si =
∑

μ,μ′=⇑,⇓

∑
	k, 	k′

c̃†
μ	k

σ i
μμ′

2
c̃
μ′ 	k′ , s± = sx ± isy,

JPz = t2
1

2

(
1

V − εC
+ 1

εC + V + UCD

)
,

JP+ = 4t2
0 t2

1UCD(2ε0 + 3V )

εC(εC + UCD)V (ε0 + V )2
. (25)

The first term HCNT
eff1 of the effective Hamiltonian HCNT has

the same form with the effective Hamiltonian H2DEG
eff1 of the

2DEG setup in Eq. (11), and it describes the single-channel
charge Kondo effect. The other two terms HPz and HP+ occur
when electron tunneling happens between the dot C and the
reservoir C and between the dot D and the reservoir D, namely
when t1 �= 0. HP+ describes processes of pseudospin flip,
while HPz describes processes of pseudospin nonflip. Here,
a process of pseudospin flip, for example, from |⇓〉 to |⇑〉
happens such that electron tunneling occurs from the reservoir
C to the dot C, another tunneling from the dot D to the
reservoir D, another tunneling from the reservoir A to the dot
A, and the other from the reservoir B to the dot B.

We compute the current ICD when very low bias voltages
VCD/2 and −VCD/2 are applied to the reservoirs D and C,
respectively; we consider the limit of VCD → 0. We focus on
the regime of sufficiently weak t1 where the single-channel
charge Kondo effect is perturbatively affected by the two
terms HPz + HP+ induced by the tunneling t1. The current ICD

is expressed as

ICD = −e(�C←D − �D←C). (26)

�C←D is the rate of electron transfer from the reservoir D to
the reservoir C, while �D←C is the rate of electron transfer
from the reservoir C to the reservoir D.

To calculate �C←D and �D←C, we bosonize and then
refermionize [60] the Hamiltonian HCNT in Eq. (25). The
details of the bosonization and refermionization are given in
Appendix. The resulting Hamiltonian at the Toulouse point
[60] is found as

HEK = H0K + H0C + H0D + H ′
Pz + H ′

P+ + constant,

H0K =
∑

	k
ε	k c̃†

	k c̃	k + VK

∑
	k

(c̃†
d c̃	k + c̃†

	k c̃d )

=
∑

ε

εc̃†
ε c̃ε,

H0C =
∑

	k
εC	k c̃†

C	k c̃C	k,

H0D =
∑

	k
εD	k c̃†

D	k c̃D	k,

H ′
Pz =

∑
	k, 	k′

JPz(c̃†
d c̃d − 1/2)(c̃†

C	k c̃C 	k′ − c̃†
D	k c̃D 	k′ ),

H ′
P+ = VP

∑
	k1,	k2,	k3

c̃†
d c̃	k1

c̃†
D	k2

c̃C	k3
+ H.c. (27)

H0K is obtained from the charge Kondo Hamiltonian HCNT
eff1 of

Eq. (11). c̃d flips the pseudospin of the quadruple dot from
up to down, and c̃†

	k creates an electron with momentum 	k in
an electron bath that combines the reservoirs A and B. H0K

is diagonalized in energy basis as
∑

ε εc̃†
ε c̃ε . H0C and H0D

are the Hamiltonian of the reservoirs C and D. H ′
Pz and H ′

P+
are obtained from the Hamiltonian HPz and HP+ of Eq. (25),
respectively, and describe processes accompanied by electron
tunneling t1 between the quadruple dot and the reservoirs C
and D. The coupling amplitudes VK and VP satisfy VK ∝ J+
and VP ∝ JP+.
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We calculate �C←D and �D←C, using the Fermi golden
rule and treating H ′

Pz and H ′
P+ as a perturbation of the exactly

solvable Hamiltonian H0K + H0C + H0D. The perturbation is a
valid approach for sufficiently small JPz, JP+ ∝ t2

1 , since H ′
Pz

and H ′
P+ are irrelevant according to a scaling analysis (see

Appendix). The lowest-order Fermi golden rule expression of
�C←D is

�C←D = 2π
∑
| f 〉,|i〉

|〈 f |H ′
P+|i〉|2Wiδ(Ei − E f ). (28)

Here, the summation runs over all possible initial states |i〉
with energy Ei and final states | f 〉 with energy E f . |i〉 and | f 〉
are eigenstates of H0K + H0C + H0D and contribute to �C←D

when they are related as

| f 〉 = c̃†
C	k c̃D	k′ c̃†

ε2
c̃ε1 |i〉, (29)

where ε2 �= ε1. In comparison with |i〉, | f 〉 has one more
electron in the reservoir C, one less electron in the reservoir
D, and one more particle-hole excitation in the charge Kondo
system. Wi = e−Ei/(kBT )/Z is the probability of having the
initial state |i〉, where Z is the partition function. Note that
the processes described by HPz do not contribute to �C←D

in the lowest-order Fermi golden rule. The Fermi golden rule
expression of �D←C has a similar form.

Each initial state |i〉 is further decomposed as |i〉 =
|iK〉|iC〉|iD〉, where |iK〉, |iC〉 and |iD〉 are eigenstates of H0K ,
H0C, and H0D, respectively. Then, the transition rate �C←D is
obtained as

�C←D = 2π
∑

	k,	k′,ε1,ε2

∑
|i〉

Wi|〈i|c̃†
ε1

c̃ε2 c̃†
D	k′ c̃C	kVP

∑
	k1,	k2,	k3

c̃†
C	k3

c̃D	k2
c̃†

	k1
c̃d |i〉|2δ(ε	k − ε	k′ + ε2 − ε1)

= 2πV 2
P

∑
	k,	k′,ε1,ε2

∑
|i〉=|iC〉|iD〉|iK 〉

|〈iD|c̃†
D	k′ c̃D	k′ |iD〉|2|〈iC|c̃C	k c̃†

C	k|iC〉|2|〈iK |c̃†
ε1

c̃ε2

∑
	k1

c̃†
	k1

c̃d |iK〉|2

×Wiδ(ε	k − ε	k′ + ε2 − ε1)

= 2ρ3V 2
P

∫
dε	kdε	k′dε1dε2

TK

T 2
K + ε2

1

ε2
2

T 2
K + ε2

2

fD(ε	k′ )(1 − fC(ε	k )) f (ε1)(1 − f (ε2))δ(ε	k − ε	k′ + ε2 − ε1). (30)

In the above equation, we used the decomposition of

Wi = e−EiK /(kBT )

ZK

e−EiC /(kBT )

ZC

e−EiD /(kBT )

ZD
, (31)

where ZK , ZC, and ZD are the partition functions of H0K , HC,
and HD, respectively, and EiK , EiC , and EiD are the energies of
states |iK〉, |iC〉, and |iD〉. We also used the relation

∑
|iC〉

|〈iC|c̃†
C	k c̃C	k|iC〉|2 e−EiC /(kBT )

ZC
= fC(ε	k ) (32)

for the reservoir C, and the equation (see Appendix for the
derivation)

∑
|iK 〉

|〈iK |c̃†
ε1

c̃ε2

∑
	k1

c̃†
	k1

c̃d |iK〉|2 e−EiK /(kBT )

ZK

= 1

πρ

TK

T 2
K + ε2

1

ε2
2

T 2
K + ε2

2

f (ε1)(1 − f (ε2)). (33)

Using Eqs. (30) and (26), we obtain the zero-bias dif-
ferential conductance dICD/dVCD at temperature T and at
VCD → 0,

dICD

dVCD
∝ e2

h

ρJ2
P+

TK

(
T

TK

)2

(ρT )2, (34)

where the expression of JP+ is found in Eq. (25). The tem-
perature dependence of dICD/dVCD ∝ T 4 is different from
the usual temperature dependence ∝ T 2 [see, e.g., Eq. (20)].
It is because the conductance is induced by the electron
tunneling t1 (occurring between the dot C and the reservoir
C and between the dot D and the reservoir D in the processes

of HP+) which is not described by the Kondo Hamiltonian
HCNT

eff1 but by HP+ in Eq. (25). The factor ρJ2
P+/TK (�1 in

the perturbation regime) is understood as the number of the
pseudospin flips induced by the electron tunneling t1 within
the Kondo characteristic time 1/TK . The factor (T/TK )2 in
Eq. (34) shows the usual Fermi-liquid behavior of (T/TK )2

and originates from electron tunneling between the quadruple
dot and the reservoirs A and B in the processes of HP+.
The last factor (ρT )2 comes from the energy window of
the reservoirs C and D available for the processes of HP+
at temperature T . The nontrivial temperature dependence of
dICD/dVCD will be useful for identifying the charge Kondo
effects of the quadruple dot in the CNT setup. We note
that the result in Eq. (34), obtained exactly at the Toulouse
point, is valid also near the Toulouse point; when the system
deviates perturbatively from the Toulouse point, the correction
to Eq. (34) is of sixth order in temperature [see Eq. (A11) in
Appendix].

We estimate the Kondo temperature TK of the charge
Kondo effect in the CNT quadruple dot, using Eq. (24). TK

can reach about 1.5 K with the parameters [54,61,62] of
V ∼ 1–2 meV, UAB ∼ 0.4–0.8 meV, tCD ∼ 0.1–0.8 meV, and
� ∼ 0.1–0.4 meV.

E. Asymmetry between the dots A and B

We study the stability of the charge Kondo effect against
asymmetry between A and B. The asymmetry occurs when
the single-particle level εA = ε0 + δεA of the dot A is different
from that εB = ε0 + δεB of the dot B, δεA �= δεB. This lifts
the energy degeneracy of the pseudospin states |⇑〉 and |⇓〉,
resulting in pseudospin Zeeman energy EPZ = δεA + δεB. Be-
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low, we compute the effect of the asymmetry on the electron
current in the 2DEG setup [see Fig. 1(a)], considering the
Fermi liquid regime of small asymmetry δεA, δεB � kBTK .

Applying the Schrieffer-Wolff transformation, we find that
in the presence of the asymmetry, the effective Hamiltonian
in Eq. (11) has the pseudospin Zeeman term HPZ and the
potential scattering HW,

Heff1 →Heff1 + HPZ + HW,

HPZ = EPZτz,

HW =
∑

λ=A,B;	k,	k′

Wλc†
λ	kc

λ	k′ ,

Wλ = t2
0

[
1

ε0 + V − δελ

− 1

ε0 + V + δελ

]
≈ 2t2

0 δελ

(ε0 + V )2
.

(35)

The asymmetry leads to additional scattering phase shifts.
The pseudospin Zeeman term HPZ plays the same role [63]
as the elastic scattering α term in Eq. (15). The potential
scattering modifies the scattering phase δc(ε) → δc(ε) + δPS,λ

of electron transmission through dot λ = A, B. δPS,λ can be
obtained [64] as δPS,λ = −arctan(πρWλ), using the T matrix.

Combining these, we find the current IA through the dot A,

IA = e2

h

[
VAcos2(δPS,A) − VA

4
cos(2δPS,A)

×
{(

eVA

kBTK

)2

+
(

eVB

kBTK

)2

+
(

EPZ

kBTK

)2}]
. (36)

The result becomes identical to Eq. (19) in the limit of EPZ =
0 and δελ = 0.

IV. ANISOTROPIC TWO-CHANNEL CHARGE KONDO
EFFECTS IN THE SPINFUL REGIME

We next move to the spinful regime of tAB �= 0 and EZ =
0. We will show that a two-channel charge Kondo Hamil-
tonian describes the quadruple dot when (i) (nA = 1, nB =
1, nC = 1, nD = 0) and (0,0,0,1) are the degenerate ground-
state charge configurations and (ii) the (1,1,1,0) configuration
has a spin-singlet state in the subsystem AB. The two-channel
Kondo Hamiltonian has channel anisotropy due to interdot
electron tunneling. Because of the anisotropy, the single-
channel charge Kondo effect, induced from the two-channel
Hamiltonian, appears in the parameter regime available in
current experiments.

A. Parameter regime and pseudospin

When the quadruple dot has the charge configuration
(nA = 1, nB = 1, nC = 1, nD = 0), the subsystem AB has two
electrons. The two electrons form a spin singlet, since electron
tunneling occurs between the dots A and B (tAB �= 0) and
there is no external magnetic field (EZ = 0); the tunneling
causes antiferromagnetic coupling between A and B with cou-

pling strength JAB = 4t2
AB

U−UAB
. The ground state is 1√

2
(d†

A↑d†
B↓ −

d†
A↓d†

B↑)d†
C|0〉 and has energy 2ε0 + UAB − JAB + εC. On the

other hand, the state of the charge configuration (0,0,0,1) is

FIG. 4. Pseudospins of the quadruple dot in the spinful regime
of EZ = 0 and tAB �= 0. (a) The charge configuration (1,1,1,0) having
the spin singlet 1√

2
(d†

A↑d†
B↓ − d†

A↓d†
B↑)d†

C |0〉 in the subsystem AB
corresponds to the pseudospin up. (b) The configuration (0,0,0,1)
corresponds to the pseudospin down.

d†
D|0〉 and has energy εD. The conditions for the two states

|⇑′〉 = 1√
2

(d†
A↑d†

B↓ − d†
A↓d†

B↑)d†
C|0〉, |⇓′〉 = d†

D|0〉 (37)

to form the degenerate ground states are (i) εD = 2ε0 +
UAB − JAB + εC (with which the two states have the same
energy), (ii) 0 < εC − εD < 2V and −V < ε0 < JAB − UAB

[with which the two states are the ground states, having
lower energy than the other states such as d†

A↑d†
C|0〉 and

1√
2
(d†

A↑d†
B↓ − d†

A↓d†
B↑)d†

D|0〉].
We ignore the ordinary spin Kondo effect in each of the

dots A and B, considering [65] that JAB is much larger than the
Kondo temperature of the spin Kondo effect, and the energy
difference between the ground states and excited states must
be larger than the single-particle level broadening � and the
thermal energy, for example, JAB > �.

Note that we ignore the spin degrees of freedom of elec-
trons in the dots C and D, since there is no electron tunneling
between the subsystems CD and AB. We also choose the
condition of εD + V = εC for computational convenience, as
in Sec. III A; relaxation of these conditions do not alter our
results qualitatively.

The two degenerate ground states |⇑′〉 and |⇓′〉 form the
pseudospin up and down (see Fig. 4). The pseudospin-1/2
operators are Sz = (|⇑′〉〈⇑′| − |⇓′〉〈⇓′|)/2, S+ = |⇑′〉〈⇓′|,
and S− = |⇓′〉〈⇑′|.

B. Two-channel Kondo effect

Under the above conditions, we obtain a low-energy ef-
fective Hamiltonian in terms of the pseudospin operators, by
applying the Schrieffer-Wolff transformation [55],

Heff2 = HA‖B + HA↔B + Hres. (38)

The Hamiltonian Heff2 for the coupling between the pseu-
dospin operators and the reservoir electrons is decomposed
into the two terms, HA‖B and HA↔B. HA‖B is

HA‖B =
∑

	k,	k′;λ=A,B

J1zSz(c†
λ	k↑c

λ	k′↑ + c†
λ	k↓c

λ	k′↓)

+
∑
	k,	k′

J1+S+(cA	k↓cB	k′↑ + cB	k↓cA	k′↑) + H.c.
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FIG. 5. A process contributing to the J1+ term of HA‖B. It re-
sults in pseudospin flip from |⇓′〉 = d†

D|0〉 to |⇑′〉 = 1√
2
(d†

A↑d†
B↓ −

d†
A↓d†

B↑)d†
C|0〉. The process has three electron-tunneling events (red

arrows), tunneling of a spin-up electron from the reservoir ηA to the
dot A, tunneling of a spin-down electron from the reservoir ηB to the
dot B, and tunneling of an electron from the dot D to the dot C. There
is another process (not shown in this figure) contributing to the J1+
term. It is composed of tunneling of a spin-down electron from ηA
to A, tunneling of a spin-up electron from ηB to B, and tunneling of
an electron from D to C.

+
∑

	k,	k′;λ=A,B

W1(c†
λ	k↑c

λ	k′↑ + c†
λ	k↓c

λ	k′↓),

J1z = 3t2
0

ε0 + V
, W1 = − t2

0

2(ε0 + V )

J1+ = −2
√

2t2
0 tCD

ε0 + V

[
2

V
+ 1

ε0 + V

]
. (39)

HA‖B results from processes not involving interdot electron
tunneling between the dots A and B. It has pseudospin nonflip
terms of strength J1z, pseudospin flip terms of J1+, and poten-
tial scattering of W1. An example of the processes is illustrated
in Fig. 5.

Next, HA↔B results from processes involving interdot tun-
neling between the dots A and B.

HA↔B =
∑

	k,	k′;σ=↑,↓
J2zSz(c†

A	kσ
cB	k′σ + c†

B	kσ
cA	k′σ )

+
∑

	k,	k′,λ=A,B

J2+S+c
λ	k↓c

λ	k′↑ + H.c.

+
∑

	k,	k′,σ=↑,↓
W2(c†

A	kσ
cB	k′σ + c†

B	kσ
cA	k′σ ),

J2z = − 3t2
0 tAB

(ε0 + V )2
, W2 = t2

0 tAB

2(ε0 + V )2

J2+ = 2
√

2t2
0 tCDtAB

(ε0 + V )2

[
2

V
+ 2

ε0 + V

]
. (40)

Because of interdot tunneling between A and B, the coupling
energies J2z, J2+, W2 of HA↔B are smaller than those of HA‖B:
J2z = −J1ztAB/(ε0 + V ), J2+ = −J1+tAB(2ε0 + 4V )/(ε0 +

FIG. 6. A process contributing to the J2+ term of HA↔B. It results
in pseudospin flip from |⇓′〉 to |⇑′〉. It has four electron-tunneling
events (red arrows), tunneling of a spin-up electron from the reservoir
ηA to the dot A, tunneling of a spin-down electron from the reservoir
ηA to the dot A, followed by tunneling of the spin-down electron
from the dot A to the dot B, and tunneling of an electron from
the dot D to the dot C. There are other processes (not shown in
this figure) contributing to the J2+ term. For example, there is a
process composed of tunneling of a spin-down electron from ηA
to A, tunneling of a spin-up electron from ηA to A, followed by
tunneling of the spin-up electron from A to B, and tunneling of an
electron from D to C.

V )(2ε0 + 3V ), W2 = −W1tAB/(ε0 + V ). An example of the
processes leading to HA↔B is illustrated in Fig. 6.

In this spinful regime of EZ = 0 and tAB �= 0, both of
the charge and spin degrees of freedom are important, as
shown in Eq. (38), and they can result in a two-channel
Kondo effect, contrary to the spinless regime of EZ � Uλλ′

and tAB = 0 studied in Sec. III. To understand how Heff2 in
Eq. (38) describes the two-channel Kondo effect, we first
consider HA‖B + Hres, a part of Heff2. In HA‖B, the pseudospin
flip |⇑′〉 ↔ |⇓′〉 occurs in two ways that behave as two inde-
pendent channels, (i) tunneling of a spin-up electron between
the dot A and the reservoirs ηA and tunneling of a spin-down
electron between the dot B and the reservoirs ηB (see Fig. 5)
and (ii) tunneling of a spin-down electron between A and ηA
and tunneling of a spin-up electron between B and ηB. To see
this, we rewrite HA‖B + Hres, applying the particle-hole trans-
formation of cA(B)	k↓ → c†

A(B)	k↓ and ε
ηA(B)	k↓ → −ε

ηA(B)	k↓, and

assigning pseudospin up and channel index (⇑, ch = 1) to
ηA ↑ electrons, (⇓, ch = 1) to ηB ↓, (⇑, ch = 2) to ηB ↑,
and (⇓, ch = 2) to ηA ↓,

HA‖B + Hres →
∑

ch=1,2

2J1zSzs
ch
z + J1+S+sch

− + H.c.

+
∑

ch=1,2

W1(c†
ch,	k⇑cch,	k′⇑ − c†

ch,	k⇓cch,	k′⇓)

+ Hres. (41)

Here, sch=1,2
i=x,y,z = ∑

	k	k′;μμ′=⇑,⇓ c†
ch,	kμ

σ i
μμ′
2 cch,	k′μ′ and sch

± = sch
x ±

isch
y . This shows that HA‖B + Hres describes a two-channel

charge Kondo effect. The two-channel Kondo Hamiltonian in
Eq. (41) has channel isotropy, namely, the coupling strengths
J1z, J1+, and W1 are independent of the channel index.
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Therefore, it shows a two-channel Kondo effect at zero tem-
perature. Note that the Kondo effect has spin anisotropy,
J1+ �= J1z, as in the single-channel Kondo effect in the spinless
regime of EZ � Uλλ′ and tAB = 0 [see the Hamiltonian in
Eq. (11)].

Now we discuss the effect of HA↔B on the two-channel
Kondo effect. In this Hamiltonian, tunneling of two electrons
(one having up real spin, and the other having down real spin)
from a reservoir (e.g., the reservoir SA in Fig. 6) to the subsys-
tem AB can result in the pseudospin flip |⇑′〉 ↔ |⇓′〉, contrary
to the case of HA‖B; in the case of HA‖B, the pseudospin
flip occurs only by tunneling of two electrons, one from the
reservoir ηA and the other from the reservoir η′B (see Fig. 5).
This effect of HA↔B can suppress the two-channel Kondo
effect of HA‖B + Hres. To see this, we apply the particle-hole
transformation of cA(B)	k↓ → c†

A(B)	k↓ and ε
ηA(B)	k↓ → −ε

ηA(B)	k↓
(which was used for HA‖B) to HA↔B, and introduce the even
and odd combinations of the channels for each pseudospin
μ = ⇑,⇓,

cch=e,	kμ
= 1√

2
(cch=1,	kμ

+ cch=2,	kμ
),

cch=o,	kμ
= 1√

2
(cch=1,	kμ

− cch=2,	kμ
). (42)

Then, the total Hamiltonian Heff2 = HA‖B + HA↔B + Hres

in Eq. (38) is written as

H2ch = Hres +
∑

ch=e,o

2Jch
z Szs

ch
z + Jch

+ S+sch
+ + H.c.

+
∑
	k,	k′

∑
ch=e,o

W ch(c†
ch,	k⇑cch,	k′⇑ − c†

ch,	k⇓cch,	k′⇓), (43)

where the coupling strengths are Jch=e
z = (J1z + J2z )/2,

Jch=o
z = (J1z − J2z )/2, Jch=e

+ = (J1+ + J2+)/2, Jch=o
+ =

(J1+ − J2+)/2, W ch=e = (W1 + W2)/2, and W ch=o =
(W1 − W2)/2. This Hamiltonian describes a two-channel
charge Kondo effect with the two independent screening
channels shown in Eq. (42). The pseudospin flip |⇑′〉 ↔ |⇓′〉
occurs by tunneling of two even-channel electrons or
independently by two odd-channel electrons. The even-odd
channel combinations in Eq. (42) are related to the A-B
symmetry between the A side (the dot A and its reservoirs
ηA) and the B side (B and ηB). When the symmetry is
relaxed, there appear two linear combinations of the channels
ch = 1, 2 that independently screen the impurity spin states
|⇑′〉 and |⇓′〉.

We notice that the Hamiltonian H2ch in Eq. (43) has chan-
nel anisotropy Jch=e

z,+ > Jch=o
z,+ and spin anisotropy Jch=e,o

z >

Jch=e,o
+ . The channel anisotropy originates from electron tun-

neling tAB between the dots A and B. The channel anisotropy
weakens the two-channel Kondo effect, as discussed
later.

The channel anisotropy is unavoidable. To make the two-
channel Kondo Hamiltonian H2ch more isotropic, one may
reduce the strength tAB of interdot electron tunneling between
A and B, the origin of the channel anisotropy. In this case,
however, the energy gap between the spin singlet [which
forms the pseudospin state |⇑′〉 in Eq. (37)] and the spin

FIG. 7. Schematic phase diagram of a two-channel Kondo effect
as a function of temperature T and channel anisotropy 
. J is
a dimensionless coupling strength (see the text). Two crossover
temperatures T2K (blue dashed curve) and T ∗ (orange solid) exist,
depending on 
. When T ∗ < T2K , a single-channel Kondo effect and
its Fermi liquid (FL) appear at T � T ∗, the two-channel Kondo effect
and its non-Fermi liquid (NFL) occur at T ∗ � T � T2K , and the two-
channel Kondo effect becomes suppressed at higher temperature.
When T ∗ > T2K [the right side of the crossing point (CP) of T2K and
T ∗], a single-channel Kondo effect occurs at temperature lower than
the single-channel Kondo temperature.

triplets of the subsystem AB becomes smaller, which weakens
the two-channel charge Kondo effect.

C. Channel anisotropy

When there is channel anisotropy in a two-channel Kondo
Hamiltonian, there are two crossover temperatures T ∗ and
T2K [66,67]. Then, depending on temperature T and the
anisotropy, there occurs a two-channel Kondo effect or a
single-channel Kondo effect, as sketched in Fig. 7. Below, we
estimate T ∗ and T2K of the two-channel Kondo Hamiltonian
in Eq. (43).

In order to estimate the two crossover temperatures, we ap-
ply the Poorman’s scaling [56,68]. We introduce dimension-
less average coupling strengths Jz and J+, and dimensionless
channel anisotropies 
z and 
+,

Jz ≡ ρ
(
Jch=e

z + Jch=o
z

)/
2 = ρJ1z/2,


z ≡ ρ(Jch=e
z − Jch=o

z ) = ρJ2z,

J+ ≡ ρ(Jch=e
+ + Jch=o

+ )
/

2 = ρJ1+/2,


+ ≡ ρ(Jch=e
+ − Jch=o

+ ) = ρJ2+, (44)

where ρ is the density of states of the reservoirs. We obtain
the coupled scaling equations,

dJz

d ln D
= −1

2

2

+ − 2J 2
+,

d
z

d ln D
= −4
+J+,

dJ+
d ln D

= −
(

2JzJ+ + 1

2

z
+

)
,

d
+
d ln D

= −2(
zJ+ + Jz
+), (45)

where D is the effective bandwidth of the reservoirs.
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To estimate T ∗ and T2K , we consider the case [68] of J =
Jz � J+, 
 = 
z � 
+, and 
 � J . T2K is estimated as
T2K ∼ D0exp[−1/2J (D0)], which is the effective bandwidth
D at the point of J ∼ 1 in the renormalization group flow of
the scaling equations. Here D0 is the bare bandwidth of the
reservoirs. T ∗ is estimated by the effective bandwidth D at the
point of 
 ∼ 1. Using Eqs. (39), (40), (45) and the fact [66]
that the scaling dimension of the channel anisotropy is 1/2,
we have the relation between T ∗ and T2K ,

T ∗

T2K
∼

(



J 2

)2

∼ 16
J2

2z

ρ2J4
1z

∼ 4
t2
AB

�2
. (46)

In the realistic situations of the setups in a 2DEG or CNTs,
it is hard to satisfy simultaneously the condition JAB > �

(with which the spin singlet of the subsystem AB has lower
energy than excited states by more than the single-particle
level broadening �) and the condition of T ∗ < T2K (to have
the temperature window for the two-channel Kondo effect).
The former condition is equivalent with 4t2

AB/(U − UAB) > �

and the latter 4t2
AB < �2. The two conditions are simultane-

ously satisfied when U − UAB < �, which is however oppo-
site to the Coulomb blockade condition of U − UAB > �. This
implies T ∗ > T2K , hence there occurs a single-channel Kondo
effect induced from the two-channel Kondo Hamiltonian H2ch.

In the single-channel charge Kondo effect, the pseudospin
in Fig. 4 is screened by the even-parity channel c†

ch=e in
Eq. (42), since the even-parity channel has stronger coupling
than the odd-parity channel, Jch=e

z,+ > Jch=o
z,+ . By substituting

Jez(Je+) into Jz(J+) in Eq. (24), we estimate the Kondo
temperature T1K of the single-channel Kondo effect, T1K ∼
20 mK for a quadruple dot formed in a 2DEG, based on
tAB ∼ 40–70 μeV and the other parameters in Sec. III B, and
T1K ∼ 1 K for a quadruple dot in CNTs, based on tAB ∼
0.3–0.6 meV.

D. Electron transport

As discussed above, the single-channel charge Kondo ef-
fect by the even-parity channel occurs in the spinful regime,
because of the large channel anisotropy. We compute the
resulting electron transport through the quadruple quantum
dot, applying the Fermi liquid theory in Sec. III C to the
even-parity channel.

We first consider the setup of Fig. 1(a) at zero temperature.
When bias voltage VSD/2 (−VSD/2) is applied to both the
source reservoirs SA and SB (the drains DA and DB) and
VSD/2 � T1K , the electron current of the even-parity channel
from the source reservoirs to the drain reservoirs DA and DB
is found as

Ie = 2e2

h
VSD

[
cos2(δpe) − cos(2δpe)

1

2

(
eVSD

kBT1K

)2]
, (47)

and the electron current of the odd-parity channel is obtained
as Io = 2e2

h VSDsin2(δpo), where δpe(o) = −arctan(πρW ch=e(o) )
comes from the potential scattering in Eq. (43). Then in the
case that the quadruple dot has the A-B symmetry, the current

IA(B) detected at the drain DA (DB) is obtained as IA = IB =
(Ie + Io)/2. We find

IA = e2

h
VSD

[
cos2(δpe) + sin2(δpo) − cos(2δpe)

1

2

(
eVSD

kBT1K

)2]
.

(48)

Next we consider temperature larger than Kondo tem-
perature (T � T1K ). Similarly to Eq. (23), we compute the
conductance dIA/dVSD in this temperature regime,

dIA

dVSD
= e2π2ρ2

4h

(
Je



)2

[
3

(
(1 + (T/T1K )−4ρJe


 )

(1 − (T/T1K )−4ρJe

 )

)2

− 2

]
,

(49)

where Je

 ≡

√
(Jch=e

z )2 − (Jch=e+ )2.

V. DISCUSSION AND SUMMARY

We have studied a quadruple quantum dot in the spinless
and spinful regimes, when the system has twofold degen-
erate ground states of (1,1,1,0) and (0,0,0,1) charge con-
figurations. In both the regimes, the quadruple dot exhibits
the single-channel charge Kondo effect at low temperature
that coherent fluctuations massively occur between the two
charge configurations (1,1,1,0) and (0,0,0,1) with the help of
electron tunneling between the quadruple dot and reservoirs.
The charge Kondo effect has a similar origin to that of the
negative-U Anderson impurity, as the electron interaction
between the dots A and B is effectively attractive, although
the bare interaction is repulsive, because of the repulsive
Coulomb interaction between the subsystems AB and CD.
We identified the impurity pseudospin states of the Kondo
effect as well as the channel of conduction electrons screening
the impurity pseudospin and obtained analytic expressions
of electron current through the dot A in both the regimes.
We also compared the charge Kondo effect with that of a
triple quantum dot and analyzed the stability of the charge
Kondo effect against pseudospin Zeeman effects. We ex-
pect that the single-channel charge Kondo effect appears
in the realistic situations of a quadruple quantum dot in
Fig. 1.

In the spinful regime of tAB �= 0 and EZ = 0, a spin singlet
is formed in the subsystem AB in the charge configura-
tion (1,1,1,0). Interestingly, the low-energy properties of the
quadruple quantum dot are described by a two-channel Kondo
Hamiltonian with channel anisotropy. The channel anisotropy
is unavoidable in realistic situations, and the quadruple dot
shows a single-channel charge Kondo effect also in the spinful
regime.

We briefly discuss the regimes not investigated in this
work. In the regime of no external magnetic field (EZ = 0) and
no interdot electron tunneling (tAB = 0) between the dots A
and B, the spin degree of freedom plays a role. Due to the spin
degree of freedom of subsystem AB, there are four different
spin states for the (1,1,1,0) charge configuration. Then the
charge Kondo effect will be suppressed, since there are five
different degenerate ground states and the pseudospins of the
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Kondo effect are not well defined. Instead, the ordinary spin
Kondo effect occurs in each of the individual dots A and B.
On the other hand, in the regime of an external magnetic field
(EZ �= 0) and finite interdot electron tunneling (tAB �= 0), the
single-channel charge Kondo effect of the spinless regime can
appear when EZ > |ε0 + UAB|, |ε0 + V | > |tAB|, or the single-
channel Kondo effect of the spinful regime can occur when
JAB > EZ. This work implies that charge Kondo effects and
effective attractive interactions can appear in general multiple
quantum dots when the multiple dots have two different
ground-state charge configurations.

Note added. Recently, we became aware of a related contri-
bution [69] on a charge Kondo effect of a quadruple quantum
dot. This contribution and our work are complementary. In
Ref. [69], the spinless regime of tAB = 0 and large EZ was
studied using the numerical renormalization group method.
In our work, we study both the spineless regime and the
spinful regime of tAB �= 0 and EZ = 0 and computed electron
transports in the two regimes using the Fermi liquid theory.
We also find that in the spinful regime, a single-channel
charge Kondo effect is induced from a two-channel charge
Kondo effect with large channel anisotropy. The overlap
between the contribution and our work is only the result in
Sec. III B.
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APPENDIX: DERIVATION OF EQ. (27)

In this Appendix, we derive the Hamiltonian in Eq. (27),
applying the bosonization and refermionization method [60]
to the single-channel Kondo Hamiltonian of the CNT setup in
Eq. (25). We also discuss useful properties of the Hamiltonian.

In the bosonization, the electron density operator at posi-
tion x of reservoir λ is written in terms of a boson field φλ(x)
as

ψ
†
λ (x)ψλ(x) = ∂xφλ(x) + 2πNλ

L
, (A1)

and the field operator ψλ(x = 0) at position x = 0 is

ψλ(x = 0) =
√

2π

L

∑
	k

c̃
λ	k = 1√

a
Fλe−iφλ(0). (A2)

Here each reservoir is modeled as a one-dimensional system
of length L, and it couples to the quadruple dot at x = 0. Nλ ≡∑

	k c̃†
λ	k c̃

λ	k is the total number operator of electrons in reservoir
λ, Fλ is the Klein factor of reservoir λ, and a is the short-
distance cutoff.

Using the bosonic field φλ(x), the Kondo Hamiltonian of
the CNT setup in Eq. (25) is written as

HCNT = HCNT
res + L

2π
Jz

∑
λ=A,B

τz

[
∂φλ(0) + 2πNλ

L

]

+ J+

(
L

2πa

)
τ+FBe−iφB(0)FAe−iφA(0)

+ L

2π
JPzτz

[
∂φC(0) − ∂φD(0) + 2π (NC − ND)

L

]

+ JP+

(
L

2πa

)2

τ+FBe−iφB(0)FAe−iφA(0)

× F †
D eiφD(0)FCe−iφC(0). (A3)

Using the relations of

φc̃/s̃(x) =(φA(x) ± φB(x))/
√

2

Nc̃/s̃ =(NA ± NB)/2,
(A4)

we write the Hamiltonian as

HCNT = HCNT
res +

√
2

L

2π
Jzτz

[
∂φc̃(0) +

√
2

2πNc̃

L

]

+ J+

(
L

2πa

)
τ+FBFAe−i

√
2φc̃ (0)

+ L

2π
JPzτz

[
∂φC(0) − ∂φD(0) + 2π (NC − ND)

L

]

+ JP+

(
L

2πa

)2

τ+FBFAe−i
√

2φc̃ (0)

× F †
D eiφD(0)FCe−iφC(0). (A5)

Then we apply the Emery-Kivelson transformation U1 =
eiγ τzφc̃ (0) to the Hamiltonian at the so-called Toulouse point
of

√
2 L

2π
Jz = γ = √

2 − 1,

H ′ =U1HCNTU †
1

=HCNT
res + Jzτz2Nc̃ + J+

(
L

2πa

)
τ+FBFAe−iφc̃ (0)

+ L

2π
JPzτz

[
∂φC(0) − ∂φD(0) + 2π (NC − ND)

L

]

+ JP+

(
L

2πa

)2

τ+FBFAe−iφc̃ (0)F †
D eiφD(0)FCe−iφC(0).

(A6)

Then we apply the unitary operator U2 = eiπNc̃τz satisfying
U2FBFAU †

2 = e−iπτz FBFA and U2τ±U †
2 = e±iπNc̃τ±, to obtain

the refermionized Hamiltonian HEK in Eq. (27)

HEK = U2H ′U †
2

= H0K + H0C + H0D + H ′
Pz + H ′

P+ + constant,

H0K =
∑

	k
ε	k c̃†

	k c̃	k + VK

∑
	k

(c̃†
d c̃	k + c̃†

	k c̃d ),

H0C =
∑

	k
εC	k c̃†

C	k c̃C	k, H0D =
∑

	k
εD	k c̃†

D	k c̃D	k,

H ′
Pz =

∑
	k, 	k′

JPz(c̃†
d c̃d − 1/2)(c̃†

C	k c̃C 	k′ − c̃†
D	k c̃D 	k′ ),

H ′
P+ = VP

∑
	k1,	k2,	k3

c̃†
d c̃	k1

c̃†
D	k2

c̃C	k3
+ H.c., (A7)
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where VK ≡ J+
√

L/2πa and VP ≡ JP+
√

L/2πa. Here we
used the pseudofermions of

c̃†
d ≡ τ+eiπ (Nc̃−τz ), c̃†

d c̃d = τz + 1/2,

ψc̃(x) ≡ FBFA√
a

e−iNc̃2πx/L−iφc̃ (x),

≡
√

2π/L
∑

	k
c̃	ke−i	kx. (A8)

Following Ref. [60], we diagonalize H0K = ∑
ε εc†

εcε , us-
ing the unitary transformations of

c̃d =
∑

ε

Yε c̃ε, Yε =
[

TK
L/π

T 2
K + (TK
L/π ) + ε2

] 1
2

,

c̃	k =
∑

ε

X	kε
c̃ε, X	kε

=
√


LTK/π
1

ε − ε	k
Yε, (A9)

where 
L ≡ 2π/L. Then the Kondo temperature TK is written
as TK = πV 2

K /
L.
When the system deviates from the Toulouse point as Jz =

2π√
2L

γ → Jz = 2π√
2L

γ + δJz [see Eq. (A5)], the Hamiltonian
HEK in Eq. (27) has an additional term HδJz ,

HEK → HEK + HδJz ,

HδJz =
√

2δJz(c̃†
d c̃d − 1/2)

∑
	k, 	k′

c̃†
	k c̃ 	k′ . (A10)

We compute dICD/dVCD by treating the additional term HδJz

as a perturbation,

dICD

dVCD
∝ e2

h

ρJ2
P+

TK

(
T

TK

)2

(ρT )2

[
1 − C(πρδJz )2

(
T

TK

)2
]
,

(A11)
where C ≈ 20. The second term shows the Fermi liquid
behavior originating from the deviation by δJz and is of
higher order (sixth order) in temperature than the result at the
Toulouse point (see the first term). This shows that the result
of dICD/dVCD in Eq. (34) is valid also near the Toulouse point.

We compute the scaling dimension of HP+ and HPz. The
scaling dimension νP+ of HP+ is obtained from the relation of

〈HP+(t )HP+(0)〉0K ∝ 1

t2νP+
(at large t ). (A12)

Here, the average 〈· · · 〉0K is obtained with respect to the
Hamiltonian H0K . We find νP+ = 3. As we consider one-
dimensional reservoirs, νP+ > 1 implies that HP+ is irrele-
vant. Similarly, we find that the scaling dimension νPz of HPz

is 2, implying that HPz is also irrelevant. Note that the potential
scattering part of HPz (∝ ∑

	k,	k′ c̃†
C	k c̃C	k′ − c̃†

D	k c̃D	k′ ) is ignored in
the computation of νPz, because this part decouples from the
quadruple dot.
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